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Abstract

Environmental standards must be set in ways which give full recognition to all sources of uncertainty and variability of the
toxicity data used to derive these standards. Toxicity data such as NOECs form a variability distribution describing species
sensitivity distribution (SSD). In EU environmental regulations the 5th-percentile of SSD is used to set the quality criteria. In
this paper, a comparison is made between the application of techniques characterising uncertainty and variability (bootstrap,
maximum likelihood estimation (MLE) and Bayesian approaches) using small toxicity data sets to calculate the 5th-percentile.
Estimating lower and upper uncertainty bounds of a specific percentile gives different results when different methods are used.
Bayesian and MLE methods were found to be superior to parametric bootstrapping because they are easier to use and not so
computationally intensive. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

The goal of a comprehensive risk assessment is to
estimate the probability and the extent of adverse ef-
fects occurring to man, animals or ecological systems
due to possible exposure(s) to chemicals. The assess-
ment of whether a chemical presents a risk to organ-
isms in the environment is based on the comparison
of an environmental concentration with a predicted no
effect concentration to ecosystems. The predicted no
effect concentration is determined based on no observ-
able effect concentration (NOEC) toxicity data test-
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ing the sensitivity of an organism towards a chemical.
Various species sensitivities towards a chemical can
be captured in a variability distribution, called species
sensitivity distribution (SSD). From this distribution
of species sensitivities, a hazardous concentration is
identified at which a certain percentagep of all species
is assumed to be affected. The hazardous concentra-
tion is also used in quality standard setting.

In the deterministic framework of risk assessments,
the predicted no effect concentration is a single value.
In the probabilistic framework, the predicted no effect
concentration is determined from the 5th-percentile of
the SSD. One uses the lower 95% confidence bound
of the estimated percentage to ensure that the specified
level of protection is achieved.

A distinction ought to be made between variabil-
ity and uncertainty (or confidence level) of the SSD
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Fig. 1. Example of an uncertainty or confidence band around a cumulative variability distribution function (number of samples= 10,
log–logistic distribution).

(Fig. 1). Variability represents heterogeneity or diver-
sity in a well characterised population. Fundamentally
a property of nature, variability is usually not reducible
through further measurement or study (e.g. variation
of chemical concentrations throughout the year due to
river flow variability, e.g. species sensitivity towards a
chemical). Uncertainty represents partial ignorance or
lack of perfect information about poorly characterised
phenomena or models, which is sometimes reducible
through further measurement or study (e.g. measure-
ment error) [1]. In case of a SSD it is uncertainty of
the true shape of a distribution not limited by the sam-
ple size.

Several techniques can be used to characterise vari-
ability and uncertainty: bootstrapping, the maximum
likelihood estimation method (MLE) and Bayesian ap-
proaches. Fig. 1 gives an example of the construction
of an uncertainty band on a cumulative distribution
function based on a limited data set (n = 10). The cu-
mulative distribution function well illustrates the fact
that of increasing concentrations on a community of
species have increasing effect on organisms. For each
percentile of the variability distribution, a confidence
or uncertainty interval can be calculated (e.g. 95% un-

certainty interval for the 5th-variability percentile in
Fig. 1).

This area of quantitative risk analysis is currently
an active area of research, but mainly methods from
classical statistics, such as bootstrap [2,3] or maxi-
mum likelihood approach [4] have been applied so
far, with an emphasis on parametric analyses. Para-
metric bootstrapping and maximum likelihood meth-
ods were found to produce similar results (for sample
sizes 5, 10 and 20) [3]. Jagoe and Newman [5] com-
pared the non-parametric bootstrapping (resampling)
with the maximum likelihood method (assuming log-
normal distributed data). The parametric method was
found to be superior to the resampling, only in the
case of lognormally distributed data. Newman et al.
[6] proposed non-parametric bootstrapping as the best
technique (for sample sizes larger than 20) because
no assumptions have to be made on underlying distri-
butions. But, so far all these techniques together have
not been compared for small data sets (e.g. sample
size= 20 or less).

