

BIOMATH Department Applied Mathematics Biometrics and Process Control

The Usefulness of Models in Wastewater Engineering

Peter Vanrolleghem November 14th 2000

Models in Control...

Overview

Models

- What are they?
- How do I build them ?

Application of Models

- Understanding / Education / Training
- Experimental Design
- Intelligent Sensors
- Model-based Control
- Decision support (Risk Assessment System Design)

BIOMATH

Definitions

System

Part of reality that is separated from its environment on the basis of a purpose defined by the researcher

Model

An approximate description of a part of reality considering only those aspects of interest

Simulation

= Virtual Experimentation: Manipulation of a model to gain insight in the "behaviour" of the real system

BIOMATH

Types of Models

- Mental models
- (ideas, concepts, ...)
- Verbal models
- Scale models
- Computer models
- ("description in words")

BIOMATH

- ("house in cardbord")
- ("house in AutoCad")
- Mathematical models ("equations")

Why Modelling ?

Solving Problems for complex systems

Model building: Starting points

· Purpose of the model

- Increasing understanding of a system
- Summary of knowledge/data
- Prediction of future behaviour

• Prior knowledge

- Experience
- · Existing models
- Literature (facts, phenomena, theories, ...)

Data

- Existing data
- New data collected in view of model building

BIOMATH

(Think tank) (Communication)

(Control)

Overview Models to the General Public Models - What are they? - How do I build them ? $E = mc^2$ Application of Models - Understanding / Education / Training - Experimental Design - Intelligent Sensors - Model-based Control - Decision support (Risk Assessment - System Design)

BIOMATH

Models in Environmental Engineering

Only two types of application:

BIOMATH

BIOMATH

- Describing the past (*E=mc*²)
 - Understanding (research education training)
 - Summary of knowledge
- Prediction of the future (Weather)
 - Forecasting the future state of an existing system
 - Forecasting the future behaviour of a changed system

Weather Forecasting

BIOMATH

Models for understanding

- · Hypothesis is generated on the basis of
 - data as such (apple falls off a tree -> model)
 - discrepancy of data with an existing model
- New insight is acquired when the new model is accepted by the scientific community
 - ... until the next (better) data set comes along...

BIOMATH

Use of models for Optimal Experimental Design (OED)

- <u>Purpose of experimental design:</u> create experimental conditions such that data allow
 - model selection
 - accurate parameter estimation
 - validation of a model

BIOMATH

Questions to be answered by Experimental Design

- What variables should we measure ?
- What is the required accuracy ?
- Over what period should be measured ?
- At what frequency are the data to be collected ?
- At what location should the measurements be done ?

Quantified in an Objective Function to be optimised by the OED algorithm

BIOMATH

Application of OED

Calculated sensitivity to a settling parameter during dry weather conditions

Use of Models in Process Control

- Controllers with built-in model eg. Model based predictive control
- Support during the design of the control structure Choice of actuators, sensors, control laws
- Support during the tuning of controllers eg. Tuning the parameters of a PID-controller
- Prediction of disturbances
 eg. Rain runoff / diurnal waste flow pattern

BIOMATH

Model-based Control: MBPC (Model Based Predictive Control)

Use of Models in Decision Support

- Wastewater treatment plant design using Economic Cost calculations ==> MoSS-CC
- Integrated urban water management using sewer/WWT/river models ==> Brussels
- Environmental Risk Assessment of "down-the-drain" chemicals ==> GREAT-ER

MoSS-CC project

Model based Simulation System for Cost Calculation

- Calculation of the investment cost of a new or upgrade WWTP design
- Calculation of the (fixed & variable) operating costs of a new or upgrade WWTP design

=> Better design

віоматн ШШ

BIOMATH

Investment Cost Relationships

· Power laws are applied:

$COST = \Theta(Process Size)^n$

- Process size: an easy to measure plant characteristic:
 - volume
 - area
 - length
 - design flow rate
 - pumping capacity
 - installed mechanical power

BIOMATH

Operating Cost Relationships

- Maintenance costs ==> proportional to investment
- Sludge treatment/disposal costs
- Pumping energy
- Aeration energy
- Mixing energy
- Effluent taxes

BIOMATH

Example of Cost Reduction

 Industrial plant with nitrogen problem: <u>Question:</u> Include automatic control or not ?

BIOMATH

GREAT-ER project

Geography-referenced Regional Exposure Assessment Tool for European Rivers

- prediction of the fate of specific "down-the-drain" chemicals in surface water
- using Geographical Information Systems (GIS)
- for use within Environmental Risk Assessment

BIOMATH

Environmental Risk Assessment • Aim = assess the probability and severeness of negative effects on ecosystems after exposure to chemicals • steps: • exposure: Predicted Environmental Concentration (PEC) • how much ends up in the environment? where ? • effects: Predicted No Effects Concentration (PEC) • how toxic / dangerous is the chemical for the environment ?

Environmental exposure assessment

Current methods (advised in EU legislation):
 multimedia fate models

Environmental exposure assessment

Current methods:

- multimedia fate models

 \rightarrow limited accuracy

- no spatial nor temporal variability considered
 - FACTOR > 100-1000 !

GREAT-ER: refine PEC calculations

- 'real' geo-referenced data
- variability
- geo-referenced \rightarrow validation is possible

AIM = FACTOR < 3-5

ter A Vaprolleghem - 11-May-99 - 42

BIOMATH IIII

Epilogue

Models are and can be very useful, but they are only an approximate description of reality

Procrustes bed: (Greek mythology)

"Do not adjust reality to the model"

Modelling should be done with knowledge in the field ! BIOMATH

