

BIOMATH

Department of Applied Mathemati Biometrics and Process Contro

SEWAGE: Characteristics and Treatment

Peter Vanrolleghem August 3rd 2000

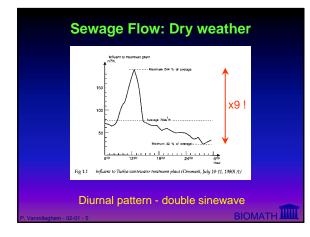
IHE, Delft, Masters Programme in Hydroinformatics

A good starting point :

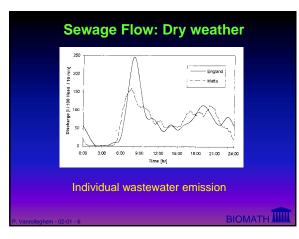
Henze et al. (1995) Wastewater Treatment: Biological and Chemical Processes Springer-Verlag, Heidelberg ISBN 3-540-58816-7

BIOMATH

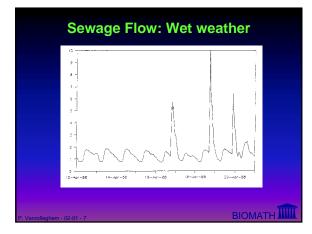
Sewage: Characteristics

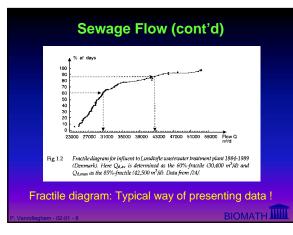

- Flow
- Composition
 - Determinands --> what ?
 - Determinands --> measurement
 - Concentration --> average values
 - Concentration --> dynamic variations

Sewage: Flow


- Rain
- Infiltration Exfiltration (leaky sewers !)
- Household wastewater --> 0.2m³/d/PE

PE: Population Equivalent


Industrial wastewater --> ?



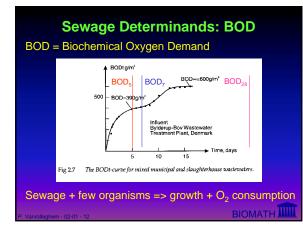
Sewage: Characteristics

- Flow
- Composition
 - Determinands --> what ?
 - Determinands --> measurement
 - Concentration --> average values
 - Concentration --> dynamic variations

Sewage composition

Component	Of special interest	Environmental effect
Micro-organisms	Pathogenic bacteria, virus and worms eggs	Risk when bathing and eating shellfish
Biodegradable organic materials	Oxygen depletion in rivers, lakes and fjords	
Other organic materials	Detergents, pesticides, fat, oil and grease, colouring, solvents, phenol, cyanide	Toxic effect, aesthetic inconveniences, bio accumulation
Nutrients	Nitrogen, phosphorus, ammonia	Eutrophication, oxygen depletion, toxic effect
Metals	Hg, Pb, Cd, Cr, Cu, Ni	Toxic effect, bio accumulation
Other inorganic materials	Acids, for example hydrogen sulphide, bases	Corrosion, toxic effect
Thermal effects	Hot water	Changing living conditions for flora and fauna
Odour (and taste)	Hydrogen sulphide	Aesthetic inconveniences, toxic effect
Radioactivity	Toxic effect, accumulation	
fable 1.5 Components in wastewater, p	artly according to /15/	

Sewage Composition: Determinands


- Organic pollution
 - BOD₅, BOD₇, BOD_∞
 - COD_{tot}, COD_s – TOC

 - SS, TSS, Settleables
- Nitrogen pollution
 - NH_4-N, NO_3-N
 - TKN, TN
- Phosphorous pollution Specific pollutants
 - o-PO₄ – ТР

- Heavy metals: – Hg, Ag,
 - Cd, Zn,
 - Cu, Ni,
 - Pb, As,
 - Cr
- Pathogenic organisms - Coliform bacteria

 - LAS detergent (1% !)
 - Phenols

BIOMATH IIII

Sewage Determinands: COD

- COD = Chemical oxygen demand
- Chemical oxidation to CO₂, H₂O, NH₄, SO₄ at high temperature, very acid
- Amount of oxygen consumed = COD
 e.g. 60 g Acetic acid = 64 g COD
 1 CH₃COOH + 2 O₂ --> 2 CO₂ + 2 H₂O

exercise: Ethanol = CH_3CH_2OH Methane = CH_4 Sewage = $C_{18}H_{19}O_9N$ Sulphide = H_2S Biomass = $C_9H_7O_2N$??? How much COD per g organic matter ???

BIOMATH

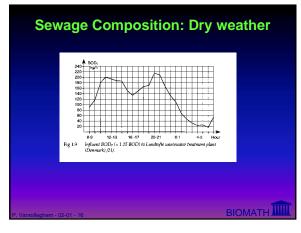
Sewage Determinands: TOC

- TOC = Total Organic Carbon
- Oxidation to CO₂ at high temperature / catalytic
- Amount of produced CO₂ x 12/44 = TOC e.g. 60 g Acetic acid = 24 g TOC 1 CH₃COOH + 2 O₂ --> 2 CO₂ + 2 H₂O

BIOMATH

Sewage Determinands: SS

- TSS = Total Suspended Solids
- Dry solids of sample after drying at 105 C = TSS


SS = Suspended Solids

• Dry solids measured after filtering of sample = SS

Settleable Solids

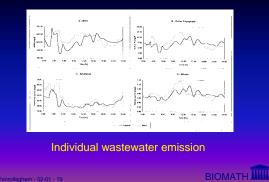
• Dry solids measured after 2 h settling of sample

