

BIOMATH

Department of Applied Mathematic Biometrics and Process Control

IWA RIVER WATER QUALITY MODELLING (RWQM1) TASK GROUP

L. Somlyódy, D. Borchardt, M. Henze, L. Koncsos, W. Rauch, P. Reichert, P. Shanahan, P. Vanrolleghem

> Peter Vanrolleghem October 26 2001

Water & Wastewater Management for Developing Countries Kuala Lumpur, Malaysia

Past Developments

- From Streeter-Phelps to QUAL2E (steady flow and point sources): A natural evolution
- IAWQ ASM Family: A systematic development COD, fractionation and matrix notation

Shortcomings in RWQM Formulations

- Lack of closed mass balances
 BOD & sediment
- Lack of sediment related processes attached bacteria/algae and benthic flux terms
- Inconsistency between RWQM and ASM: Lack of integrating WWT and river water quality

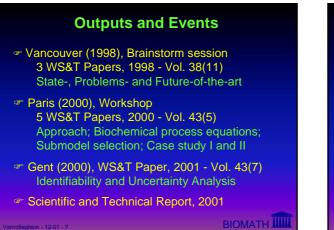
BIOMATH IIIII

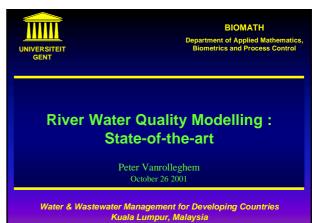
Shortcomings in RWQM Formulations

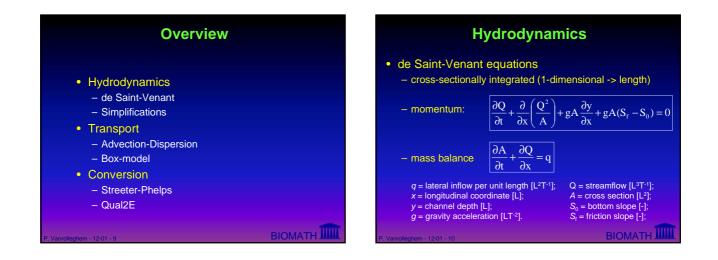
- Sewer overflow problems
- Spatial non-uniformities and rapid temporal changes
- Issues of calibration
- Predictive capability ?

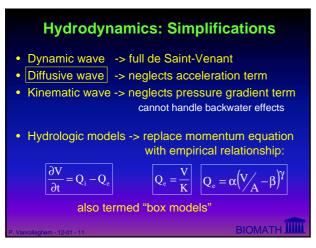
BIOMATH

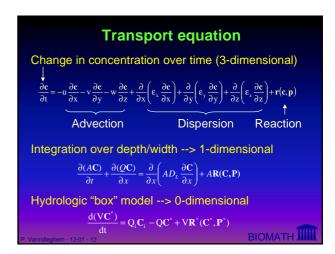
BIOMATH

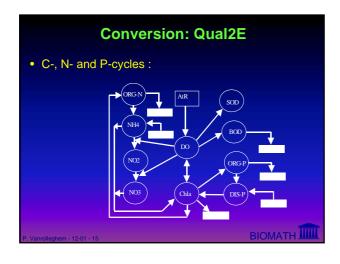

Objectives of the RWQM Task Group


- Scientific and technical base
- Standardized" RWQM:
- conversion model versions
- Guidelines for model selection
- Case studies
- 🖙 STR: 2001

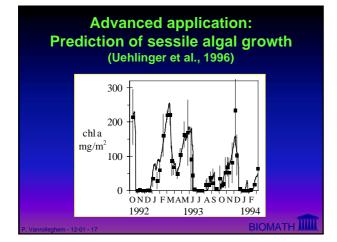

BIOMATH

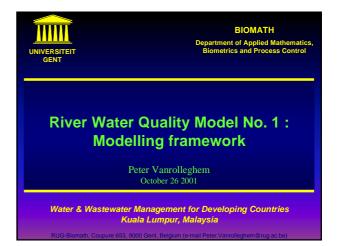

Objectives of the RWQM Task Group


- Open ended process
- Software platform
- Involvement of others
- What is not our objective?

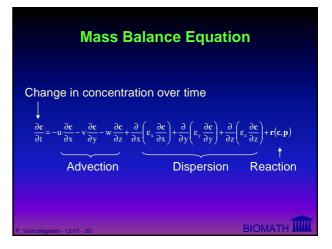

 Pioneering work (Two state variable Dissolved Oxyger Organic matter (B 	es : n (DO)
Mass balances :	$\frac{\frac{dDO}{dt} = K_{2,(DO_{sat} - DO) - K_{1}.BOD}{\frac{dBOD}{dt} = -K_{1}.BOD}$
P. Vanrolleghern - 12-01 - 13	BIOMATH

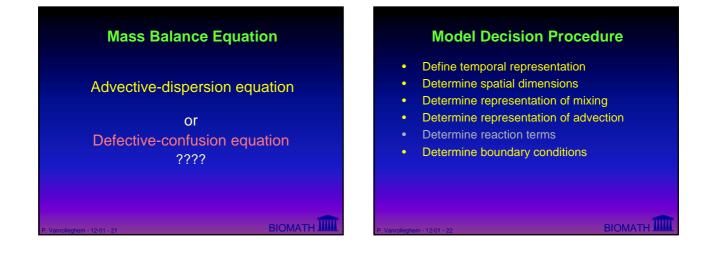
Conversion: Qual2E

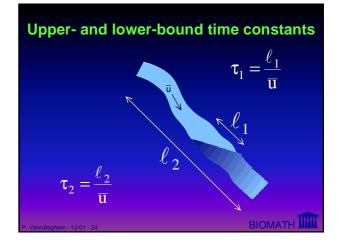

- US Environmental Protection Agency (1987)
- Legislation driven
- Descendent from Streeter-Phelps (via Qual1, Qual2)

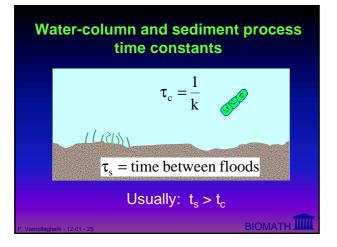

ВІОМАТН

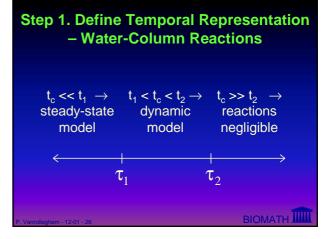
- Adds N- and P-cycling
- Steady state model
- No closed mass balances guaranteed sediment, BOD state variable

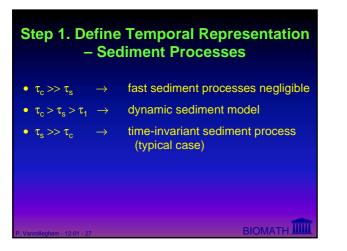



	PROGRAM	1	2	3	4	5	6	7	8	9	10
Hydrodynamics	Extern. Input	Y	Y	N	N	Y	N	Ν	N	N	Y
	Simulated	N	Y	Y	Y	Y	Y	Y	Y	Y	Y
	Control structure	N	Ň	Y	Y	Y	Y	Y	Y	Y	Y
Transport	Advection	Y	Y	Y	Y	Y	Y	Y	Y	Y	Y
	Dispersion	Y	Ý	Y	Y	Y	Y	Y	Y	Y	Y
Sediment	Quality models	Ν	Y	Y	N	Y	Y	N	N	open	Y
Water quality	Temperature	Y	N	Y	Y	Y	Y	Y			N
	Bacteria	N	N	Y	Y	Y	Y	Y			N
	DO-BOD	Y	Ý	Y	Y	Y	Y	Y			Y
	Nitrogen	Y	Ý	Y	Y	Y	Y	Y	open	open	Y
	Phosphorus	Y	Y	Y	Y	Y	Y	Y	structure	structure	Y
	Silicon	N	Ň	Y	N	Y	Y	Y			N
	Phytoplankton	Y	Y	3	Y	Y	Y	Y			Y
	Zooplankton	N	N	Y	N	Y	ΙY	N			N
	Benthic algae	N	N	N	N	Y	Y	Y			N
Systems analysis	Parameter estimation	Ν			I		I			Y	Y
	Sensitivity/uncertainty analysis	Y								Y	Y