Aldenberg and Jaworska [7] compared Bayesian
and MLE approaches for the Gaussian (normal) model
(for several sample sizes). Despite vastly different



F.A.M. Verdonck et al. / Analytica Chimica Acta 446 (2001) 429–438 431

numerical schemes both approaches lead to identical
answers.

In practice, data sets on toxicity tests are scarce
and if available often only at small sample sizes. As
a consequence, this raises the question: “Given small
sample sizes, which techniques are most suitable
and which parametric or non-parametric distribution
should be used?” To try to answer this question,
several methods to estimate the 5th-percentile of an
estimated distribution and its confidence interval are
compared.

2. Methods

After first giving some terminology, further ex-
planation is given on the determination of the
non-parametric and parametric percentiles. Next, a
technical overview is given of the statistical methods
for characterising variability and uncertainty.

The terminology used in Section 4 is visualised
in Fig. 2 as an uncertainty/confidence bar of the
5th-variability percentile. This bar is the 90◦ left ro-
tation of the horizontal bar in Fig. 1. Cullen and Frey
[1] summarise several possible methods for comput-
ing non-parametrically the percentile of an observed
data set. These methods are referred to as “plotting
positions”. The plotting position is an estimate of
the cumulative probability of a data point. First, rank
ordering the data is needed. Then, the mean plotting
system calculates the cumulative probabilities of a
point xi as follows:Fx(xi) = (i)/(n + 1), or alter-
natively Fx(xi) = (i − 0.5)/(n) which is known as
Hazen plotting. In the formulae,i stands for the rank
order andn stands for the total number of samples.
Cullen and Frey [1] described that mean plotting

Fig. 2. Terminology of uncertainty and variability results.

system gives erratic results for small sample sizes.
Once the observed data set is plotted, percentiles
can be calculated taking the inverse (interpolated)
empirical distribution function.

In parametric methods, a percentile can be calcu-
lated depending on the parametric distribution accord-
ing to the following equation:

αth-percentile= µ − K(s)

whereµ denotes the mean of the data set;σ the stan-
dard deviation of the data set;K denotes a tabulated
extrapolation factor;K-values for lognormal distribu-
tion and 5th-percentile can be found in [7];K-values
for the log–logistic distribution and 5th-percentile can
be found in [8].

The use of parametric distributions is one way to
model that smaller or higher values than those present
in the data set may occur in the real system. Frey and
Rhodes [3] showed that the uncertainty in the tails of
frequency distributions could be large especially with
small data sets. This statement appropriately reflects
the limitations of extrapolating from a small data set
to the tails of a parametric distribution.

Several methods can determine uncertainty bands
on a variability distribution. The difference between
these methods and the importance of the effects caused
by choosing the wrong distribution will be investi-
gated. The techniques are introduced below.

2.1. Bootstrapping

A detailed description of the bootstrapping method
can be found in literature [1,2,9]. Given a data set
of sample sizen, the general approach in bootstrap
simulation is to assume a non-parametric or paramet-
ric (e.g. lognormal, triangular, etc.) distribution which
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Fig. 3. EDF, interpolated EDF and a parametric fit for a given data set.

describes the quantity of interest, to performr repli-
cations (e.g.r = 5000) of the original data set by ran-
domly drawing, with replacement,n values, and then
calculater values of the statistic of interest.

Different types of bootstrapping were studied: two
non-parametric techniques, each with two different
plotting systems for constructing an empirical cumu-
lative distribution function, and one parametric tech-
nique (assuming the lognormal distribution). More
details can be found below.

2.1.1. Non-parametric bootstrapping
One approach is to use the actual data set itself

and to randomly select, with replacement, the actual
values of the data set. This is sometimes referred to
as resampling. The data can be represented via an
empirical distribution function (EDF). The solid dark
line in Fig. 3 gives an empirical distribution function
for a given data set.

