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An automatic buffer capacity model building algorithm
was developed. The objective of this algorithm is to
characterize multiple buffer systems from experimental
titration curves. Starting from a simple mathematical model
that incorporates the available prior knowledge on the
buffer system, the model is sequentially extended by
incorporating additional monoprotic buffer equations. To
select the most appropriate model from the resulting set of
automatically built models, a model structure selection
technique was constructed from existing methods.

Introduction
Methods and applications based on pH titrations are used
in a wide variety of fields (aerobic, anaerobic and physico-
chemical wastewater treatment, food and feed applications,
soil science, microbiology, aquatic chemistry, ...) (1-5).
However, these applications mostly rely on the offline
interpretation of titration curves and can thus not be
considered “sensors”. Sensors making use of pH titration
curves are often referred to as titrimetric sensors. These
sensors mostly work with only a few titration points and a
simplified and robust data interpretation method. One of
the main application fields in this area is the control of
anaerobic digestion where bicarbonate and/or volatile fatty
acids (VFAs) can be monitored with a titrimetric sensor
(6-16).

The buffer capacity based sensor of this paper differenti-
ates itself from the other sensors by the fact that the whole
and detailed titration profile is used for model-based
interpretation (software sensing). As a consequence, it is
aimed to differentiate and quantify more individual buffers
as compared to the application approaches mentioned above.
The hardware part of the sensor described in this paper
consists of a titrator unit, capable of performing acid-base
titrations of aquatic samples. The raw data consists of a
titration curve that is obtained by adding consecutive small
amounts of NaOH to the sample and measuring the pH after
each addition. A titration curve has a typical S-shape and
can be transformed into a buffer capacity profile with an
appropriate mathematical algorithm, in which the buffer
capacity in each point of the titration curve is calculated as
the derivative of the amount of base needed for a pH increase
of one pH unit. The main contribution of this work is the
advanced data processing of the calculated buffer capacity
profiles. Therefore, the term “software sensor” originally
introduced in ref 17 is applicable to this type of sensor. The

most advanced data interpretation of buffer capacity profiles
found in the literature is a stepwise model building approach
to construct a suitable mathematical model for an unknown
solution (18, 19). The method is based on a monoprotic
approach, in which titration of a polyprotic acid can be
rigorously represented as a mixture of monoprotic acids. In
the proposed method, a one component model, a two
component model, and so on are fitted to titration points;
and this is carried out to the point where further resolution
becomes meaningless. Unfortunately, the methods described
in refs 18 and 19 were developed 15 years ago, and no recent
literature based on this approach was found.

The buffer capacity sensor has first been evaluated for
water quality monitoring (20, 21). Second, a manual model
building algorithm for buffer capacity profiles of well-
characterized samples was described (22). Later, this model
building algorithm was modified, automated, and extended
with model selection criteria (23). Last, the automatic model
building algorithm was evaluated and implemented for the
purpose of water quality monitoring (24).

The objective of this paper is to present and evaluate a
generalized buffer capacity model building algorithm ap-
plicable for advanced interpretation of a wide variety of
titration curves. It will be illustrated with experimental data
of a number of selected samples that the proposed algorithm
is sufficiently robust and suitable for on-line buffer char-
acterization and quantification. The reader is also referred
to (25) for additional information and interpretations of the
results presented in this paper.

Methodology
General Linear Buffer Capacity Model. If only acid-base
chemical equilibria have to be considered, a linear buffer
capacity model represented by a set of equations which are
linear in the concentrations is sufficient to describe observed
buffer capacity data. Nonlinearities are the result of con-
sidering, among others, complexation and precipitation
reactions. Also, the parameters of the equilibria are nonlinear
in the model. More details on the development of the model
can be found in refs 20 and 25.

Automatic Buffer Capacity Model Building. If there is a
lack of prior knowledge about the buffer systems that are to
be expected in a titrated sample, it is not straightforward to
construct and end up with a “satisfying” buffer capacity
model. To describe efficiently the automatic buffer capacity
model building algorithm, it is necessary to introduce a
specific terminology:

Blind buffer: A monoprotic nonspecified buffer used for
model extension, of which the acidity constant Ka is
automatically determined in the automatic model building
procedure.