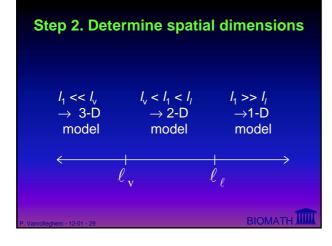

	Modelling Co River Water Q	
		REAERATION
	UNSTEADY FLOW	
	BIODEGRADABLE ORGANIC MATTER PHYTO	
	BIODEGRADABLE ORGANIC SEDIMENTS	N AND P CYCLING
P. Vanrolleghem - 12-01 - 19		ВІОМАТН

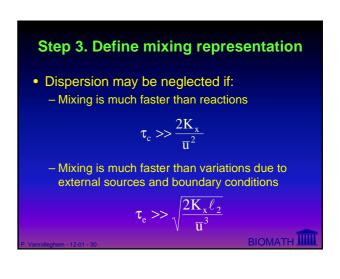


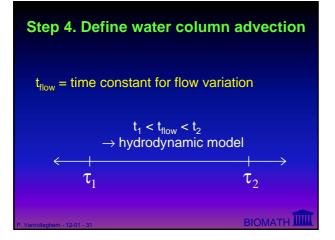


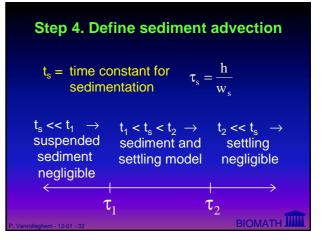

Step 1. Define temporal representation

- Define upper- and lower-bound time constants
- Define water-column and sediment process time constants






Step 2. Determine spatial dimensions


• Define lateral and vertical length scales:

- Lateral:
$$\ell_{\ell} = \frac{W^2}{2K_y}\overline{u}$$

- Vertical: $\ell_v = \frac{h^2}{2K_z}\overline{u}$

BC example: DO reaeration

 In 3-D model: reaeration is flux b.c. at surface

$$\varepsilon_{z} \frac{\partial c}{\partial z}\Big|_{z=z_{o}} = K_{L}(c_{s}-c)$$

 In 1-D model: reaeration is source term with rate constant

$$\dot{r}_{reaeration} = K_a (c_s - c)$$

BIOMATH

Summary: Model Decision Procedure

- Define temporal representation
- Determine spatial dimensions
- Determine representation of mixing
- Determine representation of advection
- Determine reaction terms
- Determine boundary conditions

BIOMATH IIIII

BIOMATH

nt of Applied Ma

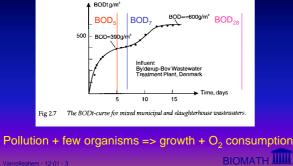
River Water Quality Model No.1: Conversion Process Modelling

Peter Vanrolleghem

Water & Wastewater Management for Developing Countries Kuala Lumpur, Malaysia

Water Quality: Determinands

Organic pollution


- BOD₅, BOD₇, BOD_∞
- COD_{tot}, COD_s
- TOC
- SS. TSS. Settleables

Nitrogen pollution

- NH_4-N, NO_2-N, NO_3-N – TKN, TN
- Phosphorous pollution
 Specific pollutants – o-PO₄
- TP

- · Heavy metals: – Hg, Ag,
 - Cd, Zn,
 - Cu, Ni,
 - Pb. As.
 - Cr
- Pathogenic organisms - Coliform bacteria
- LAS detergent (1% !)
- Phenols BIOMATH

Water Quality Determinands: BOD BOD = Biochemical Oxygen Demand BODt g/m³

Water Quality Determinands: COD

COD = Chemical oxygen demand

- Chemical oxidation to CO₂, H₂O, NH₄, SO₄ at high temperature, very acid
- Amount of oxygen consumed = COD 60 g Acetic acid = 64 g COD e.g. 1 CH₃COOH + 2 O₂ --> 2 CO₂ + 2 H₂O

exercise: Ethanol = CH_3CH_2OH Methane = CH_4 Sewage = $C_{18}H_{19}O_9N$ Sulphide = H_2S Biomass = $C_5H_7O_2N$??? How much COD per g organic matter ???

BIOMATH

Water Quality Determinands: TOC

TOC = Total Organic Carbon

- Oxidation to CO₂ at high temperature / catalytic
- Amount of produced CO₂ x 12/44 = TOC 60 g Acetic acid = 24 g TOC e.g. 1 CH₃COOH + 2 O₂ --> 2 CO₂ + 2 H₂O

Water Quality Determinands: SS

TSS = Total Suspended Solids

- Dry solids of sample after drying at 105 C = TSS
- SS = Suspended Solids
- Dry solids measured after filtering of sample = SS

Settleable Solids

• Dry solids measured after 2 h settling of sample

віоматн ШШ

Biological growth

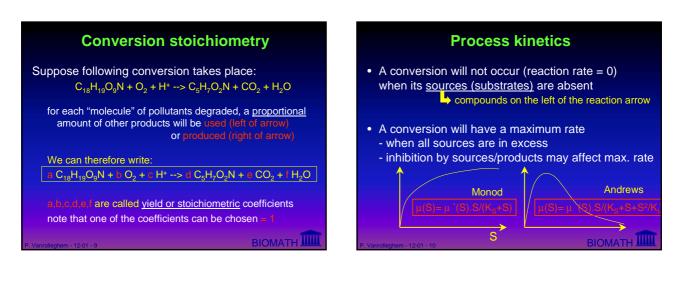
- Growth = multiplication of organisms
- Requirements for growth:
 - nutrients (biomass = $C_5H_7O_2N_1 + P_1S_1...$)
 - favorable environmental conditions (pH, temperature)

• Basic reaction :

- C-source + NH_4 + PO_4 + H^+ ==> Biomass
- + electron acceptor (O_2, NO_3) + byproducts
- + electron donor (C-source) (H₂O, CO₂, N₂, NO₃)

BIOMATH

Biological conversion


- Because biomass grows (or at least wants to), a number of compounds are converted, e.g.
 - Organic pollutants --> CO_2 + new biomass
 - NH₄ --> NO₃
 - $-NO_3 -> N_2$
 - Organic pollutants --> biogas $(CH_4 + CO_2)$

• How much is converted ?

