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INTRODUCTION
How much does a chemical present a real risk to human and environment? The goal
of risk assessment is to estimate the likelihood and the extent of adverse effects
occurring to man, animals or ecological systems due to possible exposure(s) to
substances. The assessment of whether a substance presents a risk to organisms in the
environment is based on the comparison of a predicted environmental concentration
(PEC) with a predicted no effect concentration to ecosystems (NOEC).
In the deterministic framework inputs are single values. In the probabilistic
framework inputs are treated as random variables coming from probability
distributions. The outcome is a risk distribution. A distinction ought to be made
between uncertainty and inherent variability. Variability represents heterogeneity or
diversity, which is not reducible through further measurement or study. Uncertainty
represents ignorance about a poorly characterised phenomenon which is sometimes
reducible through further measurement or study. The probabilistic risk assessment
enables risk managers to see the full range of variability and uncertainty instead of
being mislead into thinking that exposure, effects and eventually risk are point values.
Several techniques can be used to estimate uncertainty in a data set: bootstrapping, the
maximum likelihood method (MLE) and Bayesian approaches.
Fig. 1 gives an example of the approach to construct uncertainty bands on a
cumulative distribution function based on a limited data set (n = 9). The cumulative
distribution function itself can be considered as a variability distribution. For each
percentile or parameter of the variability distribution, a confidence interval can be
calculated (i.e. an uncertainty distribution).

Fig. 1: example of an uncertainty band around a cumulative distribution function

The general goal of this paper is to determine which technique is most suitable and
reliable for determination of these uncertainty bands. The mentioned techniques will
be applied on toxicity test results (NOECs), which are used in probabilistic risk
assessment. Single-species toxicity test data are combined to predict concentrations
affecting only a certain percentage of species in a community. A distribution is fit to
single-species data collected for many species. From this distribution of species



sensitivities, a hazardous concentration (HCp) is identified at which a certain
percentage p of all species is assumed to be affected. One can use the lower 95%
tolerance limit of the estimated percentage to ensure that the specified level of
protection is achieved.
In this paper, the methods will be applied on data sets found in literature. No
discussion is made on the quality of these data sets or on the advantages and
disadvantages of the species sensitivity distribution approach. The studied techniques
have a much broader application field.

METHODS
In this section, a technical overview is given of techniques that provide estimates of
confidence intervals: bootstrapping, maximum likelihood method and Bayesian
approaches. At the end, an overview of the data sets used is given.

Bootstrapping:  A detailed description of bootstrapping, can be found in Cullen &
Frey (1999) and Davison & Hinkley (1997). Given a data set of sample size n, the
general approach in bootstrap simulation is to assume a nonparametric or parametric
distribution which describes the quantity of interest, to perform r replications of the
original data set by randomly drawing, with replacement, n values, and then calculate
r values of the statistic of interest.
In case nonparametric bootstrapping is used, samples are taken from an empirical
distribution function (also called resampling) or from an empirical cumulative
distribution function (using Hazen plotting system). Nonparametric or distribution-
free approaches do not require assumptions regarding the probability model for the
underlying population distribution. However, they also tend to yield wider estimates
of confidence intervals than parametric methods do. In parametric bootstrapping, a
parametric distribution (e.g. lognormal distribution) is used.

Bayesian approach:  The Bayesian statistical method reverses the role of sample and
model: the sample is fixed and unique, and the model itself is uncertain. This
statistical viewpoint corresponds better to the practical situation the individual
researcher is facing: there is only one sample and there are doubts what model to use,
or, if the model is chosen, what values the parameters will take. The uncertainty of the
model is modelled by assuming that the parameters of the model are distributed. More
details are found in Aldenberg & Jaworska (2000).

Maximum likelihood estimation (MLE):  The general idea is to choose an estimator
for the parameter(s) in a distribution so as to maximise a function of the sample
observations.

Data sets:  Four different data sets were considered. Data Set 1, a synthetic data set,
contains 20 positive values drawn randomly from a known lognormal distribution
(exp[N(µ,σ)] with µ = 2 and σ = 1). The arithmetic mean of the parent distribution
equals exp[µ + 0.5σ2] = 12.2, approximately, and the arithmetic mean of the
considered sample of 20 values equals 14, exactly.
Data Set 2, 3 and 4 consist of toxicity database of respectively Cd (Cadmium), Cu
(Copper) and LAS (Linear Alkylbenzosulfonate, a chemical used in detergents). The
data sets can be found in Versteeg et al. (1999).