Known buffer: A buffer of which the acidity constant(s)
are exactly known or known within a minimum-maximum
interval (e.g. acetic acid buffer with a pKa between 4.6 and
5.0).

Range: The range is defined as the difference between the
minimum and maximum boundary value set as an interval
in which the considered pKa value is allowed to vary.

Optimization: Nonlinear parameter estimation with the
PRAXIS algorithm (26), to fit the buffer capacity model to the
experimental buffer capacity curve. The concentrations and/
or acidity constants of known and/or blind buffers that are
to be estimated are user-defined.

Residual: Difference between the experimental and the
simulated buffer capacity at a particular pH value (symbol
ε).
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Run: A sequence of consecutive positive or negative
residuals as function of the pH.

Model degree: The degree of a model is defined as the
number of blind buffers incorporated in the model.

Model Building Algorithm. An overview of the different
steps in the algorithm is given in Figure 1. The algorithm
starts with the optimization of a user defined starting model.
The residuals and Runs obtained with the starting model are
calculated. This information is then used to define the
candidate pH ranges for model extension. A number of criteria
to define the best position for model extension in the buffer
capacity profile are described and investigated in ref 23. The
criterion considered here is the sum of the residuals in each
Run. This criterion combines the number of points per Run
and the surface of the Run. The best candidate pH (and
corresponding pKa) for model extension is found in the Run
with the highest positive sum of residuals (experimental buffer
capacity > simulated buffer capacity). The pH with the
maximum residual value is selected as the pKa for an extra
monoprotic buffer (23). This is illustrated in Figure 2.

The Runs are classified toward their priority as candidate
positions for model extension. Then, the algorithm will

evaluate for the best ranked Run if model extension is possible
at that pH position. The basic idea of model extension is that
the ranges (defined by respectively a minimum and maximum
boundary) of all acidity constants to be estimated may never
overlap with each other (e.g. if the pKa of ammonium has a
range from 9.0 to 9.4, then the algorithm will not allow any
other buffer with a range that overlaps with the already
occupied pKa range). If model extension is not possible at
the first ranked pH position (e.g. if that position and its
neighborhood is occupied by another buffer) the algorithm
proceeds to the second ranked Run for model extension etc.
When an extended model is optimized, the algorithm
proceeds, if necessary, with one or several model tuning
cycles. Model tuning is the process in which the boundaries
(minimum and maximum) for acidity constants of blind
buffers that have been estimated are moved if the estimated
value is too close to one of its boundaries. In this way some
flexibility is given to the boundaries that may have been
predefined too strictly. After each model tuning cycle, the
tuned model is optimized again, and the tuning cycle is
eventually repeated several times. Finally, after each tuning
session, the model building stop criteria are calculated and
evaluated (see next section).

Optimal Buffer Capacity Model Selection. When the
automatic model building algorithm is applied, one ends up
with a set of mathematical models that have all been fitted
to the experimental buffer capacity data. The next logical
step is a selection of the most appropriate model for the
purpose the model will be used for. Model structure selection
techniques, also called model structure characterization
methods, are widely available from literature (27-30). Six
useful model selection criteria are presented below. The first
two criteria are statistical tests; the four next criteria include
information about the model “complexity”.

The Runs-Test or Testing Changes of Sign. Let R be the
number of changes of sign in the residual sequence ε(1),
ε(2), ... ε(N), with N the number of experimental data points.
For the illustrated example in Figure 2, R ) 6. Under the
assumption of the null hypothesis H0: ε(t) is zero mean white
noise (i.e. the residuals are independent, have an expectation
of 0 and are equally likely to be positive or negative), a test
statistic can be constructed (29):

The test statistic is asymptotically distributed as a standard
normal distribution. Hence, a 95% asymptotic confidence
interval for u is given by |u| e 1.96 for critical significance
level R ) 0.05. Practically, if N is large (e.g. N > 30), (N - 1)

FIGURE 1. Flowchart of the automatic model building algorithm.