- Rate of the conversion reaction ==> KINETICS
- Ratio of conversions of the different compounds

==> STOICHIOMETRY

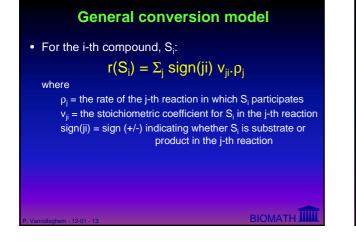
ВІОМАТН

Conversion rates

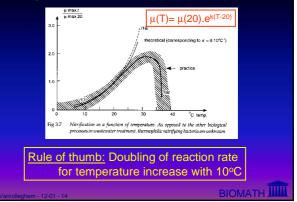
Take the conversion above

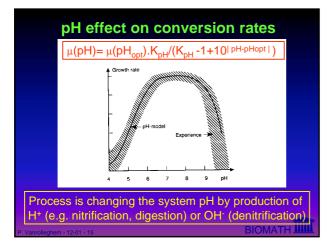
 $a C_{18}H_{19}O_9N + b O_2 + c H^+ --> (1)C_5H_7O_2N + d CO_2 + e H_2O$

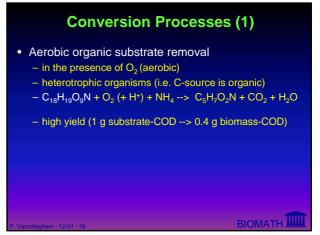
Suppose conversion kinetics: $\mu(S) = \mu^*(S).X.S/(K_S+S)$ - Monod kinetics in the substrate


– first order in the biomass concentration

The conversion of each component is then:


C ₁₈ H ₁₉ C	9₀N :-a.μ(S)	$C_5H_7O_2N$: + 1. μ(S)
0 ₂	: - b. µ(S)	CO ₂	: + d . μ(S)
H+	: - c . μ(S)	H ₂ O	: + e. µ(S)
P. Vanrolleghem - 12	-01 - 11		BIOMATH


Conversion rates (cont'd)


- Conversion rate of a compound consists of 3 parts:
 - sign (+/-) dependent on whether it is used or produced
 - stoichiometric coefficient in the conversion
 - rate of the conversion
- What if parallel conversions with same compounds ?
 a C₁₈H₁₉O₉N + b O₂ + s H⁺ --> 1 C₈H₇O₂N + d CO₂ + e H₂O f CO₂ + g O₂ + h NH₄⁺ --> 1 C₈H₇O₂N + l NO₃ + l H₂O + kH⁺
- ==> $C_5H_7O_2N$, O_2 , CO_2 , H^+ , H_2O occur more than once $C_5H_7O_2N$:+ 1, μ_1 + 1, μ_2 O_2 :- b, μ_1 - g μ_2 CO_2 :+ d, μ_1 - 1, μ_2 H^+ :- c, μ_1 + k, μ_2 BIOMATH

Temperature effect on conversion rate

Conversion Processes (2)

Nitrification

- in the presence of O₂ (aerobic)
- autotrophic organisms (i.e. C-source is inorganic: CO₂)
- $NH_4 + CO_2 + O_2 + --> C_5H_7O_2N + NO_3 + H_2O + H^+$
- low yield (0.24 g COD/g N oxidised)
- slow growth rate
- highly sensitive to lots of disturbances (pH, T, inhibitors)
- in fact: two-step process (NH₄ -> NO₂ -> NO₃)

BIOMATH

Conversion Processes (3)

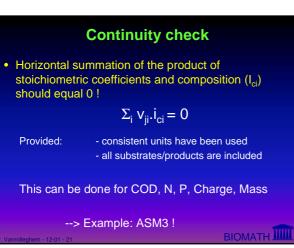
Denitrification

- in the absence of O₂ (anoxic)
- in the presence of NO₃ and COD
- heterotrophic organisms
- $\ C_{18} H_{19} O_9 N + N O_3 + H^{*} + N H_4 -> C_5 H_7 O_2 N + C O_2 + H_2 O_4 + N_2$
- relatively high yield (0.3 g biomass-COD/g COD)
- performs both nitrogen and COD removal !
- recuperates O₂ invested in nitrification !

→ Continuity				
$\begin{array}{c c} \text{Component} & \rightarrow & i \\ \hline j & \text{Process} & \downarrow \end{array}$	$1 \\ X_B$	2 Ss	$\frac{3}{S_{\Omega}}$	Process Rate, ρ_j [ML ${}^3 T^{-1}$]
1 Growth	1	$-\frac{1}{Y}$	$-\frac{1-Y}{Y}$	$\frac{\hat{\mu}S_{\rm S}}{K_{\rm S}+S_{\rm S}}X_{\rm B}$
2 Decay	-1		· -1	bX _B
Observed Conversion Rates ML ⁻³ T ⁻¹	,	$r_i = \sum_j r_{ij} = \sum_j \nu_{ij}$	ρ	Kinetic Parameters: Maximum specific
Stoichiometric Parameters: True growth yield: Y	Biomass [M(COD) L ⁻³]	Substrate [M(COD) L ⁻³]	Oxygen (negative COD) [M(-COD) L ⁻³]	growth rate: μ̂ Half-velocity constant: K ₅ Specific decay rate: b

Mass balancing

• Vertical summation of

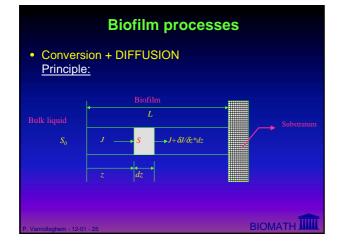

Stoichiometry term * Kinetics

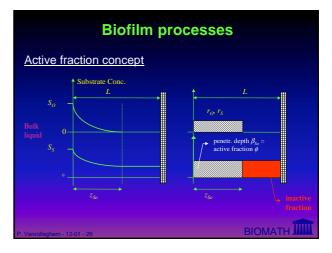
terms gives total conversion

$$r(S_i) = \Sigma_j \operatorname{sign}(ji) v_{ji} \rho_j$$

Add the transport terms ==> the mass balance !

віоматн 🎹




	Component i >	1	2	3	4	5	6	7	8	9	10	11	12	13
j	Process	So	SI	Ss	\mathbf{S}_{NH}	S_{N2}	S _{NO}	$\mathbf{S}_{\mathrm{HCO}}$	XI	Xs	X_{H}	$\mathbf{X}_{\mathrm{STO}}$	X_A	X_{TS}
\sim	expressed as >	O_2	COD	COD	Ν	Ν	Ν	Mole	COD	COD	COD	COD	COD	TSS
1	Hydrolysis		f _{SI}	1-f _{SI}	y1			Zl		-1				-i _{XS}
Heter	otrophic organisms, denitrificatio	n												
2	Aerobic storage of COD	X2		-1	y ₂			Z2				Y _{STO}		t ₂
3	Anoxic storage of COD			-1	y 3	-X3	X3	Z3				YSTO		t ₃
4	Aerobic growth	X4			y 4			Z4			1	-1/Y _H		t 4
5	Anoxic growth (denitrification)				-i _{NBM}	-X5	X5	Z5			1	$-1/Y_{H}$		t ₅
6	Aerobic endog. respiration	-(1-f _I)			y ₆			Z ₆	f _I		-1			t ₆
7	Anoxic endog. respiration				y ₆	-X7	X7	Z.7	f _I		-1			t ₇
8	Aerobic respiration of PHA	-1										-1		-0.60
9	Anoxic respiration of PHA					-X9	X9	Z9				-1		-0.60
Autot	rophic organisms, nitrification													
10	Nitrification	X8			y10		$1/Y_{\rm A}$	Z10					1	i _{TSBM}
11	Aerobic endog. respiration	-(1-f _l)			y11			Z11	fI				-1	t11
12	Anoxic endog. respiration				y ₁₂	-y ₁₂	y12	Z12	f_{I}				-1	t ₁₂
Comp	osition matrix uki													
k	Conservatives													
1	COD g COD	-1	1	1		-1.71	-4.57		1	1	1	1	1	
2	Nitrogen g N		i _{NSI}	i _{NSS}	1	1	1		i _{NXI}	i _{NXS}	i _{NBM}		i _{NBM}	
3	Ionic charge Mole +				1/14		-1/14	-1						
	Observables													
4	TSS g TSS								i _{TSXI}	i _{TSXS}	i _{TSBM}	0.60	i _{TSBM}	