A second approach is to fit an interpolated empirical
cumulative distribution function (interpolated EDF�=
EDF) to the data. The broken, grey line in Fig. 3 gives
an interpolated EDF. Such a distribution has minimum
and maximum values, which can be constrained by
the minimum, and maximum values in the data set,
or have to be determined explicitly. In the applica-
tion of standard setting, zero can be considered as a
minimum.

As introduced earlier, there are several “plotting
positions” for constructing an EDF and an interpolated
EDF: mean and Hazen plotting.

2.1.2. Parametric bootstrapping
A third approach is to assume a parametric distri-

bution rather than an empirical distribution. This ap-
proach is called parametric bootstrapping. Efron and
Tibshirani [9] discussed this method in detail. The bro-
ken, black line in Fig. 3 represents a fitted exponential
distribution for a given data set.

Each approach will lead to a different esti-
mate of the confidence interval. Non-parametric or
distribution-free approaches do not require assump-
tions regarding the probability model for the underly-
ing population distribution. However, they also tend
to yield wider confidence intervals than parametric
methods do.

2.2. Maximum likelihood estimation method (MLE)

The general idea of MLE is to choose an estima-
tor for the parameter(s) in a distribution (e.g. mean,
5th-percentile, etc.) so as to maximise the likelihood
of the sample data. An ML-estimator can be thought
of as an estimate for which the observed data are most
‘likely’. From a statistical point of view, the method of
maximum likelihood is considered to be more robust
(with some exceptions) and yields estimators with
good statistical properties. In addition, they provide
efficient methods for quantifying uncertainty through
confidence bounds. Although the methodology for
maximum likelihood estimation is simple, the imple-
mentation is mathematically intense. More informa-
tion on the strengths of the MLE can be found in [1].



F.A.M. Verdonck et al. / Analytica Chimica Acta 446 (2001) 429–438 433

2.3. Bayesian approaches

The Bayesian statistical method reverses the role
of sample and model, the sample is fixed and unique,
and the model itself is uncertain. This statistical
viewpoint corresponds better to the practical situation
the individual researcher is facing; there is only one
sample and there are doubts what model to use, or,
if the model is chosen, what values the parameters
will take. The uncertainty of the model is modelled
by assuming that the parameters of the model are
distributed [7].

If one assumes parameter values to be distributed,
one has to presuppose a so-called (in this case a
non-informative) prior distribution for the parameters,
to specify the initial state of knowledge about them,
before the data are used. The prior distribution is
transformed into the so-called posterior distribution by
multiplication with the classical likelihood function,
by which the information in the data is introduced.
This is essentially Bayes’ theorem. The posterior
distribution summarises our increase in knowledge
about the parameters due to observing the data. A
Bayesian simulation focuses on the evaluation of
the joint posterior distribution of the parameters. For
further technical details the reader is referred to [10].

3. Data sets

Two different kinds of data sets were considered.
The first, a synthetic one, contains 20 positive val-

ues (see Table 1) drawn randomly from a lognormal
distribution (exp(N(µ, σ )) with µ = 2 andσ = 1).
The arithmetic mean of the parent distribution equals
exp(µ + 0.5σ 2) = 12.2, approximately, and the arith-
metic mean of this sample equals 14, exactly.

The second series of data sets come from literature
laboratory and field measurements. They consist of

Table 1
Data set 1: a hypothetical data set of 20 samples, data values
drawn from a lognormal distribution of the form exp(N(µ, σ ))
with µ = 2 andσ = 1

0.832858 2.573425 3.724999 9.227466 14.99063
0.903766 2.602635 4.258860 10.80821 15.05903
1.821690 2.659332 6.221531 10.85469 18.03431
2.463967 3.689074 8.331888 14.64650 24.97989

toxicity database of Cu (Copper — 20 data points)
and linear alkyl benzene sulfonate (LAS) — 17 data
points) which can be found in [11].