FIGURE 2. Experimental and simulated buffer capacity curves (a) and calculated residuals (b), with indication of the Runs, the best
candidate Run for model extension, and the best candidate pH within that Run (downward arrow).

u )
R - (N - 1)/2

xN - 1/2
f N(0, 1) (1)
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might be approximated by N. If several models have to be
compared with each other, the model with the lowest number
of parameters for which |u| is lower than uR is selected.

The F-Test for Comparison of Model Structures. Let M1

and M2 be two model structures, such that M1 ⊂ M2 (for
example M1 corresponds to a lower-order model than M2).
In such a case they are called hierarchical model structures
(29). Further, let SSEi denote the sum of squared errors (or
residuals) in the structure Mi (i ) 1, 2) and let Mi have pi

parameters. The test statistic

is used to compare the model structures M1 and M2. If Fw

is “large” (Fw > FR; p2 - p1; N - p2), one concludes that the
decrease in loss function from SSE1 to SSE2 is significant and,
hence, that the model structure M2 is significantly better
than M1. On the other hand, when Fw is “small”, the
conclusion is that M1 and M2 are almost equivalent, and
according to the parsimony principle the smaller model
structure M1 should be chosen as the most appropriate one.

Akaike’s Information Criterion (AIC). Another approach
to model structure selection consists of using a criterion that
in some way penalizes the decrease of the loss function with
increasing model complexity. A widely used criterion is
Akaike’s information criterion (29, 30)

with SSE and N and p as defined before. The first term in eq
3 decreases with increasing p (increasing complexity), while
the second term penalizes too complex (overparametrized)
models. The model structure with the smallest criterion value
is selected.

Final Prediction Error (FPE). The FPE criterion is similar
to the AIC criterion, but with a different penalizing term (29,
30):

Schwarz or Bayesian Information Criterion (SIC or BIC).
An example of a consistent criterion is the Schwarz Informa-
tion Criterion (30, 31):

If N g 8, SIC will tend to favor models of lower complexity
than those chosen by AIC.

Corrected Akaike’s Information Criterion (AICC). The AIC
criterion is a biased criterion, leading to overfitting or the
selection of overdimensioned models. Therefore, a bias
corrected form of the AIC criterion was introduced (32, 33):

The bias correction is of particular use when the sample
size is small, or when the number of parameters p is a
moderate to large fraction of the sample size N (33).

The choice of the critical significance level R in the Runs-
test and F-test strongly affects the selected optimal model
and has been investigated in ref 25. It was found that a
classical choice of R of e.g. 0.01 or 0.05 for this type of
application (i.e. buffer capacity modeling) results in over-
fitting compared to the “human expert advice”. Similar
observations were found in another field, where oxygen
uptake rate (OUR) models are fitted to respirometric data

(34). Therefore, throughout the presented work, an arbitrary
but well-equilibrated value of R ) 0.0001 was chosen for
both the Runs-test and the F-test.

Software Implementation. The program bomb (buffer
capacity optimal model builder) is developed in C++ and
has been compiled on different computer platforms. The
algorithm for Gauss-Jordan elimination was adopted from
the library “Numerical Recipes in C” (35), and the PRAXIS
algorithm in C is available from the author at no cost (26).

Experimental Data Collection. A number of titration
curves (N typically around 60) with known composition were
collected in the framework of adequate buffer capacity model
development. The titration data collection is described in ref
22. The database contains 146 titration curves, originating
from 66 different samples, each titrated in 2- or 3-fold. Four
different concentrations of each chemical were used for the
preparation of the samples: 0.5, 1, 2, and 5 mequiv L-1. The
chemicals that were used to prepare the samples are
presented in Table 1. One specific sample, containing 1
mequiv L-1 citric acid and 0.5 mequiv L-1acetic acid, was
selected as test case and for illustration purposes.

The titration curves of the samples with well-known
composition were classified in four groups:

Group 1: 27 titration curves with one monoprotic buffer;
1 pKa value to be estimated;

Group 2: 27 titration curves with one di- or triprotic buffer;
2 or 3 pKa values to be estimated;

Group 3: 60 titration curves with two buffers (mono-, di-
or triprotic); 2-5 pKa values to be estimated;

Group 4: 32 titration curves with more than two buffers;
3-7 pKa values to be estimated.