ВІОМАТН

Sewage Composition: Dry weather

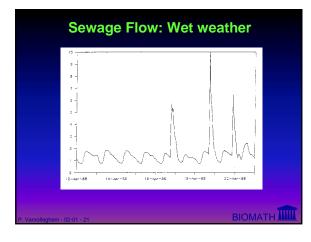
- Relative contributions (Butler et al, 1995):
 - WC : 30 50 %
 - Bath & Shower : 17 28 %
 - Washing Machine : 11 31 %
 - Kitchen Sink : 7 16 %
 - Washing Basin : 5 13 %
- Population Equivalent (Butler et al, 1995):
 - 50.0 g BOD/PE/d
 - 1.4 g o-PO₄-P/PE/d
 - 2.3 g NH₄-N/PE/d
 - 0.08 g NO₃-N/PE/d

вюматн

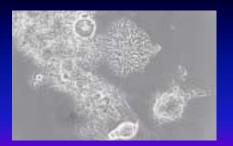

Sewage Composition: Dry weather

mg pollutant / PE / d (Butler et al., 1995):

	WC	Kitchen Sink	Wash Basin		Washing Machine	Total			
BOD	20000	10000	2000	7000	11000 🤇	50000			
o-PO₄-P	310	180	385	25	520	1420			
NO₃-N	22	5	9	10	32	78			
NH₄-N	2000	55	2	42	170	2270			
Classic number : 54 g BOD / PE / d									
Vanrolleghem - 0	2-01 - 18				BIOM	АТН			


Sewage Composition: Dry weather

Sewage Composition: Wet weather SUSPENDED SOLIDS (g/l) CONDUCTIVITY (mS/cm) 2 1.5 Cond. .4.3 1 0.5 SS 0 20/4 17/4 18/4 19/4 TIME (days) 21/4 First flush of solids + dilution of dissolved pollutants BIOMATH



Sewage Treatment

- Treatment Principles
 - Biological growth and conversion processes
 - Influences on biological processes
- Treatment Processes
 - COD removal
 - Nitrification
 - Denitrification
 - Phosphate Removal (Biological / Chemical)
 - Anaerobic Digestion

ОМАТН 🎹

Sewage treatment: a biological process

A culture of collaborating organisms do the job

віоматн

Biological growth

- Growth = multiplication of organisms
- · Requirements for growth:
 - nutrients (biomass = $C_5H_7O_2N$, + P, S, ...)
 - favorable environmental conditions (pH, temperature)
- Basic reaction :
 - C-source + NH_4 + PO_4 + H^+ ==> Biomass
 - + electron acceptor (O_2, NO_3) + byproducts

+ electron acceptor (C-source) (H_2O, CO_2, N_2, NO_3)

Biological conversion

- Because biomass grows (or at least wants to), a number of compounds are converted, e.g.
 - Organic pollutants --> CO_2 + waste biomass
 - NH₄ --> NO₃
 - $-NO_3 -> N_2$
 - PO₄ --> Poly-P stored in waste biomass
 - Organic pollutants --> biogas $(CH_4 + CO_2)$

• How much is converted ?

- Rate of the conversion reaction ==> KINETICS
- Ratio of conversions of the different compounds

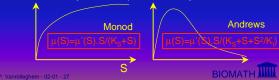
==> STOICHIOMETRY

Reaction stoichiometry

Suppose following reaction takes place: $C_{18}H_{19}O_8N + O_2 + H^+ --> C_8H_7O_2N + CO_2 + H_2O_3N + CO_2 + C$

for each "molecule" of pollutants degraded, a <u>proportional</u> amount of other products will be used (left of arrow) or produced (right of arrow)

We can therefore write: **a** $C_{18}H_{19}O_9N +$ **b** $O_2 +$ **c** $H^+ ->$ **d** $C_8H_7O_2N +$ **e** $CO_2 +$ **f** H_2O


a,b,c,d,e,f are called <u>yield or stoichiometric</u> coefficients note that one of the coefficients can be chosen = 1

BIOMATH

Process kinetics

- A reaction will not occur (reaction rate = 0) when its <u>sources (substrates)</u> are absent

 compounds on the left of the reaction arrow
- A reaction will have a maximum rate
 when all sources are in excess
 - inhibition by sources/products may affect max. rate

Conversion rates

Take the conversion above


 $a C_{18}H_{19}O_9N + b O_2 + c H^+ --> (1)C_5H_7O_2N + d CO_2 + e H_2O$

Suppose the reaction kinetics: $\mu(S)=\mu^{*}(S).X.S/(K_{S}+S)$

- Monod kinetics in the substrate
- first order in the biomass concentration

The conversion of each component is then:

C ₁₈ H ₁₉ O	₉ Ν ∶- a. μ(S)	$C_5H_7O_2N$: + 1 . μ(S)
O ₂	: - b. µ(S)	CO ₂	: + d . μ(S)
H+	: - c . μ(S)	H ₂ O	: + e. µ(S)
Vereslasher 02	04 00		BIOMATH

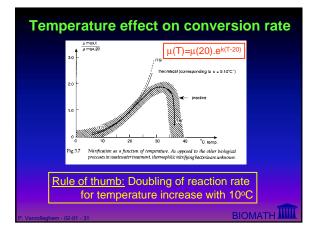
Conversion rates (cont'd)

- Conversion rate of a compound consists of 3 parts:
 sign (+/-) dependent on whether it is used or produced
 stoichiometric coefficient in the reaction
 - rate of the reaction
- What if parallel reactions with same compounds ?
 a C₁₈H₁₉O₉N + b O₂ + c H⁺ -> 1 C₈H₇O₂N + d CO₂ + c H₂O f CO₂ + g O₂ + in NH₄⁺ -> 1 C₈H₇O₂N + i NO₃ + i H₂O + i H⁺

