BIOMATH

epartment of Applied Mathematic Biometrics and Process Control

Dealing with variability in chemical exposure modelling in rivers

Frederik Verdonck, Tolessa Deksissa, David Matamoros & **Peter A. Vanrolleghem**

Joint International Seminar on Exposure and Effects, Modelling in Environmental Toxicology, Antwerp, February 4-7 2002

Outline

- Introduction
- Screening exposure modelling
- Probabilistic exposure modelling
- Geo-referenced exposure modelling – point sources (GREAT-ER)
 - non-point sources
- Dynamic exposure modelling
- Conclusions

Intro: Ecological risk assessment Exposure Analysis Effect Analysis Models Toxicity tests (Monitoring) Toxicity tests (Models) Image: Concentration Image: Concentration PEC No Effect Nobe: Concentration No Effect Nobe: Concentration Image: Concentration

Screening Exposure Modelling

• current methods: multimedia fate models = chemical partitioning + decay in generic 'unit world'

 no uncertainty
 no spatial variability
 no temporal variability
 low accuracy (factor 1000)

BIOMATH

Problem + goals

- When the conservative screening tools indicate a potential risk,
- => a need for more advanced risk assessment tools

Goal: present 3 higher tier exposure modelling tools:

- probabilistic modelling approach
- geography-referenced modelling approach

 point sources
 - nonpoint sources
- dynamic modelling approach

Aquatic exposure for non-point sources	
Point data should be converted to non-point format	
Input data (point data) •Soil •Weather •Source data •Other	Data interpolated in Array form Solt • Variable cell size • Cell data can be linked to a database management system • OTHER • Modelling must consider array calculations and cell interactions
<u>more accuracy</u>	 more detailed interpolated data more point data is needed
. Vanrolleghem - Feb 6, 2002 - 14	ВІОМАТН

Outline

Introduction

- Screening exposure modelling
- Probabilistic exposure modelling
- Geo-referenced exposure modelling
 - point sources (GREAT-ER)
 - non-point sources
- Dynamic exposure modelling
- Conclusions

BIOMATH

Dynamic river fate modelling

- Why dynamic?
 - Currently used steady state models
 - assume uniform emissions, e.g. EXAM, SLSA, TOXIC,...
 - in reality, time variable emissions
- Problem
 - Complex dynamic 3D dynamic river models are seldom used because the required data are seldom available
 - Hence, need for a simplified dynamic model.

BIOMATH

Conclusions

- Several advanced exposure modelling techniques
 were presented for a more refined risk assessment
 - Probabilistic techniques
 - (account for uncertainty and spatial/temporal variability)
 - Geo-referencing refines spatial variability
 - Dynamic simulation refines temporal variability
- The case studies show the feasibility and usefulness of the techniques

nrolleghem - Feb 6, 2002 - 27

BIOMATH