Results
One of the samples containing citric acid and acetic acid
(cit-ace) with concentrations 1-0.5 mequiv L-1 was selected
as a test case to compare two modeling approaches. The first
approach is based on the availability of a priori knowledge
about the buffers present in the sample, while in the second
approach, it is assumed that no information about the
composition of the sample is available. These two approaches
are presented and compared in the following paragraphs.

Automatic Model Building in the Presence of Prior
Knowledge. The buffer capacity model that was fitted to the
experimental data included the water buffer, an inorganic
carbon (IC) buffer, a citric acid buffer, and an acetate buffer.
In previous work (25), it was found that it can be useful to
allow some flexibility on the pKa values of the considered
buffer systems. Such flexibility corrects for small deviations
of the real pKa compared to the experimental pKa, due to
measurement errors, ionic strength effects, temperature
effects, ... Therefore, the buffer capacity model was fitted
twice to the experimental data, without and with extra

Fw )
(SSE1 - SSE2)/(p2 - p1)

SSE2/(N - p2)
(2)

AIC ) N log(SSE
N ) + 2p (3)

FPE ) SSE
N (1 + 2p

N - p) (4)

SIC ) N log(SSE
N ) + p log(N) (5)

AICC ) N log(SSE
N ) + N

1 + p/N
1 - (p + 2)/N

(6)

TABLE 1. Chemicals for the Preparation of Samples of Which
Titration Curves Were Collected

protonicity

chemical code theoretical practicalb pKa1 pKa2 pKa3

oxalic acid oxa 2 1 1.23 4.19
sodium acetate ace 1 1 4.75
ammonium

chloride
amm 1 1 9.20

malonic acid mal 2 2 2.83 5.69
sodium tripoly-

phosphate
pho 3 2 2.12a 7.21a 12.67a

citric acid cit 3 3 3.14 4.77 6.39

a Values of ortho-phosphate. The real values have to be determined
experimentally. b pKa values are not more than 2 units outside the
considered pH simulation interval (3.5-10.5).
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flexibility on the theoretical pKa values, respectively, called
models (a) and (b). The model specifications are summarized
in Table 2.

The experimental and simulated buffer capacity curves
of the selected sample, without and with extra flexibility on
the pKa values are respectively shown in Figure 3(a) and (b).
The corresponding results for the estimations of the pKa

values and the concentrations are given in Table 3 together
with their standard deviations.

The applied buffer capacity models (a) and (b) have
respectively four and eight parameters to be estimated. Both
models succeeded in a satisfying estimation of the concen-
trations of respectively the citric and the acetic acid buffer.
As can be expected, the fit of the simulated to the experimental
buffer capacities, however, is worse for model (a) compared
to model (b) (see Figure 3). With model (b) the pKa1 value of
the citric buffer and the pKa value of the acetic buffer are
estimated respectively at their maximum and minimum

allowed boundary value. Allowing a wider flexibility range
for these pKa values resulted in concentrations of these two
buffers slightly more deviating from their true values (results
not shown). An advantage of the flexible pKa approach
compared to the fixed pKa approach is that the flexible pKa

approach allows to more easily detect additional unexpected
buffers (e.g. interferences) in the buffer capacity profile. For
instance, for this particular example in the situation (b), it
can be seen that the fitted mathematical model describes
the experimental data fairly well, except that between pH 8
and pH 9 probably another buffer is present that is not
accounted for in the model. On the other hand, in the
situation (a) it is not clear whether extra buffers are necessary
and at what pH they should be included in order to fit the
experimental buffer capacity profile more closely. Therefore,
the extra buffer between pH 8 and pH 9 in situation (a)
remains unnoticed due to the overall lack of fit.

The above presented approach is based on the prior
knowledge that the selected sample contains at least a
monoprotic and a triprotic acid (respectively acetic and citric
acid). In the next approach, it is considered that this prior
information is not available.

Automatic Model Building in the Absence of Prior
Knowledge. The second modeling approach uses the au-
tomatic model building algorithm included in the software
bomb. The same well-known sample is considered again,
and the stepwise model building process is initiated, starting
from a model that only contains the water buffer. The
algorithm will systematically add new buffers until the
situation that the model cannot further be extended (e.g.
due to the restriction that pKa ranges may never overlap with
each other). At this stage, an appropriate model selection
criterion (e.g. AIC, Runs-test, ...) is not considered yet.