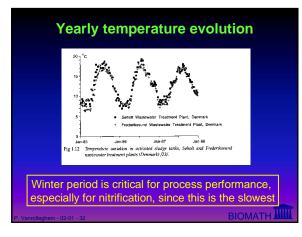
BIOMATH

General conversion model

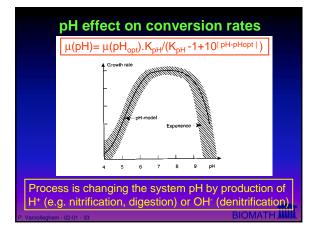
• For the i-th compound, Si:


r(S

$$_{i}$$
) = Σ_{i} sign(ji) v_{ii} . ρ_{i}


where

$$\begin{split} \rho_{j} &= \text{the rate of the j-th reaction in which S_{i} participates} \\ v_{ji} &= \text{the stoichiometric coefficient for S_{i} in the j-th reaction} \\ \text{sign(ji)} &= \text{sign (+/-)} \text{ indicating whether S_{i} is substrate or} \\ & \text{product in the j-th reaction} \end{split}$$


BIOMATH IIIII

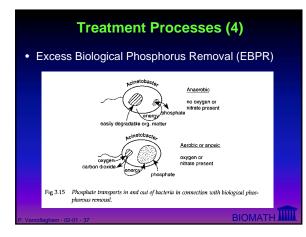


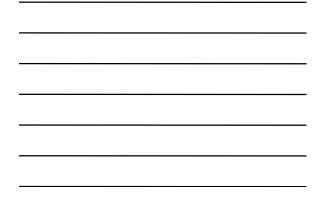
Treatment Processes (1)

- Aerobic organic substrate removal
 - in the presence of O₂ (aerobic)
 - heterotrophic organisms (i.e. C-source is organic)

 - high yield (1 g substrate-COD --> 0.4 g biomass-COD)

BIOMATH


Treatment Processes (2)


- Nitrification
 - in the presence of O₂ (aerobic)
 - autotrophic organisms (i.e. C-source is inorganic: CO_2)
 - $\mathsf{NH}_4 + \mathsf{CO}_2 + \mathsf{O}_2 + \dashrightarrow \mathsf{C}_5\mathsf{H}_7\mathsf{O}_2\mathsf{N} + \mathsf{NO}_3 + \mathsf{H}_2\mathsf{O} + \mathsf{H}^+$
 - low yield (0.24 g COD/g N oxidised)
 - slow growth rate
 - highly sensitive to lots of disturbances (pH, T, inhibitors)
 - in fact: two-step process (NH₄ -> NO₂ -> NO₃)

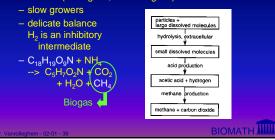
BIOMATH

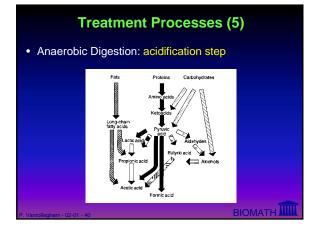
Treatment Processes (3)

- Denitrification
 - in the absence of O₂ (anoxic)
 - in the presence of NO_{3} and COD
 - heterotrophic organisms
 - $C_{18}H_{19}O_9N + NO_3 + H^+ + NH_4 --> C_5H_7O_2N + CO_2 + H_2O + N_2$
 - relatively high yield (0.3 g biomass-COD/g COD)
 - performs both nitrogen and COD removal !
 - recuperates O₂ invested in nitrification !

Treatment Processes (4)

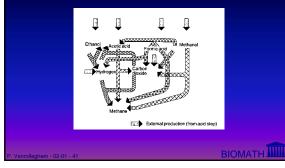
- Excess Biological Phosphorus Removal (EBPR)
 - requires a sequence of anaerobic (absence of O₂ & NO₃) and (anoxic or) aerobic conditions
 - COD as volatile fatty acids (acetic acid)
 - heterotrophic organisms

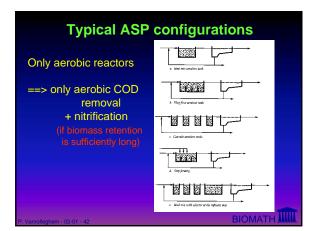

- relatively high yield (0.3 g biomass-COD/g COD)
- can performs nitrogen, phosphate and COD removal !
- complex process


BIOMATH

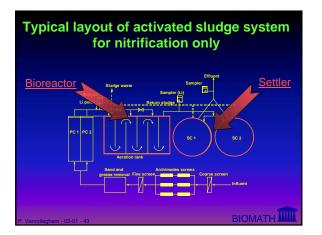
Treatment Processes (5)

 consortium of anaerobic organisms (acidogens, methanogens)

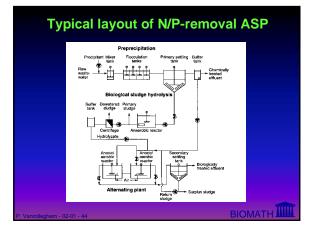


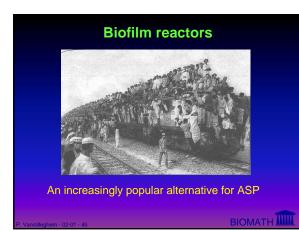


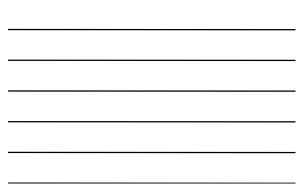
Treatment Processes (5)