	ASM3 Com	posi	ition	ma	trix	Sol	uble	S
Con	ponent	So	SI	Ss	S _{NH}	S _{N2}	S _{NO}	S _{HCO}
	expressed as >	O_2	COD	COD	Ν	Ν	Ν	Mole
Con	position matrix $\iota_{k,i}$							
k	Conservatives							
1	COD g COD	-1	1	1		-1.71	-4.57	
2	Nitrogen g N		i _{NSI}	i _{NSS}	1	1	1	
3	Ionic charge Mole +				1/14		-1/14	-1
	Observables							
4	TSS g TSS							
P. Vani	rolleghem - 12-01 - 23					BIC	DMATH	-

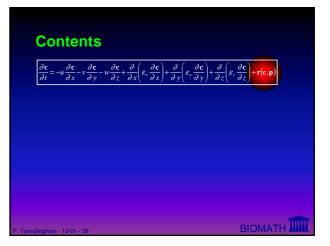
a matrix Solubles ASM3 Composition matrix Particulates

2011	ponent	pressed as	X _I	X _s	X _H COD	X _{STO} COD	X _A COD	X _{TS} TSS			
	ex	pressed as	COD	COD	COD	COD	COD	155			
Con	position ma	trix ı _{k,i}									
k	Conservativ	ves: Conse	ervatior	n equati	ion						
1	COD g COD 1 1 1 1 1										
2	Nitrogen	g N	i _{NXI}	i _{NXS}	$i_{\rm NBM}$		i_{NBM}				
3	Ionic charg	ge Mole +									
	Observable	es: Compo	sition e	quation	n						
4	TSS	g TSS	i _{TSXI}	i _{TSXS}	$i_{\rm TSBM}$	0.60	i_{TSBM}				

Biofilm Processes

The active fraction concept: leads to the interpretation of biofilms as systems in which layers exist with different conversion processes taking place

The layers change in size as the process conditions change


buik water	aerobic	anoxic	anaer	obic	<i>W</i> .	
0 ₂						
NH_4^+	nitrifi- cation					
	<u>~</u>	Θ	Ð	Ð		
	1	denitri- fication				
NO ₃		8				
s			© prod	phide		
SO4			le l			
Сн₄	Ð			CH₄ prod		
	aerobic	anoxic	anaer	obic	1///	
	⊖ rem	oval	⊕ produ	ction		
		D		тц	T	

BIOMATH artment of Applied Mathema

River Water Quality Model No. 1 : Biochemical Process Equations

Peter Vanrolleghem October 26 2001

Water & Wastewater Management for Developing Countries Kuala Lumpur, Malaysia

Contents

- Model Description
 - Simplifying Assumptions
 - Composition of Organic Compounds
 - Components and Processes
 - Summary
- Identifiability and Uncertainty Analysis
 - Kinetic parameters
 - Stoichiometric parameters

BIOMATH

Simplifying Assumptions

- Constant elemental composition of compounds
- Constant process stoichiometry
- No adaptation of biomasss
- No anaerobic conditions (nitrate available)
- Influence of macrophytes as varying surface for growth of sessile organisms neglected
- No silicate limitation

ВІОМАТН

Composition of Organic Compounds

Characterization by mass fractions of C, H, O, N, P: $\alpha_{C} + \alpha_{H} + \alpha_{O} + \alpha_{N} + \alpha_{P} = 1$

COD, i_N and i_P can then be calculated:

 $COD = 32 (\alpha_{c}/12 + \alpha_{H}/4 + \alpha_{o}/32 + 3\alpha_{N}/56 + 5\alpha_{P}/124) OM$

Why Elemental Mass Fractions ?

- Increasing realization of the importance
- Elemental analyses are increasingly available
- Other measurement units than COD are in use in limnology (e.g. organism counts, org. C, dry weight)
- Rigorous theoretical base
- · Possibility for sensitivity analysis

BIOMATH IIII

Components and Processes

Complex, "complete" model

Recommendations for model simplifications (see later) Decisions / Problems:

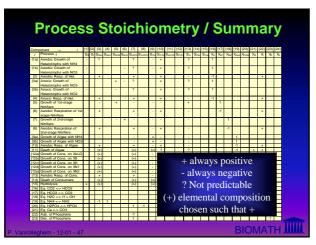
- Inclusion of nitrite (even if process modelling is still uncertain)
- Only one type of $X_{S}\!/X_{I}$ (although composition of $X_{H},$ $X_{N1},$ $X_{N2},$ $X_{ALG},$ X_{CON} different)
- Death and respiration of X_{ALG} and X_{CON} (although difficult to separate)
- Phosphorus adsorption and desorption

Organisms:	X _H ,	S -> soluble
	X _{N1} , X _{N2} , X _{ALG} , X _{CON}	X -> particulate
Org. material:	$X_{s}, X_{l},$	
	S _S , S _I	
Nutrients:	S _{NH4} , S _{NH3} ,	
	S _{NO2} , S _{NO3} , S _{HPO4} , S _{H2PO4}	
Oxygen:	S ₀₂	
Inorg. material:	$X_{P}, X_{II},$	
	S _{CO2} , S _{HCO3} ,	S _{CO3} ,
Northern 42.04 44	S _H , S _{OH} , S _{Ca}	BIOMATH

Processes (30)

Growth and respiration of heterotrophs (aerobic and anoxic) Growth and respiration of nitrifiers (2 types) Growth, respiration and death of algae Growth, respiration and death of consumers Hydrolysis Chemical equilibria Adsorption and desorption of phosphate

BIOMATH IIII


Process Stoichiometry / Concepts

Based on

- elemental composition of organic compounds
- stoichiometric parameters (yields and inert fractions)
 - the stoichiometric coefficients can be calculated using charge and mass balances

Equations are given in the STR MS Excel spreadsheet can be downloaded from http://www.eawag.ch/~reichert.

BIOMATH

Process Kinetics

- Monod-type limitation factors for consumed oxygen and nutrients
- Monod and inhibition factors as switching functions
- Exponential temperature dependence
- Steele-type light dependence of algae growth
- Dynamic formulation of chemical equilibria i.e. a forward and backward reaction (rather than set of non-linear algebraic equations)

Summary

Compilation of formulations used in the literature with special emphasis on

- compatibility with activated sludge models
- closing of mass balances
- calculation of pH

Use of elemental mass balances makes connection to ASM more difficult

BIOMATH

Contents

- Model Description
 - Simplifying Assumptions
 - Composition of Organic Compounds
 - Components and Processes
 - Summary

• Identifiability and Uncertainty Analysis

- Kinetics parameters
- Stoichiometric parameters

BIOMATH

Identifiability and Uncertainty Analysis of Process Kinetics

Reichert and Vanrolleghem, Watermatex 2000; WST 43(7)

- Problem: It is not possible to identify all model parameters using typically available data
- **Goals:** Identify subsets of practically identifiable kinetic model parameters as a function of the measurement layout

Estimate model prediction uncertainty.