TABLE 2. Buffer Capacity Model Specifications for a Simulation Interval between pH 3.5 and pH 10.5

buffer variable initial guess or value estimated? lower limit upper limit

water pka_water 15.74 yes 15.70 15.82
conc_water 55.5 mol L-1 no

IC pka1_carbon 6.37 no
pka2_carbon 10.25 no
conc_carbon 0.5 mg CO2 L-1 yes 0 5.5

citric acid pka1_citric 3.14 no/yesa 3.01 3.27
pka2_citric 4.77 no/yesa 4.6 4.9
pka3_citric 6.39 no/yesa 6.2 6.52
conc_citric 0.1 mmol L-1 yes 0 1

acetic acid pka_acetic 4.75 no/yesa 4.6 4.9
conc_acetic 0.1 mmol L-1 yes 0 1

a “Yes” for the incorporation of extra flexibility on the considered pKa.

FIGURE 3. Experimental and simulated buffer capacity curves of the testcase. Results are shown for the buffer capacity model without
(a) and with (b) extra flexibility on the pKavalues of the citric and acetic acid buffer.

TABLE 3. Simulation Results of the Selected Test Case for the
Buffer Capacity Model without (a) and with (b) Extra
Flexibility on the pKa Values of the Citric and the Acetic Acid
Buffer

model (a) model (b)

unit estimate SD estimate SD expected

pKa H2O 15.79 0.012 15.81 0.0078
pKa1 citric 3.27 0.11 3.14
pKa2 citric 4.88 0.09 4.77
pKa3 citric 6.25 0.03 6.39
pKa acetic 4.60 0.07 4.75
CIC mg CO2 L-1 1.69 0.72 3.03 0.49
Ccitric mmol L-1 0.35 0.016 0.33 0.014 0.33
Cacetic mmol L-1 0.56 0.023 0.55 0.039 0.5
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The stepwise model building process with the test case
is illustrated in Figure 4. The pH simulation interval was set
between pH 3.5 and pH 10.5, and the pKa of the water buffer
was set to 15.81, based on previous models where the pKa

of water was allowed to be estimated. At the last modeling
step (i.e. a sixth model extension at pH 7.1 of the fitted model
shown in Figure 4(f)), the parameter estimation routine
PRAXIS ran into a local minimum because it did not find an
objective function value that was lower than the previous,
less complicated model (which is theoretically not possible
in case of correct optimization, because the less complicated
model is always a subset of the more complicated model).
Apparently, the optimization problem became overparam-
etrized, and thus it was not useful to proceed the model
building process. The simulation results with the models
illustrated in Figure 4(b)-(f) are summarized in Table 4. The

columns in Table 4 show the simulation results for the
different automatically built models. The buffer introduced
in model 1 represents the combination of the dissociation
of acetic acid (pKa ) 4.75) and the second dissociation step
of citric acid (pKa ) 4.77). The buffers introduced in models
2 and 4, respectively, represent the third and first dissociation
step of citric acid. The estimated pKa of the first dissociation
of citric acid step is 3.50 which is the minimum pH value of
the considered pH interval, and the model building algorithm
does not allow the introduction of buffers with pKa outside
the interval. The buffer introduced in model 3 is an
unexpected buffer, and further investigation indicated that
this buffer originates from interfering silicates entering the
titration vessel through the NaOH titrant (25). The buffer
introduced in model 5 is not considered very important,
despite the fact that its concentration is significantly different

FIGURE 4. Experimental and simulated buffer capacity curves of a well-known sample. The stepwise model building process starts with
plot (a) (the starting model) and ends with plot (f) (the final model). The arrows indicate the automatically proposed pKa positions for model
extension.

VOL. 36, NO. 4, 2002 / ENVIRONMENTAL SCIENCE & TECHNOLOGY 9 719



from 0 (t-test, R ) 0.01). The model building process finally
tried to introduce a buffer with pKa ) 7.1 (model 6, results
not shown), but then the optimization problem became
overparametrized and thus the algorithm stopped at this
stage.