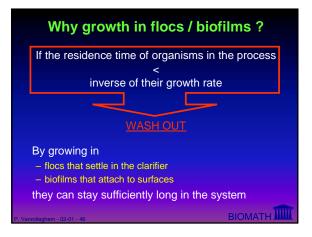

• Anaerobic Digestion: methanation step

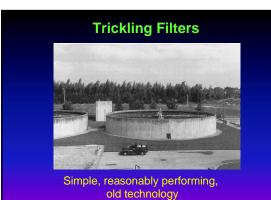


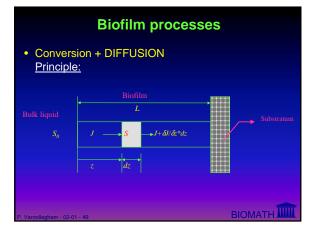




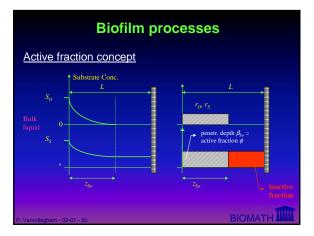






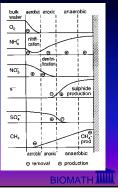


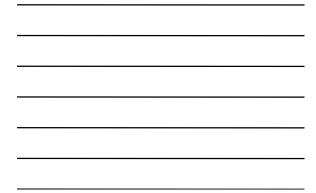
Trickling Filters



Disadvantages: Clogging + flies Advantages: Cheap aeration

віоматн





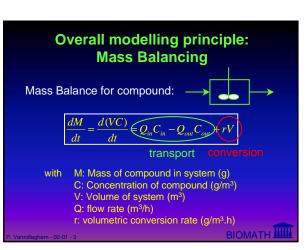
Biofilm Processes

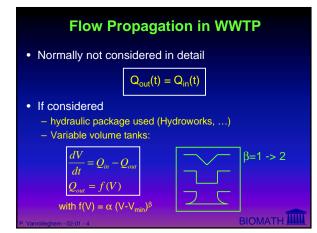
The active fraction concept: leads to the interpretation of biofilms as systems in which layers exist with different conversion processes taking place

The layers change in size as the process conditions change

BIOMATH epartment of Applied Mathemat Biometrics and Process Contro

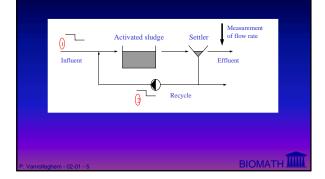
Sewage Treatment: Modelling Hydraulics / Mixing

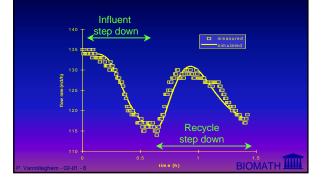

Peter Vanrolleghem 3rd-Aug-2000


IHE, Delft, Masters Programme in Hydroinformatics

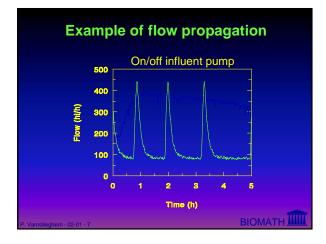
RUG-Biomath, Coupure 653, 9000 Gent, Belgium (e-mail Peter.Vanrolleghem@rug.ac.be

Overview


- Modelling Environmental Systems: BIOMATH view
- Sewage
 - Characteristics
 - Treatment Principles
 - Treatment Processes
- Modelling
 - Overall approach: Mass balancing
 - Hydraulics/Mixing in Treatment Processes
 - Conversion process modelling
 - Sedimentation models
- Interaction with Sewers / Receiving Waters



Example of flow propagation with Variable Volume Tank approach



Example of flow propagation with Variable Volume Tank approach

Modelling of mixing behaviour

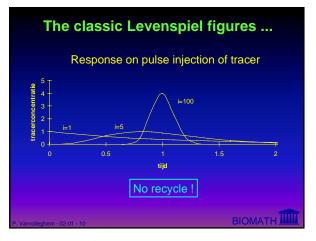
• Physically: Dispersion

wh

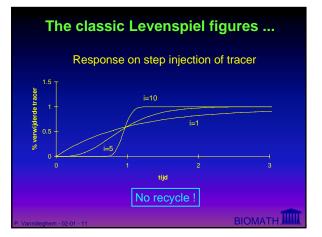
• Exp

"D" in PDE model:
$$\frac{\partial C}{\partial t} = U(x)\frac{\partial C}{\partial x} + D\frac{\partial^2 C}{\partial x^2} + \rho$$

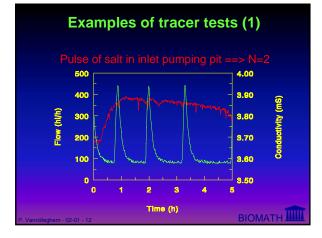
• WWT models: "Finite difference" approximation : tanks in series approach:

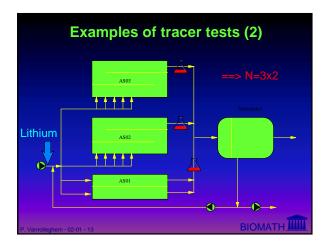

$$\frac{dV_k C_k}{dt} = Q_k (C_{k-1} - C_k) + \rho_k V_k$$
 k=1,...,N

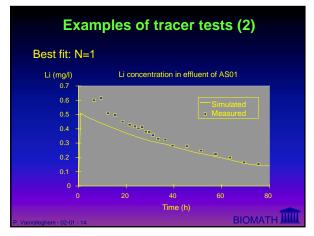
Number of tanks in series \approx modelled dispersion

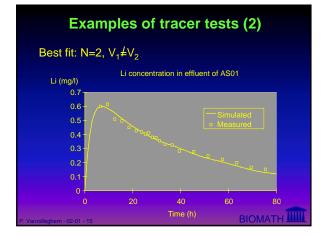

BIOMATH

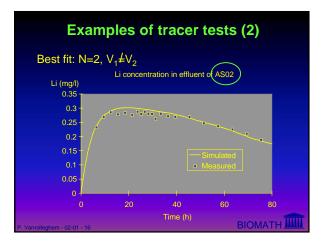
Determination of number of tanksEmpirical equation (Chambers & Thomas, 1985)

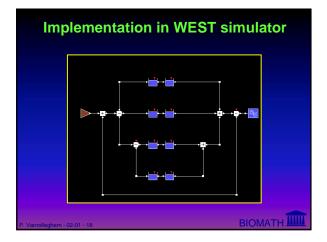

$$N = \frac{7.4}{WH} L Q_{in}(1+r)$$
ere L = length aeration tank (m)
W = width aeration tank (m)
H = depth aeration tank (m)
Q_{in} = average influent flow rate (m³/s)
r = recycle ratio (-)
theremental evaluation : Inert tracer tests
m - 02:01 - 9 BIOM

