



# Definitions

### • System

Part of reality that is separated from its environment on the basis of a purpose defined by the researcher

#### Model

An approximate description of a part of reality considering only those aspects of interest

### Simulation

= Virtual Experimentation: Manipulation of a model to gain insight in the "behaviour" of the real system

BIOMATH

BIOMATH nt Applied Mathem and Process Co



| BIOMATH Department                                           |                                       |
|--------------------------------------------------------------|---------------------------------------|
| Personnel:                                                   |                                       |
| <ul> <li>– 4 professors</li> </ul>                           | 2 math, 1 elec. eng., 1 bio-eng.      |
| <ul> <li>– 3 post-doc:</li> </ul>                            | 2 chem. eng., 1 soft.                 |
| – 14 PhD.:                                                   | 8 (bio-)eng., 2 soft., 2 math, 2 stat |
| <ul> <li>– 8 project eng.:</li> </ul>                        | 6 (bio-)eng., 1 soft., 1 stat         |
| <ul> <li>– 1 Lab technician, 4 secretariat</li> </ul>        |                                       |
|                                                              |                                       |
| <ul> <li>– 4 MSc. students (engineering, Erasmus)</li> </ul> |                                       |
|                                                              |                                       |

Multicultural (Canada, Ecuador, Ethiopia, Romania, Turkey)



# Automatic River Measuring Stations











### BIOMATH

Department Applied Mathematics Biometrics and Process Contro

## Manejo integrado de cuencas hidrograficas

Peter Vanrolleghem May 22<sup>nd</sup> 2001

# Two main approaches for Integrated Water(shed) Management

- Environmental Quality Objectives
  - / Environmental Quality Standards (EQO/EQS)
  - Objectives: bathing, drinking water, fishing, navigation, ...
  - Looked at from the environment's perspective (river)
     Immission
  - mmission

### • Uniform emission standards (UES)

- Looked at from polluter's perspective (translation of EQO)
- Sewer, Wastewater Treatment Plant, Agriculture
- Emission

ВІОМАТН 🎹

### Two approaches: Europe vs. USA

- Europe: current legislation
  - Uniform Emission Standards
  - Norms attached to all point source emissions
- Europe: future legislation (°2000, imposed by 2018) – River quality objectives
  - e.g. ecological integrity, morphology, ...
- USA
  - Uniform Emission Standards
  - TMDL (Total Maximum Daily Load) concept
  - Waste allocation to different pollutant sources
  - Also non-point sources (e.g. agriculture !)

BIOMATH

# Problems in future immission based integrated water management

- Ecological integrity
  - what indicators (biotic indices macroinvertibrates) ?
  - relation physico-chemistry (pH, N, P, ...) ecology
  - long term effects (no longer in days...)
  - cause-effect relationships (needed for management !)
- Diffuse pollution: how to quantify ?
- Data sets are enormous and geo-referenced (GIS)

BIOMATH



# Typical data sets: Infrastructure

- Sewerage connection degree : 84%
- Wastewater treatment
  - 4 plants
  - Inhabitants connected to WWTP: 40000
  - Degree of treatment: 12%
- Point sources: 958 (309 industrial emissions)
- Master plan:
  - 14 new WWTP's
  - Degree of treatment: 97 %

er A. Vanrolleghem - 01-01 - 18

BIOMATH













### BIOMATH

Department Applied Mathematics Biometrics and Process Contro

# **GREAT-ER**

Geography-referenced Regional Exposure Assessment Tool for European Rivers

> Peter Vanrolleghem May 22<sup>nd</sup> 2001

### **GREAT-ER** project

Geography-referenced Regional Exposure Assessment Tool for European Rivers

- prediction of the fate of specific "down-the-drain" chemicals in surface water
- using Geographical Information Systems (GIS)
- for use within Environmental Risk Assessment

**Environmental Risk Assessment** • Aim = assess the probability and severeness of negative effects on ecosystems after exposure to chemicals steps: Predicted Environmental Concentration (PEC) exposure Predicted No Effects Concentration (PNEC) effects: PEC PNEC <12 PEC risk ratio: PNEC BIOMATH

### **Environmental exposure assessment**

BIOMATH

Current methods (advised in EU legislation):
 – multimedia fate models



### Environmental exposure assessment

### Current methods:

- multimedia fate models
- $\label{eq:static} \begin{array}{l} \text{ no spatial nor temporal variability considered} \\ \rightarrow \text{ limited accuracy} & \textbf{FACTOR > 100-1000 } ! \end{array}$

### • GREAT-ER: refine PEC calculations

- 'real' geo-referenced data
- variability
- geo-referenced  $\rightarrow$  validation is possible

AIM = FACTOR < 3-5

BIOMATH IIIII

Peter A. Vanrolleghem - 01-01 - 29

CREAT-ER: overview WSTEWATE GIS UATA DATA DATA DATA DATA CREAT-END USE OUTPUT GIS USE OUTPUT GIS USE OUTPUT O