The 6 model selection criteria, applied to the test case,
are summarized in Table 5. If the automatic model selection
was activated, all criteria would select model 5 as the final
model, except for the Runs-test, that would favor model 4.
Of course, the latter finding completely depends on the choice
of the critical significance level R. Also, model 6 ended up
in a wrong optimization result, thus forcing all criteria
(including the F-test) to select the simpler model 5. The first
four criteria (AIC, AICC, FPE, and SIC) show their highest
decrease in value from models 1 to 2 and from models 3 to
4. This points to very important increases in model adequacy
at those two stages. This is also nicely reflected in Figure 4.

Evaluation of Six Model Selection Criteria. All 146
titration curves were used as input data to the automatic
model building environment in the software bomb. It was
assumed that no prior knowledge was available about the
buffers to be expected in the samples. Consequently, the
starting model only contained the water buffer. The model
building process was repeated for each of the 6 model
selection criteria.

Table 6 presents summarizing frequency tables with the
counts of titration curves corresponding with the selected
model degree tabulated in function of the amount of practical
pKa values to be found. In general, the first four criteria (AIC,
AICC, PFE, and SIC) select the same model. However, large
differences in the selected model are noticed for the Runs-
test and the F-test. A more detailed analysis per group of
titration curves is given in the next paragraphs.

In group 1 (containing 1 monoprotic buffer), the automatic
model building algorithm perfectly detects the single mono-
protic buffer in all experimental buffer capacity profiles and
incorporates this buffer as the first blind buffer in the model.
The estimated concentrations were not significantly different
from the theoretically expected concentrations. However,
the model building process does not stop at this stage in

most cases but continues with the incorporation of new blind
buffers. In order of importance, first a buffer around pH 10
with a typical concentration of 0.1 mmol L-1, and second a
buffer around pH 6.5 with a typical concentration between
0.05 and 0.1 mmol L-1 are added to the model. As mentioned
in the previous sections, these two buffers are assumed to
be silicate and inorganic carbon, respectively. Their con-
centrations are mostly found to differ significantly from 0.
The Runs-test and F-test based model building generally
stop at this stage. However, based on the AIC and related
criteria, the model is mostly extended with one or even two
extra buffers of unknown origin (around pH 7 and pH 4). The
concentrations of these extra buffers are very low and
sometimes not significantly different from 0. Practically, it
is concluded that the AIC and related criteria go rather far
in the model building process. In seven out of the 27 cases,
the F-test selected the model with only one buffer as the
final model, thus not recognizing the silicate and/or the IC
buffer. This behavior could be attributed to an optimization
problem. It was noticed that for some “incomplete” models
(thus models still deviating a lot from the final model), the
parameter estimation routine ended in a local minimum at
the second modeling step (five cases out of the 27).
Consequently, the simpler model was selected by the F-test.
The AIC and related criteria suffered from this flaw too. Only
the Runs-test was not influenced by local minima problems,
because this test only examines the randomness of the
residuals. As a preliminary conclusion, the Runs-test was
found to perform most “realistically” for this group of titration
curves.

For the titration curves of group 2 (containing a di- or
triprotic buffer), similar findings as for group 1 can be
formulated. The selected models mostly contain, as expected,
one or two supplementary buffers compared to the models
selected in group 1. The AIC and related criteria often select
a model with five or six blind buffers. This is again a higher
model degree than what should be considered practically.
Further, these high degree models illustrate certain weak-
nesses in the model building algorithm. More particularly,
sometimes buffers are initially added in the model (interfering