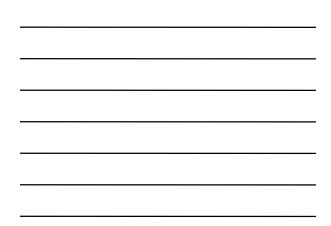


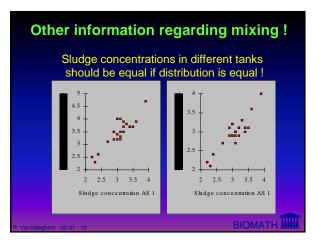




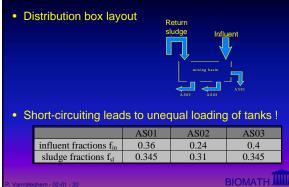


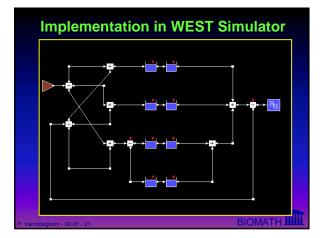




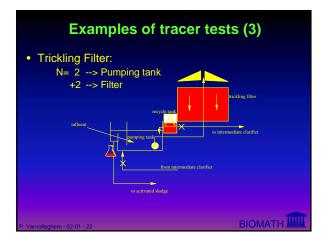


Examples of tracer tests (2) Best fit: N=2, V_1 \neq V_2 Li concentration in effluent (ASO3) $\int_{0}^{0} \int_{0}^{0} \int_{0}^{0}$

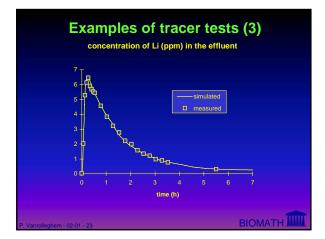


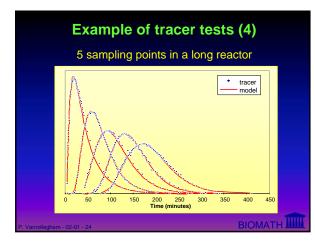


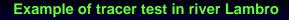
Non-ideal flow distribution

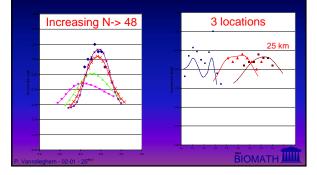


P. Vanrolleghem - 02-01 - 20						
	Var	roll	egh	iem		- 20









Measurement of daily wastewater bypass (boron)

Experimental design of tracer test

- Choose an inert substance:
 - not biodegradable
 - not adsorbing
 - Lithium, Rhodamine, Salt
- Data collection:
 - Period: over 3 times the hydraulic retention time
 - Frequency: take 20-50 samples
- Recycle => Numerical fitting of mixing model to data
- Non-equal volume approach mostly necessary for adequate description of mixing behaviour

Additional data (MLSS) can provide further info
Vanrolleghem - 02-01 - 26
BIOMATH

BIOMATH epartment of Applied Mathematic Biometrics and Process Control

Sewage Treatment: Modelling Hydraulics / Mixing

Peter Vanrolleghem 3rd-Aug-2000

IHE, Delft, Masters Programme in Hydroinformatics

BIOMATH

Department of Applied Mathemati Biometrics and Process Contro

Sewage Treatment: Conversion Process Modelling

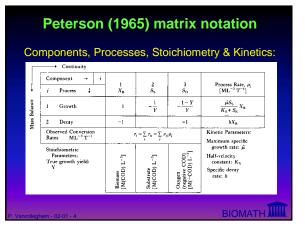
Peter Vanrolleghem 10^{rth}-Aug-2000

IHE, Delft, Masters Programme in Hydroinformatics

Overview

- Modelling Environmental Systems: BIOMATH view
- Sewage
 - Characteristics
 - Treatment Principles
 - Treatment Processes
- Modelling
 - Overall approach: Mass balancing
 - Hydraulics/Mixing in Treatment Processes
 - Conversion process modelling
 - Sedimentation models
- Interaction with Sewers / Receiving Waters

"The" starting point:


Henze, M., Gujer, W., Takashi, M. and van Loosdrecht, M. (2000)

Activated Sludge Models ASM1, ASM2, ASM2D and ASM3.

Scientific and Technical Report No. 9

IWA Publishing, London.

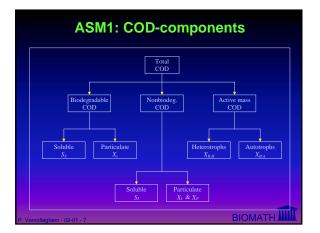
Mass balancing

· Vertical summation of

Stoichiometry term * Kinetics

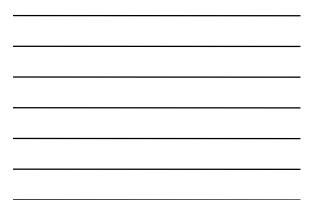
terms gives total conversion

 $r(S_i) = \Sigma_i \operatorname{sign}(ji) v_{ji} \rho_i$


Add the transport terms ==> the mass balance !