RESULTS AND DISCUSSION
Two-dimensional analysis of variability and uncertainty was performed. It can be
used to produce a point estimate, if so desired by an analyst or decision-maker.
Results are shown in Figures 2 and 3. The following remarks can be made:
•  There is a distinct difference in shape between the parametric and non-parametric

distributions. The parametric uncertainty band is much smoother than the non-
parametric one.

•  The results illustrate that, for a positively skewed quantity, the uncertainty in the
distribution becomes largest at the upper tail.
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Fig. 2: Non-parametric bootstrapping (Emp CDF)
for the Cd data set

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0.01 0.1 1 10 100 1000 10000
Concentration (mg/l)

C
um

ul
at

iv
e 

pe
rc

en
ta

ge

95 percentile
50 percentile
5 percentile
data points

5 th percentile with uncertainty interval

Fig. 3: Parametric bootstrapping (lognormal
distribution) for the Cd data set

In order to select a point estimate, it is necessary to specify both the percentile of the
population of interest, which reflects variability, and the desired confidence level or
probability band, which reflects uncertainty. For example, one point estimate would
be the 5th-percentile of uncertainty for the 5th-percentile of variability (indicated by
arrow on Figures 2 and 3).
First, the hypothetical lognormal data set 1 was studied. Fig. 4 represents the 90%
uncertainty intervals of the 5th-percentile obtained with all methods tested on the 20
data points of the hypothetical lognormal distribution.

•  The maximum likelihood method and
the Bayesian approach lead to the
same solutions, as Aldenberg &
Jaworska (2000) already concluded.

•  The median 5th-percentiles of all
methods are close to each other and
always lower than the real 5th-
percentile.

•  The real 5th-percentile lies within the
90%-uncertainty intervals of all
methods. This is to be expected, as
data set 1 is lognormally distributed.

•  Non-parametric bootstrapping results
in wider confidence limits than the other techniques. The parametric bootstrap also
has wider confidence bands than the parametric MLE and Bayesian analysis.

•  The parametric bootstrap showed a behaviour similar to the MLE and Bayesian
analysis, although with wider confidence bands. Because MLE and Bayesian

95th-percentile

0

0.5

1

1.5

2

2.5

MLE Bayes nonpar
bootstrap

EDF

nonpar
bootstrap (E-

CDF)

parametric
bootstrap

C
on

ce
nt

ra
tio

n 
(m

g/
L)

5th-percentile

50th-percentile

Fig. 4: 90% uncertainty intervals of the 5th-
percentile for all methods for the hypothetical
lognormal data set (thick line = real 5th-
percentile)



analysis are easier to use and not so computationally intensive, they should be
preferred over the parametric bootstrap.

Then, two actual toxicity data sets (LAS - data set 4 and Cu - data set 3) were studied.
The following conclusions can be made (see Fig. 5 and Fig. 6):
•  For LAS, a possible median 5th-percentile could be identified that could be

situated within the 90%-uncertainty bands of all methods. Fig. 5 shows large
similarities to Fig. 4. For Cu, no possible variability 5th-percentile could be
identified that would lie within the 90%-uncertainty bands of all methods.

•  For LAS, a factor of 2.4 and for Cu, a factor of almost 5 was found between the
estimated median 5th-percentiles of the various methods. However, given the fact
that other, larger uncertainties exist in using the species sensitivity distribution
approach (e.g. the uncertainty of lab to field extrapolations) the applied method is
not a major issue.

•  The nonparametric resampling bootstrap showed it was too arbitrarily and
inaccurate.
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Fig. 5: 90% uncertainty intervals of the 5th-
percentile following various methods for 17 data
points of the LAS data set
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Fig 6: 90% uncertainty intervals of the 5th-
percentile following various methods for 20 data
points of the Cu data set

CONCLUSIONS
In probabilistic risk assessment, risk managers can see the full range of variability and
uncertainty instead of being mislead into thinking that exposure, effects and
eventually risk are point values. Several techniques can be used to estimate
uncertainty in a data set: bootstrapping, the maximum likelihood method (MLE) and
Bayesian approaches. All methods give similar uncertainty estimates, considering the
fact that other, larger uncertainties exist in the risk assessment process.
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