

Characterising inter-laboratory variability in environmental standard setting using weighted hierarchical bootstrapping

Frederik A.M. Verdonck, Olivier Thas and Peter A. Vanrolleghem

Ghent University - BIOMATH, Department of Applied Mathematics, Biometrics and Process Control, Coupure Links 653, B-9000 Gent, BELGIUM

Proposed methodology

The parametric bootstrap method (assuming lognormal distribution) was selected as technique for characterising confidence intervals.

The answer on the question depends on the interpretation of the inter-laboratory variations: variability or uncertainty?

<u>Uncertainty</u>: error or ignorance, can partly be reduced through additional measurements => number of samples per shot = 1

Results + Discussion

Depending on the method used, the interpretation of the black line and its uncertainty band is different:

2

1

2

<u>black line</u> = inter-species + inter-laboratory variability <u>vellow band</u> = sampling uncertainty

inter-species + inter-laboratory variability sampling uncertainty

g between Interpretation: integ entire pool (i.e. between in

Based on expert knowledge, inter-laboratory variations should be interpreted as variability because the variations are not reducible (uncertainty can always partly be reduced).

Acknowledgement

This research has been funded by a scholarship from the Flemish Institute for the Improvement of Scientific-Technological Research in the Industry (IWT). The authors also like to thank Dr. Jaworska (Procter & Gamble) and Prof. Dr. Janssen (Ghent University - Laboratory for Environmental Toxicology and Aquatic Ecology) for their useful suggestions.

TAKE HOME MESSAGE

• Treating all variations on the same level (method 1) was found to be the best method for environmental standard setting because:

- inter-laboratory variations are interpreted as variability
- the modelled uncertainty is sampling error for all data