BIOMATH

Technique

Use a simplified model with constant biomass Ignore uncertainty in process stoichiometry

- Identify practically identifiable parameter subsets using sensitivity analysis analysis of near linear dependence of sensitivity functions
- Use Monte Carlo simulation to calculate prediction uncertainty based on estimated prior uncertainty of model parameters

BIOMATH

Assessment of Prior Uncertainties and Scale Parameters

Relative uncertainties:

- 50%: kinetic parameters
 - with exception of growth rates
- 20%: growth rates, temperature coefficients
- 5%: physical parameters, inflows, external parameters.
- 0%: stoichiometric parameters

Scale parameters:

upstream inflow concentrations used

Layout Measured variables S_{O2} 1 2 + S_{NH4}+S_{NH3} 3 + S_{NO2} + S_{NO3} 4 5 + S_{HPO4}+S_{H2PO4} 6 pН + 7 SCond + BIOMATH IIII

Experimental Layouts

Conclusions of Kinetic Parameter Identifiability and Uncertainty Analysis

- Measurements of O_2 , NH_3 and NO_2 allow to identify 5-7 (of the 51) parameters of this model
- Adding measurements of NO₃, PO₄, pH, ions and conductivity does not significantly increase the identifiability of kinetic model parameters (but are useful to test the model and identify stoichiometric parameters)
- Without site-specific calibration, model prediction uncertainty is very large
- · All these conclusions hold only for the specific case study

BIOMATH

Sensitivity Analysis of Process Stoichiometry

(Reichert and Estermann, to be published)

Problem:	Uncertainty induced by sensitivity of stoichiometric coefficients to the uncertainty of elemental mass fractions
Goal:	Estimate the range of variability of stoichiometric coefficients induced by changes in elemental mass fractions within their natural variability ranges

ВІОМАТН

Preliminary Results

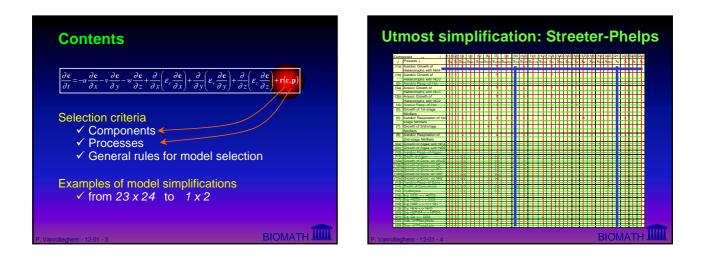
- Small changes in elemental mass composition can lead to changes of about 20% in stoichiometric coefficients
- Reasonable variations of elemental composition can give changes in stoichiometric coefficients up to a factor of 2
- Significant changes can occur in all stoichiometric coefficients (oxygen, nutrients, CO₂ and H)

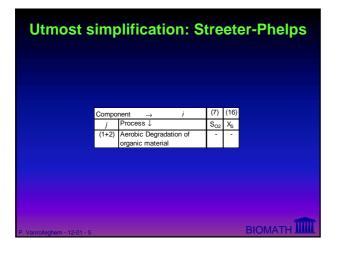
ВІОМАТН

Overall Conclusions

The presented model formulations summarize past efforts in water quality modelling

- The use of elemental mass fractions is a rigorous basis for analyzing the uncertainty in process stoichiometry
- The model parameters are hardly identifiable and the predictive power may be poor


BIOMATH partment of Applied Mathem Biometrics and Process Com


River Water Quality Model No. 1 : Biochemical submodel selection

Peter Vanrolleghem October 26 2001

Water & Wastewater Management for Developing Countries Kuala Lumpur, Malaysia

								~			17		6	17		5		V.				. I				
	ioche	ш	ш	L	-		_				V	ΞI	3	ц				V.	U		IC					
omc	onent i	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)	
1	Process ↓	Se	S	See.	Sw	Sun	SNO	Suen	Susen	Sas	See	SHCOL	See	Su	Snu	Se.	X	Xer	Xer	Xua	Xron	Xo	X	Xo	X	
1.0)	Aerobic Growth of		-	?				?			+			2			1					-	t i	· ·		
	Heterotrophs with NH4																									
	Aerobic Growth of	-					•	?		•	+			2			1									
	Heterotrophs with NO3																									
	Aerobic Resp. of Het.		T	+				+			+						÷						+			
	Anoxic Growth of	-				+	-	?			+			2			1						E	E		
	Heterotrophs with NO3 Anoxic Growth of		_				_		_	_		_	_		_	_				_	_	_	L	L		
(30)	Anoxic Growth of Heterotrophs with NO2	-						· /			+			1									E	E		
(4)	Anoxic Resp. of Het.	$ \rightarrow $	-	+	_	-	-	+	_	-	+	_	_		-	-	.1	-		-	_	-		-		
	Anoxic Resp. of Het. Growth of 1st-stage	\vdash	+	*	_	+	-	*	-		+	-	-	+	-	-	-1	1		-	-	-	+ *	-		
	Nitrifions			-				-			-							÷.,								
	Aerobic Respiration of 1st		-	+	-	-	-	+	-		+	-	_		_	_		-1		_	_		+	-		
	stage Nitrifiers																						L .	E		
(7)	Growth of 2nd-stage						+	-			-			-					1				1	1		
	Nitrifiers																									
	Aerobic Respiration of			+				+			*			-					-1				+			
	2nd-stage Ntrillers						_					P7.										_	L	_		
	Growth of Algae with NH4									+			_		_	_				1	_			_		
	Growth of Algae with NO3		_		_		-	-	_	+		_	-		-	-		-		1	-	—	—	—		
	Aerobic Resp. of Algae Death of Algae		_	+ (+)	_		<u> </u>	+ (+)	_	· (+)	+ 2	_	-	. 2	-	-		-		-1	-		+	—		
	Death of Algae Growth of Cons. on XALG	\vdash		(+)	_	-	-	(+)	-	(+)	2	-	-	2	-	-		-		-1	1	*	+	-		
	Growth of Cons. on XS			(+)	-	_		(+)	-	÷	2			2	-	-		-	-		1		-	-		
	Growth of Cons. on XH			(+)	-	-	-	(+)	_	1	2	_	_	2	_	_		_		_	1	-	-	-		
	Growth of Cons. on XN1			(+)		_	-	(+)			2		_	2				-			1		-	-		
12e)	Growth of Cons. on XN2			(+)		_	1	(+)			2			?				-	-		1	1	1	1		
	Aerobic Resp. of Cons.			+				+		-	+										-1		+			
	Death of Consumers			(+)				(+)		(+)	2			2							-1	+	+			
	Hydrolysis	+		(+)				(+)		(+)	2			2								-1				
	Eq. CO2 <-> HCO3		T								-	1		+												
	Eq. HCO3 <-> CO3		_									7	1	+												
	Eq. H2O <-> H + OH		_				L		_	-	_	_	_	1	1	_		_		_	_	—	—	—		
	Eq. NH4 <> NH3 Eq. H2PO4 <> HPO4		_	-1	1		-			-	_	_	_	+	_	_		_		_	_	-	-	-		
	Eq. H2PO4 <-> HPO4 Eq. Ca <-> CO3	\vdash	-	_		_	-	1	-1	-	-	-		+	-	1		-		-	-	—	-	-		
	Ads. of Phosphate		+	-	_	-	-	-1	-	-	-	-	*	-	-	-		-		-	-	-	-			
	Des. of Phosphate																									

Items to consider when simplifying

- ✓ Relevant compartments ?
- ✓ Variable or constant component conc. ?
- ✓ Nitrite
- ✓ Anoxic conditions
- ✓ Nitrifiers
- ✓ Algae
- ✓ Chemical equilibria
- ✓ General rules

Relevant compartments

- ✓ Is it necessary to include (Nr of states !):
 - ✓ Water column
 - ✓ Sediment (pore water and particles)
 - ✓ Biofilm (attached surface)

Large river: sediment, only water column

Small river: large surface - bulk liquid ratio ==> sediment compartment necessary (Case I) ==> biofilm compartment necessary (Case II)

State variables or constants ?

Biomass concentrations

=> algae, consumers, heterotrophs, nitrifiers => especially useful for short term dynamics

When component is eliminated from the matrix => Kinetics are simplified (states ==> constants) => Processes are combined (e.g. growth+decay)

Note: This does not mean that component concentrations are eliminated from the model !

