
BIOMATH

epartment of Applied Mathemat Biometrics and Process Contro

Sewage Treatment: Conversion Process Modelling

Peter Vanrolleghem January 23rd 2001

Dresden University of Technology Institute for Urban Water Management

Biological growth

- Growth = multiplication of organisms
- · Requirements for growth:
 - nutrients (biomass = $C_5H_7O_2N$, + P, S, ...)
 - favourable environmental conditions (pH, temperature)
- Basic reaction :
 - C-source + NH_4 + PO_4 + H^+ ==> Biomass
 - + electron acceptor (O_2, NO_3) + byproducts + electron donor (C-source)

(H₂O, CO₂, N₂, NO₃)

BIOMATH

Biological conversion

- Because biomass grows (or at least wants to), a number of compounds are converted, e.g.
 - Organic pollutants --> CO₂ + waste biomass
 - $NH_4 -> NO_3$
 - $-NO_3 -> N_2$
 - PO₄ --> Poly-P stored in waste biomass
 - Organic pollutants --> biogas $(CH_4 + CO_2)$
- How much is converted ?
 - Rate of the conversion reaction ==> KINETICS
 - Ratio of conversions of the different compounds

==> STOICHIOMETRY BIOMATH

Reaction stoichiometry

Suppose the following reaction takes place: $C_{18}H_{19}O_9N + O_2 + H^+ - C_5H_7O_2N + CO_2 + H_2O$

for each "molecule" of pollutants degraded, a proportional amount of other components will be used (left of arrow) or produced (right of arrow)

We can therefore write: $a C_{18}H_{19}O_9N + b O_2 + c H^+ --> d C_5H_7O_2N + e CO_2 + f H_2O$

a,b,c,d,e,f are called yield or stoichiometric coefficients note that one of the coefficients can be chosen = 1

BIOMATH

Reaction kinetics

- A reaction will not occur (reaction rate = 0) when its <u>sources (substrates)</u> are absent

 components on the left of the reaction arrow
- A reaction will have a maximum rate
 when all sources are in excess
 the rate may go down again when source increases further

Conversion rates

Take the conversion above

 $a C_{18}H_{19}O_9N + b O_2 + c H^+ --> 1 C_5H_7O_2N + d CO_2 + e H_2O$

Suppose the reaction kinetics: $\rho(S)=\mu^*(S).X.S/(K_S+S)$

- Monod kinetics in the substrate concentration

- first order in the biomass concentration

The conversion of each component is then:

C ₁₈ H ₁₉ O ₉ N	: - a . ρ(S)	$C_5H_7O_2N$: + 1. ρ(S)
0 ₂	:- b .ρ(S)	CO ₂	: + d . ρ(S)
H+	: - c. ρ(S)	H ₂ O	: + e. ρ(S)

BIOMATH

Conversion rates (cont'd)

The conversion of each component is :

C ₁₈ H ₁₉ O ₉ N	: - a . ρ(S)	C ₅ H ₇ O ₂ N	: + 1 . ρ(S)
O ₂	: - b . ρ(S)	CO ₂	: + d . ρ(S)
H+	: - c. ρ(S)	H₂O	: + e . ρ(S)

In general:

Conversion rate of a component consists of 3 parts:

- sign (+/-) dependent on whether it is used or produced

 $r(S) = sign(j) v_i \rho$

BIOMATH

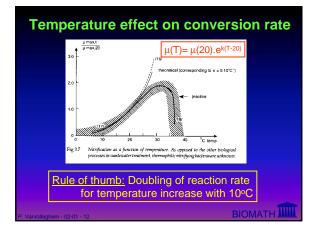
- stoichiometric coefficient (v) in the reaction
- rate (ρ) of the reaction

Conversion rates (cont'd)