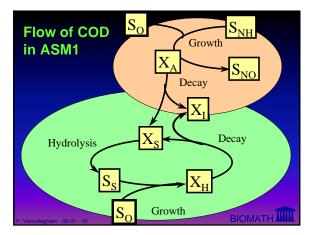
BIOMATH

Activated Sludge Model No 1


- Henze et al. (1987)
- Innovations:
 - Nomenclature:
- Solubles: symbol S Particulates: symbol X
- Focus on:
 - Sludge productionOxygen consumption
 - Nitrogen removal
- COD based modelling ==> Mass balancing
- Peterson matrix

віоматн ШШ

ASM1: N-components



ASM1: Processes

1) Growth of biomass

- heterotrophs
 - aerobic
 - anoxic
- autotrophs (nitrification)
- 2) Decay of biomass
 - heterotrophs
 - autotrophs
- 3) Ammonification of organic nitrogen
- 4) Hydrolysis of particulate organic matter

віоматн 🏛

ASM1: Peterson matrix														
Component (i) → ↓ Process (j)	S_1	2 S ₈	3 X1	4 X _s	5 Х _{вн}	6 X ₈₄	7 Xp	8 So	9 S _{ND}	10 S _{NH}	11 S _{ND}	12 X _{ND}	13 S _{ALK}	Process rate (p)
 Aerobic growth of heterotrophic biomass 		$\frac{1}{Y_{H}}$			1			$-\frac{1-Y_{H}}{Y_{H}}$		-ina			<u>ban</u> 14	$\mu_{\max H} \frac{S_5}{K_5 + S_5} \frac{S_0}{K_{OH} + S_0} X_{BH}$
2 Anoxic growth of heterotrophic biomass		$-\frac{1}{Y_{II}}$			1					-i _{xn}			$\frac{1 - Y_H}{14 \cdot 2.86Y_H}$ $-\frac{i_{XH}}{14}$	$\frac{\eta_g \mu_{maxH} \frac{S_S}{K_S + S_S} \frac{K_{OH}}{K_{OH} + S_O}}{\frac{S_{NO}}{K_{NO} + S_{NO}} X_{BH}}$
3 Aerobic growth of autotrophic biomass						1		$-\frac{4.57 - Y_A}{Y_A}$	$\frac{1}{Y_A}$	$-i_{XB}-\frac{1}{Y_A}$			$^{-i_{XB}} - \frac{1}{Y_A}$	$\mu_{\max A} \frac{S_{NH}}{K_{NH} + S_{NH}} \frac{So}{K_{OA} + So} X_{HA}$
4 Decay of heterotrophic biomass				1-1 _P	-1		f.p.					i _{xn} -f _P i _x		р _и х _{ан}
5 Decay of autotrophic biomass				1-fp		- 1	ſ₽					i _{XB} -f _P i _X		o _A X _{BA}
6 Ammonification of soluble organic nitrogen										1	-1		¥[14	k _a S _{ND} X _{BH}
7 Hydrolysis of slowly biodegradable substrate		1		-1										$\frac{X_s X_{min}}{K_x + X_s X_{min}} \frac{S_0}{K_{001} + S_0}$ $+ \eta_x \frac{K_{001}}{K_{001} + S_0} \frac{S_{N0}}{K_{N0} + S_{N0}} X_{min}$
8 Hydrolysis of organic nitrogen											1	-1		$p_7(X_{ND}/X_S)$
/anrolleghem -		-01	. 11											вюматн

Continuity check

Horizontal summation of stoichiometric coefficients should equal 0 !

$$C_i v_{ji} \cdot i_{ci} = 0$$

Provided: - consistent units have been used - all substrates/products are included

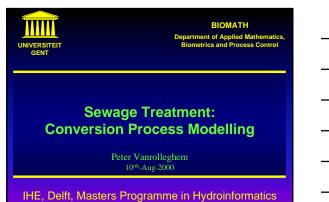
This can be done for COD, N, P, Charge, Mass

--> Example: ASM3 !

вюматн

	Component i >	1	2	3	4	5	6	7	8	9	10	11	12	13
j	Process	So	SI	S_S	$S_{\rm NH}$	S_{N2}	\mathbf{S}_{NO}	$S_{\rm HCO}$	XI	X_S	X_{H}	Xsto	X_A	X _T
\vee	expressed as >	O2	COD	COD	N	Ν	N	Mole	COD	COD	COD	COD	COD	TSS
1	Hydrolysis		f _{SI}	$1 \text{-} f_{SI}$	y1			zı		-1				-i _{XS}
Heter	otrophic organisms, denitrificatio	n												
2	Aerobic storage of COD	X2		-1	y 2			Z2				Ysto		t ₂
3	Anoxic storage of COD			-1	y 3	-X3	X3	Z3				Ysto		t3
4	Aerobic growth	X4			y4			Z4			1	$-1/Y_{\rm H}$		t4
5	Anoxic growth (denitrification)				-i _{NBM}	-X5	X ₅	Z5			1	$-1/Y_{\rm H}$		ts
6	Aerobic endog. respiration	-(1-f _I)			у 6			Z ₆	fI		-1			t ₆
7	Anoxic endog. respiration				y 6	-X7	X7	Z7	fI		-1			t7
8	Aerobic respiration of PHA	-1										-1		-0.60
9	Anoxic respiration of PHA					-X9	X9	Z 9				-1		-0.60
Autot	rophic organisms, nitrification													
10	Nitrification	x _s			y10		$1/Y_{\rm A}$	z ₁₀					1	i _{tsbn}
11	Aerobic endog. respiration	-(1-f _I)			y11			z ₁₁	f				-1	t ₁₁
12	Anoxic endog. respiration				y12	-y12	y12	Z12	fI				-1	t12
Comp	position matrix t _{k,1}													
k	Conservatives													
1	COD g COD	-1	1	1		-1.71	-4.57		1	1	1	1	1	
2	Nitrogen g N		i _{NSI}	i _{NSS}	1	1	1		i _{NXI}	i _{NXS}	i _{NBM}		i _{NBM}	1
3	Ionic charge Mole +				1/14		-1/14	-1						
	Observables													
4	TSS g TSS								i _{TSXI}	i _{TSXS}	itsem	0.60	itsem	1