ВІОМАТН ШШ

Nitrite

- ✓ Only necessary when significant build-up
 - ✓ when there is a large NH₄ input
 - ✓ during start-up of nitrification
- ✓ If not necessary
 - ✓ consolidate columns 5 & 6 ==> S_{NO}
 - ✓ consolidate columns 17 & 18 ==> X_N
 ✓ combine growth and respiration processes

 - ✓ combine consumer growth processes

==> similar to ASM1 !

BIOMATH IIIII

Anoxic conditions

- ✓ If always aerobic (high aeration-low loading)
- Eliminate: anoxic growth & respiration

Nitrifiers

- ✓ If hydraulic retention time is insufficient
- ✓ If oxygen supply is insufficient
- ✓ Biofilm formation overgrown with heterotrophs
- \checkmark Eliminate: nitrifier growth, respiration, consumption

BIOMATH

Algal activity

- ✓ Conditions:
 - ✓When hydraulic retention time < 4 6 d</p> √When Chl-a < 10 Og/l
- ✓ Eliminate:
 - algal growth
 - algal death
 - algal respiration - consumers of algae

✓ Note: not applicable for sessile algae/macrophytes

Chemical equilibria

- ✓ S_{OH}/S_H only 2 extra parameters to be estimated !
 - S_{NH3}/S_{NH4} S_{H2C03} / S_{HC03} / S_{C03} / S_{C3} S_{H2P04} / S_{HP04}
- ✓ Normally eliminated
- ✓ Except for:
 - ✓ Understanding of pH dynamics
 - ✓ Possible carbon limitation of algae/nitrifiers
 - ✓ pH-effects on process rates
 - ✓ Ammonia toxicity

General submodel selection rules

- ✓ S_S, S_{O2}, S_{NH4}, X_S are generally selected
- ✓ Eliminating one component can lead to the elimination of other components/processes
- ✓ For any component with a negative relation in a row (uptake), the reaction cannot occur if that component is absent in the water
- ✓ If a column empty ==> Eliminate the component for r(c,p), but not for its transport !

BIOMATH

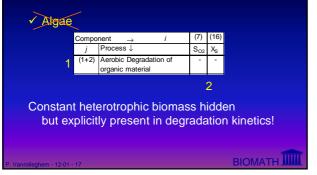
Simplified model: Example 1

✓ Consumers, pH, P-adsorption/desorption

		ponent $\rightarrow i$	(1)		(3)	(5)	(6)	(7)	(9)		(17)	(18)		(21)	
			S ₅	S	S _{NH4}	S _{NO2}	S _{NO3}	S _{HPD4}	\$ ₀₂	X,	X _{N1}	X_{N2}	X_{ALG}	X	X,
		Aerobic Growth of			?			?		1					
		Heterotrophs with NH4													
		Aerobic Growth of						?		1					
		Heterotrophs with NO3													
		Aerobic Respiration of			+			+		-1					+
		Heterotrophs													
		Anoxic Growth of	•			+	•	?		1					
		Heterotrophs with NO3													
15		Anoxic Growth of	•			•		?		1					
- ID		Heterotrophs with NO2													
		Anoxic Respiration of			+			+		-1					+
		Heterotrophs													
	(5)	Growth of 1st-stage	Γ.			+					1				
	(6)	Aerobic Respiration of 1st-			+			+			-1	1	1	1	+
		stage Nitrifiers	1	I I									1	1	
	(7)	Growth of 2nd-stage					+					1	1	1	
	(8)	Aerobic Respiration of 2nd-			+			+				-1			+
		stage Nitrifiers													
		Growth of Algae with NH4						-	+				1		
	(9b)	Growth of Algae with NO3					-		+				1		
	(10)	Aerobic Respiration of			+			+					-1		+
		Death of Algae			(+)			(+)	(+)				-1	+	+
	(15)	Hydrolysis	+		(+)			(+)	(+)			1	1	-1	
						1	3								
Inrolleghem - 12	01	14												E	BIC

Simplified model: Ex. $2 \cong QUAL2E$

✓ Growth is compensated by respiration: X=const. hydrolysis is incorporated in degradation rate


Component \rightarrow	i	(3)	(5)	(6)	(7)	(9)	(19)	(21)
j Process ↓		$S_{\rm NH4}$	S_{NO2}	S_{NO3}	S_{HPO4}	S_{O2}	X _{ALG}	X ₆
(1+2) Aerobic Degradati organic material	on of	+			+	-	•	-
(3+4) Anoxic Degradatio organic material	on of	+		-	+		•	-
(5+6) Growth and respir 1st-stage Nitrifiers		-	+			-		
(7+8) Growth and respir 2nd-stage Nitrifier			-	+		-		
(9b) Growth of Algae w	ith NO3			-	-	+	+	
					7			
2-01 - 15						В		MA

Simplified model: Example 3 ≅ extended Streeter-Phelps

Nitrification + anoxie conditions

	Compo	nent $\rightarrow i$	(3)	(6)	(7)	(9)	(19)	(21)
	j	Process ↓	S_{NH4}	S _{NO3}	S _{HPO4}	S ₀₂	X _{ALG}	Xs
2	(1+2)	Aerobic Degradation of organic material	+		+	-	-	-
	(9b)	Growth of Algae with NO3		-	-	+	+	
Note	pre	sence of growi	ing	alga	al bi	om	as	s!

Simplified model: Example 4 ≅ Streeter-Phelps

Take home

- ✓ Wake up from your horror dream :
 - ✓ Simplification is nearly always possible
 - ✓No clear cut decision criteria
 - ✓Guidelines were given
 - ✓ Some general rules were deduced
 - ✓ Examples were provided (Qual2E, S-P)
- ✓ To be combined with 5 other steps

віоматн ШШ

BIOMATH

epartment of Applied Mathematic Biometrics and Process Control

River Water Quality Model no. 1 (RWQM1)

Oxygen and nitrogen conversion in the river Glatt (Switzerland)

Peter A. Vanrolleghem & Peter Reichert October 26 2001

Water & Wastewater Management for Developing Countries Kuala Lumpur, Malaysia

Study Site

River Glatt: 35 km length; from Greifensee to river Rhine. High percentage of treated waste water.

Study site: last 10 km

Steep, highly aerated, with small drops every 50 m and some cascades.

Upstream and downstream measurement stations with no significant tributaries in between

On-line analysis at both stations: T, pH, NH₄, NO₂, O₂

Downstream cumulative samples: many ions

BIOMATH

Previous results

Reichert, Berg, Holzer, Kändler, Wanner:

Evaluation of 6 complete data series: Good fit possible (6 parameters) for each data series No significant correlation between environmental conditions and conversion rate parameters

Uehlinger, König, Reichert:

Evaluation of 123 oxygen data series: Variation of production and respiration rates correlate primarily with temperature, seasonal temperature gradient, time and radiation

Effect of discharge and time since last flood was not significant (in contrast to other rivers).

BIOMATH

Goals of this study

Test the applicability and appropriateness of the proposed modeling approach by applying several submodels of the RWQM1 to the Glatt data set.

Perform speculative model applications that try to increase the predictive capability of river water quality models.