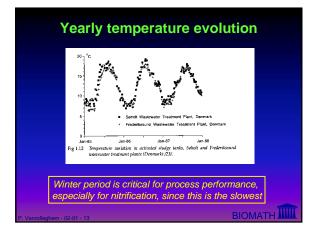
- What if parallel reactions with same components ? a $C_{18}H_{19}O_9N + b O_2 + c H^+ -> 1 C_5H_7O_2N + d CO_2 + e H_2O$ f $CO_2 + g O_2 + h NH_4^+ -> 1 C_5H_7O_2N + i NO_3 + j H_2O + j H^+$
- ==> $C_5H_7O_2N$, O_2 , CO_2 , H^+ , H_2O occur more than once

$C_5H_7O_2N$	$:+1. \rho_1 + 1. \rho_2$
O ₂	: - b, ρ_1 - g, ρ_2
CO ₂	: + d. ρ_1 - f. ρ_2
H+	:- c .ρ ₁ +j.ρ ₂

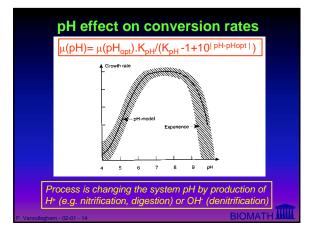
General conversion model


• For the i-th component, S_i:

$$(S_i) = \Sigma_i \operatorname{sign}(ji) v_{ii}$$


where

 $\begin{array}{l} \rho_{j} = \mbox{the rate of the j-th reaction in which S_{i} participates} \\ v_{ji} = \mbox{the stoichiometric coefficient for S_{i} in the j-th reaction} \\ \mbox{sign}(ji) = \mbox{sign} (+/-) \mbox{ indicating whether S_{i} is substrate or} \\ \mbox{ product in the j-th reaction} \end{array}$


BIOMATH

"The" starting point for Activated Sludge Modelling

Henze, M., Gujer, W., Takashi, M. and van Loosdrecht, M. (2000)

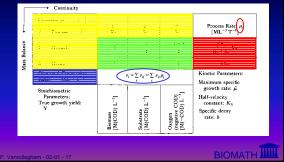
Activated Sludge Models ASM1, ASM2, ASM2D and ASM3.

Scientific and Technical Report No. 9

IWA Publishing, London.

Activated Sludge Model No 1

- Henze et al. (1987)
- Innovations:
 - Nomenclature:


Solubles: symbol S Particulates: symbol X

- Focus on:
 - Sludge production
 - Oxygen consumption
 - Nitrogen removal
- COD based modelling ==> Mass balancing
- Peterson matrix
- Now: basis for sewer / river water quality models

BIOMATH

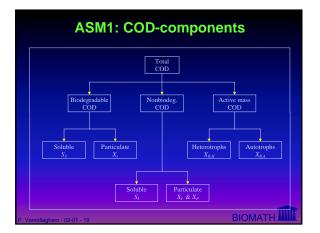
Peterson (1965) matrix notation

Components, Processes, Stoichiometry & Kinetics:

Mass balancing

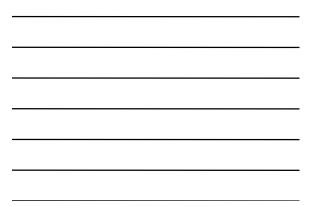
· Vertical summation of

Stoichiometry term * Kinetics


terms gives total conversion

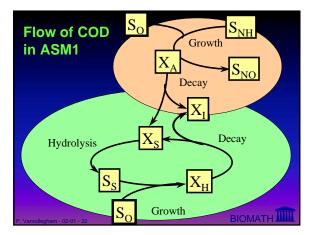
 $r(S_i) = \Sigma_j sign(ji) v_{ji}.\rho_j$

Add the transport terms ==> the mass balance !


$$\frac{dM}{dt} = \frac{d(V \cdot S)}{dt} = Q_{in} \cdot S_{in} - Q_{out} \cdot S_{out} + V \cdot r(S)$$