To explore lognormality, normalQ–Q charts of
the log-transformed data were plotted. In a normal
Q–Q chart, observed values of a single numeric vari-
able are plotted against the expected values if the
log-transformed sample were from a normal distribu-
tion. If the log-transformed sample is from a normal
distribution, points will cluster around a straight line
(see Fig. 4).

Both data sets are lognormal distributed according
to the Kolmogorov Smirnov statistic for lognormality.
The Q–Q plots indicate that the data are lognormal
distributed around the mean, but tend to deviate at
the tails, especially the upper tail for the Cu data set
(Fig. 4a). These two possible outliers may influence
the entire parametric fit, i.e. the mean and standard
deviation will be overestimated. As a consequence, it
can be expected that the 5th-variability percentile will
be underestimated.

4. Results and discussion

All the previously discussed methods were assessed
for their performance in calculating the 5th-variability
percentile and its uncertainty/confidence estimates.

An illustration of the results for LAS is shown in
Figs. 5 and 6. One can conclude that there is a dis-
tinct difference in shape between the parametric and
non-parametric distributions estimated from the data.
The parametric methods tend to produce smoother
and smaller uncertainty or confidence bands compared
to the non-parametric methods. Non-parametric tech-
niques are more efficiently fit to data. This clearly
demonstrates that the choice of distribution is an im-
portant, general problem.

In order to select a lower bound, it is necessary to
specify both the desired percentiles of variability, and
uncertainty. For example, one point estimate would be
the 5th-percentile of uncertainty for the 5th-percentile
of variability.

Initially, the hypothetical lognormal data set was
studied. Fig. 7 gives the 90% uncertainty intervals
of the median 5th-variability percentile obtained with
all methods tested on the 20 data points of the hy-
pothetical lognormal distribution. Let us compare the
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Fig. 4. NormalQ–Q plots for (a) log Cu and (b) log LAS.

parametric methods. The maximum likelihood method
and the Bayesian approach lead to the same results, as
Aldenberg and Jaworska [7] already concluded. The
parametric bootstrap results are similar to the MLE
and Bayesian analysis results, although with wider
confidence bands. Because MLE and Bayesian anal-
ysis are easier to use and not so computationally in-
tensive, they should be preferred over the parametric
bootstrap.

Fig. 5. Cumulative distribution function for the LAS data set based on non-parametric bootstrapping (interpolated EDF and Hazen plotting
method).

The true 5th-variability percentile lies within the
90% uncertainty interval of all methods. This is to
be expected, as data set 1 is lognormally distributed.
The methods are good, given the correct assumption
of the distribution.

The lower 90% uncertainty limit and the median
5th-variability percentile are (almost) equal for the
re-sampling procedure (non-par bootstrap EDF in
Fig. 7). In case of small data sets, the 5th-percentile
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Fig. 6. Cumulative distribution function for the LAS data set based on parametric bootstrapping (lognormal distribution).

has to be estimated between zero and the first point.
If the empirical distribution function (see Fig. 3) is
used, the 5th-percentile is the first point itself. In
other words, the uncertainty interval is bounded by
the first (and smallest) data point (namely 0.832858).

Fig. 7. Uncertainty (90%) or confidence intervals of the 5th-variability percentile following various methods for 20 data points of the
hypothetical lognormal data set (thick line: true 5th-variability percentile).

As a result, the first data point is selected many times.
When linear interpolation between zero and the first
point is used (as in the interpolated empirical distribu-
tion function, see Fig. 3), the lower 90% uncertainty
limit is not bounded by the first point and as a result
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Table 2
Coverage, or percentage (%) of the samples that the actual
5th-percentile value is included in the 90% confidence interval,
calculated for different methods and distributions

Method Distribution Coverage (%)

Maximum likelihood method Lognormal 90.6
Bayesian statistics Lognormal 90.6
Bootstraps
Parametric Lognormal 88.9
Non-parametric (resampling) EDF 58.6a

EDF 63.6b

Non-parametric Interpolated EDF 93.7a

Interpolated EDF 94.5b

a Values obtained from mean plotting.
b Values obtained from Hazen plotting.

linear interpolation accounts for the possibility that
the lower 90% uncertainty limit can be smaller than
the first data point.