TABLE 4. Simulation Results of the Test Case for the Automatically Built Buffer Capacity Models Illustrated in Figure 4, Plots (b)
until (f)a

model 1 plot (b) model 2 plot (c) model 3 plot (d) model 4 plot (e) model 5 plot (f)

pKa blind1 4.78 ( 0.06 4.51 ( 0.03 4.50 ( 0.02 4.74 ( 0.01 4.74 ( 0.007
pKa blind2 6.08 ( 0.06 6.08 ( 0.05 6.24 ( 0.01 6.22 ( 0.008
pKa blind3 9.88 ( 0.21 9.90 ( 0.04 9.99 ( 0.03
pKa blind4 3.50 ( 0.05 3.50 ( 0.03
pKa blind5 8.21 ( 0.13
Cblind1 1.00 ( 0.05 0.93 ( 0.02 0.93 ( 0.02 0.83 ( 0.008 0.83 ( 0.006
Cblind2 0.47 ( 0.02 0.47 ( 0.02 0.40 ( 0.004 0.40 ( 0.003
Cblind3 0.08 ( 0.02 0.08 ( 0.003 0.08 ( 0.002
Cblind4 0.32 ( 0.007 0.32 ( 0.005
Cblind5 0.02 ( 0.002

a The concentrations are expressed as mmol L-1, and the table entries are estimate ( SD.

TABLE 5. Model Selection Criteria Calculated for the Consecutive Models in the Automatic Model Building Process of the Test
Casea

model 1 model 2 model 3 model 4 model 5 model 6

AIC -330 -479 -502 -736 -782 -729
AIC C -256 -405 -428 -660 -705 -649
FPE 0.0096 0.0012 0.00085 0.000031 0.000016 0.000035
SIC -325 -470 -489 -718 -760 -701
Runs-test (p) <10-6 <10-6 0.000001 0.00013 0.00047 0.00047
F-test (p) <10-6 <10-6 0.000003 <10-6 <10-6 1.00000b

a The bold items mark the selected models based on each considered criterion b An insignificant p-value for model 6 means that model 5 is
selected.
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buffers, in small but significant concentrations), that in a
later modeling stage become insignificant. As the algorithm
is now, it does not allow for removing a buffer from the model
in case the concentration of this buffer is no longer
significantly different from 0. It is suggested to include this
feature in a next version of the model building algorithm
(e.g. based on a similar F-test based method that is also
implemented in stepwise linear regression algorithms (36)).
Local minima problems with “incomplete models”, as
described earlier, occurred less frequently (only one out of
the 27 cases). In groups 3 and 4, this particular problem was
no longer noticed. Thus, it is concluded that only the simplest
type of titration curves sometimes leads to a too low model
degree due to an optimization problem. Again, the Runs-test
was found to select the most realistic final model.

The titration curves of group 3 (containing two buffers)
have an increased complexity and should theoretically
contain at least between 2 (e.g. amm-ace) and 5 (e.g. cit-
mal) pKa values. For the simplest type of combinations (e.g.
the combination of a monoprotic and a diprotic buffer), the

quantified buffers corresponded with the buffers present,
both for the pKa positions and the respective concentrations.
Again, supplementary buffers were sometimes found around
pH 10 (silicates). Another particularity related to the model
building algorithm was discovered. In the example cit-mal,
the pKa2 ) 5.69 of malonic acid is only 0.7 different from the
pKa3 ) 6.39 of citric acid. In most examples of this type, a
blind buffer was incorporated in the model somewhere
between these two theoretical pKa values and was accounting
for both buffer systems. This points to a certain “limit of
resolution” which is further discussed in the next paragraph.
For the simplest type of curves in group 3, the Runs-test was
slightly favored for practical purposes. However, for the more
complicated titration curves, the Runs-test was not found
most appropriate in a number of situations. More particularly,
for six out of 60 titration curves, the Runs-test selected a
model with eight blind buffers, whereas all other criteria
considered only six blind buffers as the maximum number
of buffers needed in the final model. The maximum number
of buffers that are currently available in the automatic model
building algorithm is 8. Therefore, in those cases where the
Runs-test selected eight blind buffers, the necessary Runs-
test criterion was never reached. This phenomenon only
occurred in examples with phosphate as one of the buffers.
It can be pointed out that the uncertain position of the pKa2

value of phosphate could be the reason an acceptable fit was
not found with the Runs-test criterion. An illustrative titration
example of pho-mal is given in Figure 5. The fitted buffer
capacity model contains four blind buffers (with pKa values
in order of importance 5.7, 9.3, 3.5, and 6.8). A further model
extension proposed at pH 8.1 results in an insignificant F-test
result (p ) 0.26), whereas the Runs-test result is still very
significant (u ) - 4.5 or p ) 0.000007). Further model
extensions do not make the fit better compared to Figure 5.
Thus, when the Runs-test criterion is selected for this
particular example (with R ) 0.0001), the model building
algorithm will proceed until model extension is not possible
any more and will finally not find any model that fulfills the
requested criterion.