вюматн

ASM1: N-components



ASM1: Processes

1) Growth of biomass

- heterotrophs
 - aerobic
 - anoxic
- autotrophs (nitrification)
- 2) Decay of biomass
 - heterotrophs
 - autotrophs
- 3) Ammonification of organic nitrogen (KjN --> NH₄)
- 4) Hydrolysis of particulate organic matter

віоматн

ASM1: Peterson matrix														
Component (i) \rightarrow \downarrow Process (j)	1 S ₁	2 S ₈	3 X1	4 X _s	5 Х _{вн}	6 X _{BA}	7 X _P	8 So	9 S _{ND}	10 S _{NH}	11 S _{ND}	12 X _{ND}	13 S _{ALK}	Process rate (p)
 Aerobic growth of heterotrophic biomass 		$-\frac{1}{Y_{H}}$			1			$\frac{1-Y_{H}}{Y_{H}}$		-ixa			_ <u></u> 14	$\mu_{\max H} \frac{S_S}{K_S + S_S} \frac{S_O}{K_{OH} + S_O} X_{BH}$
2 Anoxic growth of heterotrophic biomass		$-\frac{1}{Y_{II}}$			1					-i _{xn}			$\frac{1 - Y_{H}}{14 \cdot 2.86Y_{H}}$ $-\frac{i_{XH}}{14}$	$\frac{\eta_g \mu_{maxH} \frac{S_S}{K_S + S_S} \frac{K_{OH}}{K_{OH} + S_O}}{\frac{S_{NO}}{K_{oH} + S_{o}} X_{HH}}$
3 Aerobic growth of autotrophic biomass						1		$-\frac{4.57 - Y_A}{Y_A}$	$-\frac{1}{Y_A}$	$-i_{XB}-\frac{1}{Y_A}$			$^{-i}_{XH} - \frac{1}{Y_A}$	$\frac{\frac{S_{NO}}{K_{NO}+S_{NO}}X_{BH}}{\mu_{max,A}\frac{S_{NH}}{K_{NH}+S_{NH}}\frac{SO}{K_{OA}+SO}X_{BA}}$
4 Decay of heterotrophic biomass				1-1 _P	-1		ſ _P					i _{xn} -f _P i _x		р _и х _{ан}
5 Decay of autotrophic biomass				i-fp		- 1	ſ₽					i _{XB} -f _P i _X		o _A X _{BA}
6 Ammonification of soluble organic nitrogen										1	-1		¥14	k _a S _{ND} X _{BH}
7 Hydrolysis of slowly biodegradable substrate		1		-1										$\frac{X_s X_{min}}{K_x + X_s X_{min}} \frac{S_0}{K_{001} + S_0}$ $+ \eta_x \frac{K_{001}}{K_{001} + S_0} \frac{S_{N0}}{K_{N0} + S_{N0}} X_{min}$
8 Hydrolysis of organic nitrogen											1	-1		$p_{T}(X_{ND}(X_{S}))$
/anrolleghem -		-01 -		3										ВІОМАТН

Continuity calculations

• Horizontal summation of stoichiometric/composition coefficients should equal 0 !

$$\Sigma_{\rm i} \, {\rm v}_{\rm ii} . {\rm i}_{\rm ki} = 0$$

if and only if: - consistent units have been used - all substrates/products are included

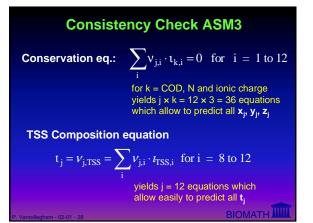
This can be done for COD, N, P, Charge, Mass

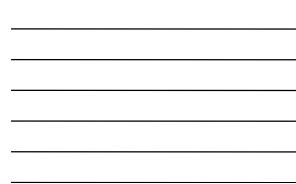
Sets of equations allow to find v_{ij} !