ASM3 Com	position ma	atrix Solubles
----------	-------------	----------------


Con	Component $S_O S_I S_S S_{NH} S_{N2} S_{NO} S_{HCC}$									
	expressed as >	O_2	COD	COD	Ν	Ν	Ν	Mole		
Con	Composition matrix $u_{k,i}$									
k	Conservatives									
1	COD gCOD -1 1 1 -1.71 -4.57									
2	Nitrogen g N		i _{NSI}	i _{NSS}	1	1	1			
3	Ionic charge Mole +				1/14		-1/14	-1		
	Observables									
4	4 TSS g TSS									
P. Van	P. Vancelleghem - 02-01 - 14									

ASM3 Composition matrix Particulates

Com	ponent		X_I	Xs	X_{H}	X_{STO}	X _A	X_{TS}
	ex	pressed as	COD	COD	COD	COD	COD	TSS
Con	position ma	atrix ı _{k,i}						
k	Conservati	ves: Conse	ervation	n equati	ion			
1	COD	g COD	1	1	1	1	1	
2	Nitrogen	g N	i _{NXI}	i _{NXS}	i _{NBM}		$i_{\rm NBM}$	
3	Ionic charg	ge Mole +						
Observables: Composition equation								
4	TSS	g TSS	i _{TSXI}	i _{TSXS}	i _{TSBM}	0.60	i_{TSBM}	

BIOMATH Department of Applied Mathem Biometrics and Process Con

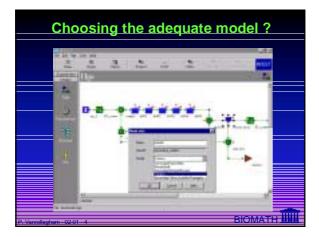
Sedimentation: making the adequate model choice

Bob De Clercq, Diedert Debusscher and Peter A. Vanrolleghem August 10th 2000

HE, Delft, Masters Programme in Hydroinformatic

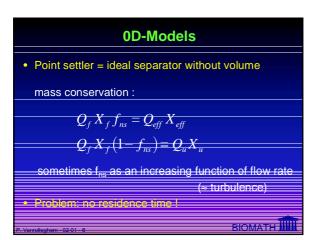
Contents

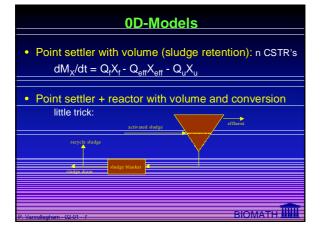
- Why modelling sedimentation ?
- Model survey (0D-3D)
- Settling velocity functions
- Extensions for special systems
- · Sedimentation models: the adequate choice I

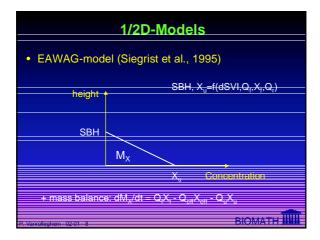

ВІОМАТН ІШІ

BIOMATH IIIII

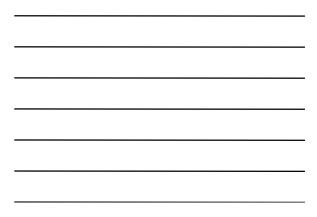
Why modeling sedimentation ?

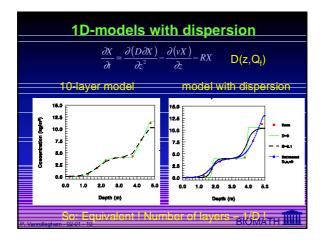

- Primary clarification: load, COD/N-ratio
- Sludge balance of activated sludge
- Dynamics of sludge motion between settler/AST
- Effluent quality (SS, Sludge blanket)
- Control systems
- Sludge production (thickening)
- · Design of settler structures, e.g. baffles

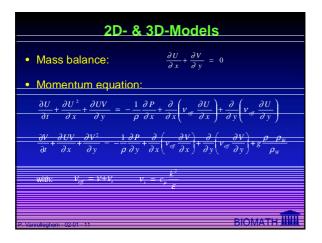

1



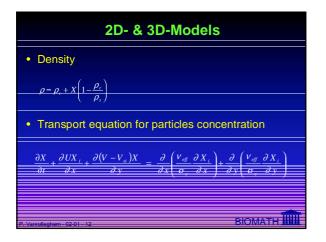
Model survey
Settler models are classified according their spatial detail :
- 0D (point settler)
- 1D (homogeneous in x- and y-direction)
- 2D (homogeneous in y-direction)
- 3D (non-homogeneous)
Model = spatial description + settling properties
settling velocity function
Sometimes reactions too: denitrification / hydrolysis
P. Venrolleghem - 02:01-5 BIOMATH

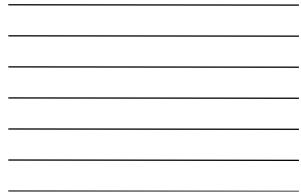


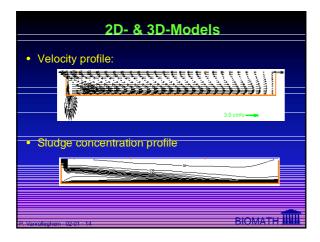


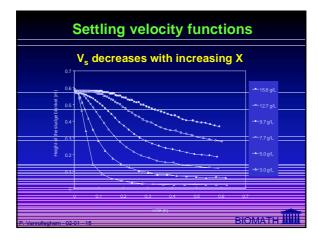


1D-Mod	els	
Discretisation with finite diffe	rences of the	PDE :
$\frac{\partial X}{\partial t} = \frac{\partial (D\partial X)}{\partial z^2} - \frac{\partial (vX)}{\partial z} - RX$ assumptions: X uniform in horizontal plane; no vertical dispersion (D=0); no biological reaction (R=0);	In Top Layer	Effluent 1 2 3 4 5 7
Discretisation: ∂X /∂z = X(j)-X(j+1)/h P.Vanoleshan-9201-9	Betteer Layer	B D TO Recycla DMATHE