The mean and Hazen plotting system (in case of
non-parametric bootstrapping with interpolated EDF)
show significant differences. A factor of 4 was ob-
served between the minimum and the maximum of the
estimated lower 90% uncertainty limit.

Note that Fig. 7 is only one possible realisation
of confidence intervals. Therefore, as a validation

Fig. 8. Uncertainty (90%) or confidence intervals of the 5th-variability percentile following various methods for 17 data points of the LAS
data set (concentration in�g/l).

exercise, 20 new data points from the same hypo-
thetical lognormal distribution were considered. The
uncertainty interval of the median 5th-variability per-
centile was again estimated. The coverage of the true
5th-variability percentile over the uncertainty inter-
val was checked for every method. If this process is
repeated 1000 times, the uncertainty interval should
cover the true 5th-variability percentile 900 times, i.e.
the method with coverage closest to 90% should be
considered as the most suitable method. The results
are displayed in Table 2.

Differences between methods are mostly deter-
mined by the choice of the probability model. All
parametric methods assuming lognormal distribution
give similar results. The results show that all para-
metric methods also give the best results. This is
to be expected as the hypothetical data set is log-
normally distributed. The non-parametric resampling
procedure clearly underestimates the uncertainty. This
method is often used in literature. On the other hand,
the non-parametric bootstrapping, based on an inter-
polated EDF, overestimates the uncertainty interval,
which is normal as non-parametric techniques tend to
have larger uncertainty estimates.

Finally, two true toxicity data sets (LAS and Cu)
were studied (see Figs. 7 and 8). For LAS, a possible
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Fig. 9. Uncertainty (90%) or confidence intervals of the 5th-variabiltiy percentile following various methods for 20 data points of the Cu
data set (concentration in�g/l).

median 5th-variability percentile could be identified
(median of all methods is around 200 mg/l) that could
be situated within the 90% uncertainty bands of all
methods. Fig. 8 shows large similarities to Fig. 7.
However, for Cu, no possible median 5th-variability
percentile could be identified that would lie within
the 90% uncertainty bands of all methods, since
these do not overlap. For LAS, a factor of 2.4 and
for Cu, a factor of almost 5 was found between the
minimum and the maximum of the estimated median
5th-variability percentile of the various methods.

From Fig. 9, it can be seen that the results are
very sensitive to the choice of the assumed distribu-
tion (parametric as in MLE, Bayesian approach and
parametric bootstrapping) or not (as in non-parametric
bootstrapping). Furthermore, as already outlined in
Section 3, the influence of potential outliers may not
be underestimated. A detailed outlier study should be
performed.

5. Conclusions

Possible statistical framework for characterising un-
certainty and variability in quality standard setting
were examined.

The considered methods display varying robust-
ness and accuracy in determining lower confidence

limits of the 5th-variability percentile. The considered
methods display varying degree of robustness when
sample size decreases. The most suitable methods to
estimate lower end percentiles such as 5th-percentile
were found to be the maximum likelihood estima-
tion method, Bayesian analysis and non-parametric
bootstrapping (using interpolated EDF and the Hazen
plotting system).

At this stage, there is no direct reason to pre-
fer parametric or non-parametric methods. How-
ever, the results are very sensitive to the choice of
the method (a factor of 5 difference was observed
when results from different methods were com-
pared). Differences between methods are for a large
part determined by the choice of the probability
model.

Some non-parametric methods should not be used
for estimating low percentiles given a small sam-
ple size. All resampling techniques showed they
were rather arbitrary and inaccurate because they are
bounded by the smallest data point.

For estimating 5th-percentiles of small sample sizes,
the Hazen plotting and the mean plotting system are
used in literature but one should be aware that both
systems give different results (a factor of 2 was ob-
served here) at low sample sizes.

Further research on the influence of outliers may
reveal more information.
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