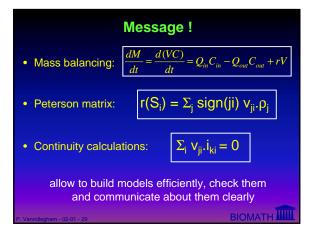
--> Example: ASM3

віоматн

	Component i >	1	2	3	4	5	6	7	8	9	10	11	12	13
j	Process	So	SI	Ss	S _{NH}	S _{N2}	S _{NO}	$\mathbf{S}_{\mathrm{HCO}}$	X	Xs	X_{H}	$\mathbf{X}_{\mathrm{STO}}$	X_A	X _{TS}
\vee	expressed as >	O2	COD	COD	N	Ν	N	Mole	COD	COD	COD	COD	COD	TSS
1	Hydrolysis		f _{SI}	1-f _{SI}	y1			z ₁		-1				-i _{XS}
Heter	otrophic organisms, denitrificatio	n												
2	Aerobic storage of COD	x22		-1	y ₂			Z ₂				$\mathbf{Y}_{\mathrm{STO}}$		t2
3	Anoxic storage of COD			-1	y 3	-X3	X3	Z3				$Y_{STO} \\$		t3
4	Aerobic growth	x4			y4			Z4			1	$-1/Y_{H}$		t4
5	Anoxic growth (denitrification)				-i _{NBM}	-X5	X ₅	Z5			1	$-1/Y_{H}$		ts
6	Aerobic endog. respiration	-(1-f _l)			<u>у</u> 6			Ző	f		-1			t ₆
7	Anoxic endog. respiration				y ₆	-x7	x ₇	Z7	f		-1			t7
8	Aerobic respiration of PHA	-1										-1		-0.60
9	Anoxic respiration of PHA					-x9	X9	Z 9				-1		-0.60
Autot	rophic organisms, nitrification													
10	Nitrification	X ₈			y10		$1/Y_A$	Z10					1	i _{TSBM}
11	Aerobic endog. respiration	-(1-f _l)			y11			Z11	f				-1	t ₁₁
12	Anoxic endog. respiration				y ₁₂	-y ₁₂	y12	z ₁₂	f				-1	t12
Comp	position matrix t _{k,I}													
k	Conservatives													
1	COD g COD	-1	1	1		-1.71	-4.57		1	1	1	1	1	
2	Nitrogen g N		i _{NSI}	i _{NSS}	1	1	1		i _{NXI}	i _{NXS}	i _{NBM}		i_{NBM}	
3	Ionic charge Mole +				1/14		-1/14	-1						
	Observables													
4	TSS g TSS								iTSXI	iTSXS	ITEPM	0.60	ITCOM	


ASM3 Composition matrix Solubles


O ₂	COD	COD	Ν	Ν	Ν	S _{HCO} Mole				
				expressed as $> O_2 COD COD N N$						
Conservatives										
-1	1	1		-1.71	-4.57					
	i _{NSI}	i _{NSS}	1	1	1					
			1/14		-1/14	-1				
	-1	i _{NSI}	i _{NSI} i _{NSS}	i _{NSI} i _{NSS} 1	i _{NSI} i _{NSS} 1 1	i _{NSI} i _{NSS} 1 1 1				


ASM3 Composition matrix Particulates

Compon	Component $X_I = X_S = X_H = X_{STO} = X_A$							
	ex	pressed as	COD	COD	COD	COD	COD	TSS
Composition matrix $\iota_{k,i}$								
k Conservatives: Conservation equation								
1 CO	D	g COD	1	1	1	1	1	
2 Niti	ogen	g N	i _{NXI}	i _{NXS}	i _{NBM}		$i_{\rm NBM}$	
3 Ion	c charg	ge Mole +						
Obs	ervable	es: Compo	sition e	equation	n			
4 TSS	5	g TSS	i _{TSXI}	i _{TSXS}	i _{TSBM}	0.60	i_{TSBM}	