BIOMATH

Submodel 1: Constant Biomass

Variables:

 $\mathsf{S}_\mathsf{S},\,\mathsf{S}_\mathsf{NH4},\,\mathsf{S}_\mathsf{NO2},\,\mathsf{S}_\mathsf{NO3},\,\mathsf{S}_\mathsf{HPO4},\,\mathsf{S}_\mathsf{O2}$

Parameters:

 $X_{H}, X_{N1}, X_{N2}, X_{ALG}, X_{S}$

Processes:

Growth and respiration of heterotrophs and nitrifiers Growth, respiration and death of algae Hydrolysis

BIOMATH

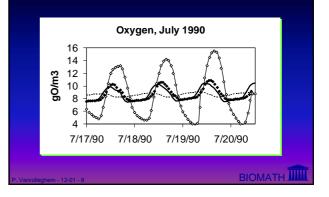
Submodel 1: Constant Biomass

Com	ponent \rightarrow i	(1)	(3+4)	(5)	(6)	(7+8)	(9)
j	Process ↓	S_{S}	S _{NH4}	S_{NO2}	S _{NO3}	S _{HPO4}	S_{O2}
(1a)	Aerobic Growth of Heterotrophs with NH4	-	?			?	-
(1b)	Aerobic Growth of Heterotrophs with NO3	-			1	?	-
(2)	Aerobic Respiration of Heterotrophs		+			+	-
(5)	Growth of 1st-stage Nitrifiers		-	+		-	-
(6)	Aerobic Respiration of 1st- stage Nitrifiers		+			+	-
(7)	Growth of 2nd-stage Nitrifiers			-	+	-	-
(8)	Aerobic Respiration of 2nd- stage Nitrifiers		+			+	-
(9a)	Growth of Algae with NH4		-			-	+
(9b)					-	ł	+
(10)	Aerobic Respiration of Algae		+			+	-
(11)			(+)			(+)	(+)
(15)	Hydrolysis	+	(+)			(+)	(+)
n - 12-(01 - 6					BIC	DM/

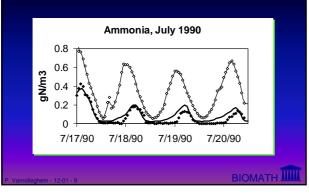
Submodel 1: Constant Biomass

Initial conditions:

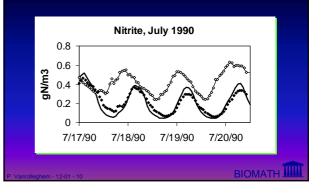
Simulation results only used after one transport time. Results are then independent of initial conditions


Input:

Known inputs for S_{NH4} , S_{NO2} , S_{O2} Constant inputs assumed for S_S , S_{NO3} , S_{HPO4}


(based on cumulative samples)

ВІОМАТН

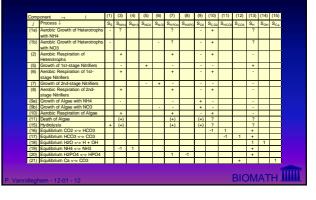

Submodel 1: Constant Biomass

Submodel 1: Constant Biomass

Submodel 1: Constant Biomass

Submodel 2: Extension to pH

Variables:


 $\begin{array}{l} S_{S},\,S_{NH4},\,S_{NH3},\,S_{NO2},\,S_{NO3},\,S_{HPO4},\,S_{H2PO4},\,S_{O2},\,S_{CO2},\,S_{HCO3},\\ S_{H},\,S_{OH},\,S_{Ca} \end{array}$

Parameters: $\rm X_{H},\,\rm X_{N1},\,\rm X_{N2},\,\rm X_{ALG},\,\rm X_{S}$

Processes:

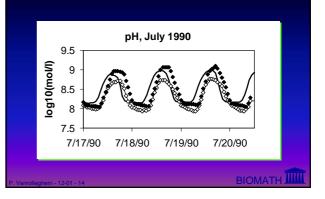
Growth and respiration of heterotrophs and nitrifiers Growth, respiration and death of algae **Hydrolysis Chemical equilibria** BIOMATH

Submodel 2: Extension to pH

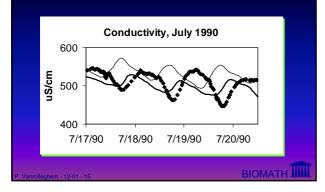
Submodel 2: Extension to pH

Initial conditions:

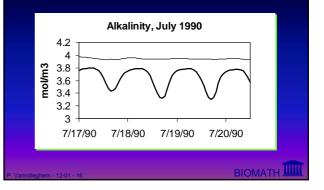
Simulation results only used after one transport time. Results are then independent of initial conditions

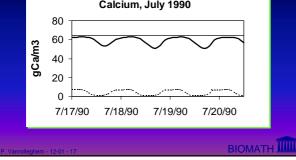

Input:

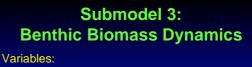
Known inputs for $S_{\rm NH4},\,S_{\rm NH3},\,S_{\rm NO2},\,S_{\rm O2},\,S_{\rm H},\,S_{\rm OH}$ Constant inputs assumed for $S_{\rm S},\,S_{\rm NO3},\,S_{\rm HPO4},\,S_{\rm H2PO4},\,S_{\rm ca}$ (based on cumulative samples)


Constant concentrations used for: S_{K} , S_{Mg} , S_{Na} , S_{CI} , S_{S04} Calculated inputs (charge, chem. eq.): S_{HC03} , S_{C02} , S_{C03}

BIOMATH


Submodel 2: Extension to pH


Submodel 2: Extension to pH



Submodel 2: Extension to pH

Submodel 2: Extension to pH Calcium, July 1990

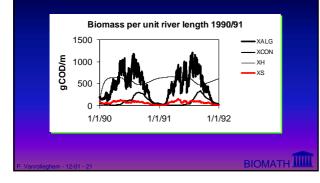
 $\begin{array}{c} S_{S}, S_{NH4}, S_{NO2}, S_{NO3}, S_{HPO4} \,,\, S_{O2}, \\ X_{H,s}, X_{N1,s}, X_{N2,s}, X_{ALG,s}, X_{CON,s} \,,\, X_{S,s}, X_{I,s} \,,\, X_{S}, X_{I} \end{array}$

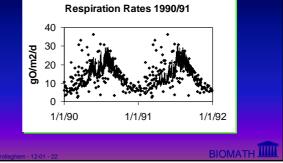
Processes:

Growth and respiration of heterotrophs and nitrifiers Growth, respiration and death of algae Growth, respiration and death of consumers Hydrolysis

Submodel 3:																
			20	IJ			u		J	-						
	Benthio		D	10	-		~	•			ne	-	S.F.	~		
	Denuni		D			la	5	5	D	V.				5		
										- C						
Compo	opent → <i>i</i>	(1)	(3+4)	(5)	(6)	(7+8)	(9)	(16s)	(17s)	(18s)	(19s)	(20s)	(21s)	(22s)	(21)	(22)
	Process ↓	Ss	S _{NH4}	S_{NO2}	SNO	S _{HPO4}	S ₀₂	X _{H.a}	X _{N1.5}	X _{N2.5}	XALG.1	X _{CON.}	X _{S.s}	X _{Ls}	Xs	X
	Aerobic Growth of Heterotrophs with NH4	-	?	- 1102	- 1100	?	-	A	101,4	112,2	AL9,	0011,1	5,8	1,4	J	
	Aerobic Growth of Heterotrophs with NO3	-			-	?	-	A								
	Aerobic Respiration of Heterotrophs		+			+	-	-A						+		
	Growth of 1st-stage Nitrifiers		-	+		-	-		Α							
	Aerobic Respiration of 1st- stage Nitrifiers		+			+			-A					+		
(7)	Growth of 2nd-stage Nitrifiers			-	+	-	-			Α						
	Aerobic Respiration of 2nd- stage Nitrifiers		+			+	-			-A				+		
(9a) (Growth of Algae with NH4					-	+				A					
(9b) (Growth of Algae with NO3					-	+				Α					
(10) /	Aerobic Respiration of Algae		+			+	-				-A			+		
(11)	Death of Algae		(+)			(+)	(+)				-A		+	+		
(12a) (Growth of Consumers on XALG		(+)			(+)	-				-	Α	+			
(12b) (Growth of Consumers on XS		(+)			(+)	-					Α	-			
(12c) (Growth of Consumers on XH		(+)			(+)	-	-				Α				
(12d)	Growth of Consumers on XN1		(+)			(+)	-		-			Α				
(12e) (Growth of Consumers on XN2		(+)			(+)	-			-		Α				
(13)	Aerobic Respiration of		+			+	-					-A		+		
	Consumers															
	Death of Consumers		(+)			(+)	(+)					-A	+	+		
(15)	lydrolysis	+	(+)			(+)	(+)						-A			
rolleg	hem - 12-01 - 19											B	10	MA	\T	-11

Submodel 3: Benthic Biomass Dynamics


Additional considerations: Rate limitation in benthic biofilms:


Detachment and sedimentation Food accessibility

> These additional processes with their non-identifiable parameters make the model application speculative.