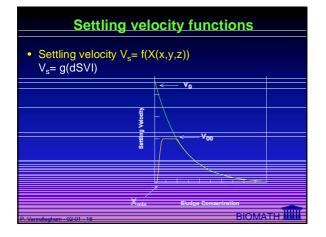


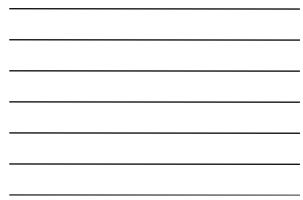


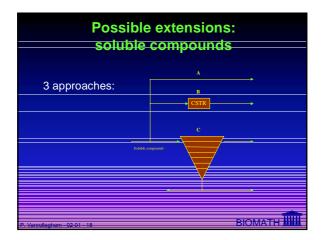


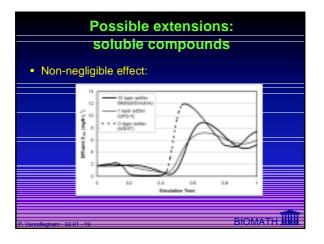



2D- & 3D-Models
 Turbulence model (k - ε)
$\frac{\partial k}{\partial x} + \frac{\partial Uk}{\partial x} + \frac{\partial Vk}{\partial x} = \frac{\partial}{\partial x} \left(\frac{V_{eff}}{\partial x} \frac{\partial k}{\partial x} \right) + \frac{\partial}{\partial x} \left(\frac{V_{eff}}{\partial x} \frac{\partial k}{\partial x} \right) + P_{s} + P_{s} - \varepsilon$
$ dt dx dy dx \left(\sigma_k \ dx\right) dy \left(\sigma_k \ dy\right) $
$\frac{\partial \varepsilon}{\partial t} + \frac{\partial U\varepsilon}{\partial x} + \frac{\partial V\varepsilon}{\partial y} = \frac{\partial}{\partial x} \left(\frac{v_{eff}}{\sigma_{\varepsilon}} \frac{\partial \varepsilon}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{v_{eff}}{\sigma_{\varepsilon}} \frac{\partial \varepsilon}{\partial y} \right) + c_1 \frac{\varepsilon}{k} \frac{P_r - c_2}{k} \frac{\varepsilon^2}{k}$
$\frac{\partial t}{\partial t} + \frac{\partial y}{\partial x} + \frac{\partial y}{\partial y} = \frac{\partial x}{\partial x} \left(\frac{\partial y}{\partial \varepsilon} - \frac{\partial y}{\partial y} \right) + \frac{\partial y}{\partial y} \left(\frac{\partial y}{\partial \varepsilon} - \frac{\partial y}{\partial y} \right) + \frac{\partial y}{\partial \varepsilon} \frac{\partial y}{\partial \varepsilon} + \frac{\partial y}{\partial \varepsilon} $
with: $P_r = v_{eff} \left[2 \left(\frac{\partial U}{\partial x} \right)^2 + 2 \left(\frac{\partial V}{\partial y} \right)^2 + \left(\frac{\partial U}{\partial y} + \frac{\partial V}{\partial x} \right)^2 \right]$
$P_{s} = \frac{g}{\rho_{w}} \cdot \frac{v_{w}}{\sigma_{c}} \cdot \frac{\partial(\rho - \rho_{w})}{\partial y}$
P. Vanrolleghem - 02-01 - 13 BIOMATH

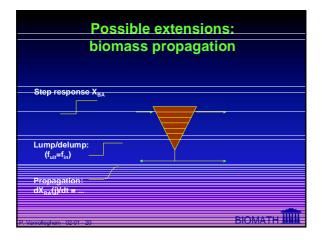


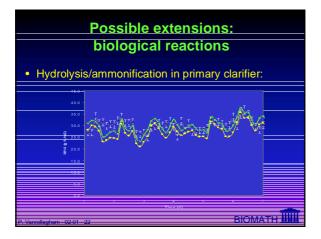


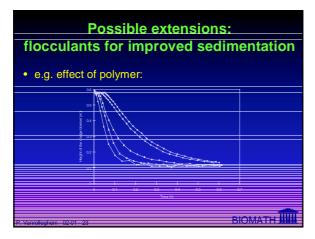


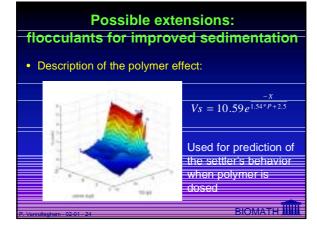


Settling vel	ocity functions
• Vesilind (1969):	$v_s = k e^{-nX}$
• Dick & Young (1972):	$-v_s = k' X^{-n'}$
• Cho et al. (1993):	$v_s = k'' \frac{e^{-n'' X}}{X}$
· · · · · ·	$\frac{v_s - \kappa}{X}$
 Takacs et al. (1991): v_{st} = v₀e 	$r_h(x_j \mid x_{\min}) = v_0 e^{-r_p(x_j \mid x_{\min})}$
with 05	$\leq v_{sj} \leq v'_0$
P. Vanrolleghem - 02-01 - 17	BIOMATH JUUL













Sedimentation models: making the adequate choice		
Model application	Model complexity	
Shales management in activated shales tanks. Management shales storage in settler Shales recirculation Shatge thanks height Optimisation tank geometry Retrofiting (eg. baffles) Efficient Six-constitution Basins exposed to while forces Density currents	0D coupled models 1D coupled and/or 2D coupled models 1D coupled and/or 2D coupled models 1D coupled and/or 2D coupled models 2D and/or 3D models 2D and/or 3D models 2D and/or 3D models Circular basins: 2D -rectangular basins: 2 and/or 3D SU models at least 2D models	

Sedimentation models: making the adequate choice		
OD model:	low calculation time too low accuracy	
• 1/2D model:	low calculation time acceptable accuracy	
• 1D model.	acceptable calculation time	
 2 & 3D model P. Vanialeghen - 02 01 - 28 	high calculation time excellent accuracy only specific applications (X _{eff}) BIOMATH	