Submodel 3: Benthic Biomass Dynamics

Submodel 3: Benthic Biomass Dynamics

Conclusions

The simplified model with constant benthic biomass leads to a good description of the data.

Extension to pH modeling appears promising

- Speculative modeling of benthic biomass dynamics (intended to increase the predictive capabilities of river water quality models)
- Lack of knowledge on relevant processes does not give such models high predictive power yet

BIOMATH

nt of Applied Ma

River Water Quality Model No. 1 : Integrated Urban Wastewater System

Jurgen Meirlaen, Tolessa Deksissa and Peter Vanrolleghem

Water & Wastewater Management for Developing Countries Kuala Lumpur, Malaysia

Overview

- Introduction
- · Problems in integrated modelling
- · Proposed solutions
- Conclusions

Introduction: IUWS RAIN T SURFACE RUNOFF & WASHOFF WASTE WATER SEWER INLET R T COMBINED SEWER NETWORK V E R 4 STORM TANK EFFLUENT WWTP BIOMATH

Introduction

Integrated modelling

- includes sewer system, WWTP and receiving water
- judge effect of CSO's and WWTP effluent on RWQ
- apply emission based Real Time Control (RTC)

Simultaneous integrated modelling - incorporate two-way interaction

- between sewer system, WWTP and receiving water - apply 'immission' based RTC

BIOMATH

BIOMATH

Problems in integrated modelling

- Problem 1: Different state variables - integrated simulations
- Problem 2: Complex hydraulic equations - fast simulations
- Problem 3: Different software packages - simultaneous simulation

BIOMATH IIIII

Problem 1: Different state variables

• Organic pollution:

- BOD (sewer and river models)
- COD (activated sludge models)
- TOC (measurement at low concentrations)
- Complex and varying relationships
- Different conditions in different parts of the system - what happens with biomass ?
- Closed mass balances ?

Solution: River Water Quality Model No. 1

- Biochemical conversion processes for cycles of C, O, N and P
- COD-based
- Consistency in mass and elemental balances
- · Compatible with IWA Activated Sludge Models
- Suited for integration in IUWS modelling

ВІОМАТН

Solution: Connector ASM-RM1

- List of conversion equations
- Closed elemental balances (C, H, O, N and P) – powerful model check
 - elemental compositions of all state variables
- Problems
 - compositions for components not present in ASM1
 - fate of biomass

Solution: Fate of biomass

Problems in integrated modelling

- Problem 1: Different state variables
 integrated simulations
- Problem 2: Complex hydraulic equations

 fast simulations
- Problem 3: Different software packages – simultaneous simulation

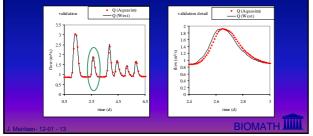
BIOMATH

ВІОМАТН

Problem 2: Complex hydraulics

• 'de Saint-Venant' equations

- flow propagation in channels and pipes
- used in state-of-the-art models
 - sewer (Mouse, Hydroworks)
 - rivers (Duflow, Isis, Mike11)
- non-linear partial differential equations
- long calculation times
- important data requirements
 - sewer pipes (slopes, diameters, roughness, ...)
 - rivers (slopes, roughness,cross-sectional shape, ...)


BIOMATH

Solution: Kosim-like approach

- Run-off and flow propagation
 - Nash-Cascade
 - transportation time
- reasonable prediction of overflow volumes and peak discharges
- Used in integrated modelling by Schütze (1998)
- Calculation times much shorter
- Needs to be calibrated against hydraulic model

Solution: Tanks-in-series model

- Capable of predicting flood-wave propagation
- Number of tanks determines dispersion
- · Conversion models can be implemented in tanks

Problems in integrated modelling

- Problem 1: Different state variables - integrated simulations
- Problem 2: Complex hydraulic equations fast simulations
- Problem 3: Different software packages - simultaneous simulation

Problem 3: different software packages

- Manual sequential integration
 - file transfer
 - file format
 - different state variables
 - no interaction
- SYNOPSIS
 - interface routines
 - interaction sewer/WWTP
- Integrated Catchment Simulator (ICS)
 - links MOUSE, STOAT and MIKE11
 - controls communication between models

BIOMATH

Solution: WEST-IUWS

- Integrated Urban Wastewater System in WEST[®]
- WEST®
 - state-of-the-art simulator comparable to STOAT
 - more flexibility
 - parameter estimation
 - open model structure
 - state-of-the-art models for WWTP

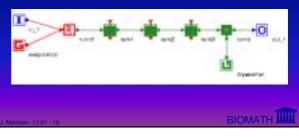
BIOMATH IIIII

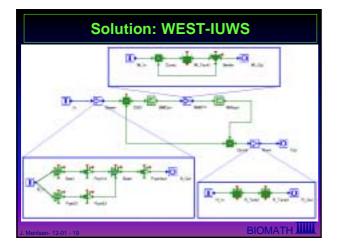
BIOMATH

Solution: WEST-IUWS

Integrated Urban Wastewater System in WEST[®]

- All models in WEST®
 - Kosim • ASM

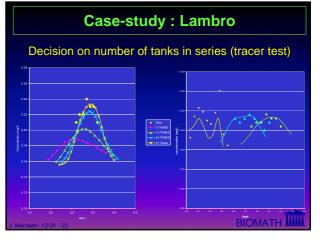

 - RWQM1 Connectors
- No file transfer
- No data exchange
- Simultaneous simulation
- Hierarchical modelling
 - develop models separately
 - link afterwards

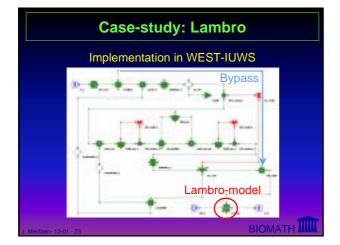

BIOMATH

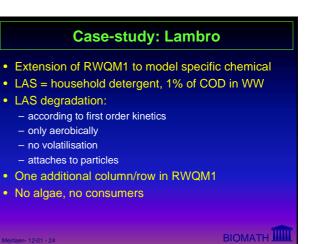
Solution: Kosim-like approach

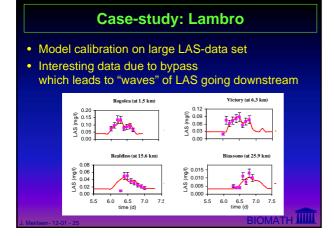
Implementation in WEST[®]

- transformation of difference to differential equations
- modelling of Nash-Cascade
- translation time implementation




<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>


Case-study: Lambro Tributary of Po in Italy Studied stretch of 26 km North of Milano Main pollution at Merone WWTP 120,000 IE hydraulically limited daily bypass even under dry weather ! studied within GREAT-ER project => large data set


- Aim of the study:
 - predict LAS concentration