The final model results of the easiest type of titration
curves in group 4 (e.g. the combination of two monoprotic
buffers and a diprotic buffer) could easily be related with the
buffers to be expected. The F-test criterion mostly selected
the same model as the AIC and related criteria. The Runs-
test criterion often selected models of lower complexity. The
results obtained with the F-test criterion were found to
correspond most closely to reality. The interfering buffer at
pH 10 (silicates) was still detected and quantified in most
cases. The “limit of resolution” mentioned in the previous
paragraph was further investigated. Again, it was found that
two buffers with neighboring pKa values are pooled together
in the model building algorithm. It was found that the
practical limit of resolution for the considered examples is
between 0.5 and 1 pH units. Furthermore, the intervals of
the pKa values are not allowed to overlap, thus this auto-
matically limits the number of buffers that can enter in the
model around the same pKa. A comparison with the Gordon
algorithm described in refs 18 and 19 was made, and the
defined criterion for the limit of resolution was compared
with the obtained results. Gordon found that a minimal pKa

separation of 0.1-0.2 is borderline for most applications,
whereas 0.5 is a common value. However, it should be noted
that the Gordon algorithm only allows variation on the pKa

value that is entered in the model last, together with the
neighboring pKa value, whereas in the bomb algorithm,
variation may be allowed on any pKa. It can be concluded
that the limit of resolution obtained here is somewhat lower
than what is described in refs 18 and 19 but still in an
acceptable range. It is also expected that the approach
presented in this paper is more robust compared to the

TABLE 6. Frequency Tables of the Number of Titration Curves
Classified toward the Selected Model Degree and the Applied
Model Selection Criterion in Function of the Number of
Expected pKa Values To Be Found with the Model Building
Algorithm

criterion for model selection
groupa

1 2 3 4

no. of
pKa

valuesb

final
model
degree AIC AICC FPE SIC

Runs-
test

F-
test

27 0 0 0 1 1 4 4 4 5 1 7
2 2 2 2 4 7 5
3 2 2 2 4 19 9
4 14 14 14 11 0 6
5 5 5 5 3 0 0

0 8 20 0 2 1 1 1 1 1 0 4
2 0 0 0 2 1 0
3 1 1 1 1 16 2
4 8 8 9 8 10 8
5 15 15 14 15 1 14
6 3 3 3 3 0 0

0 19 23 8 3 1 0 0 0 0 0 1
2 0 0 2 0 0 10
3 1 1 2 1 4 0
4 9 9 9 9 27 10
5 24 24 25 24 15 21
6 16 16 12 16 2 8
7 0 0 0 0 0 0
8 0 0 0 0 2 0

0 0 12 0 4 1 0 0 0 0 0 2
2 0 0 1 0 0 5
3 0 0 0 0 0 0
4 3 3 4 3 5 4
5 9 9 7 9 2 1
6 0 0 0 0 1 0
7 0 0 0 0 0 0
8 0 0 0 0 4 0

0 0 5 11 5 3 1 1 1 1 0 1
4 2 2 3 2 1 8
5 4 4 3 4 11 3
6 7 7 7 7 4 4
7 2 2 2 2 0 0

0 0 0 9 6 4 1 1 1 1 0 1
5 4 4 4 4 7 3
6 3 3 3 3 2 5
7 1 1 1 1 0 0

0 0 0 4 7 4 0 0 0 0 2 0
5 3 3 3 3 2 4
6 1 1 1 1 0 0

a Overview of the number of titration curves belonging to each of
the four groups (see “Experimental data collection”). b E.g. number of
pKa values ) 2 includes titration curves with one diprotic (group 2) or
two monoprotic buffers (group 3).
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Gordon algorithm, because of the higher flexibility on the
pKa values, the built-in model “tuning” in case an estimated
pKa value touches one of its boundary values, and the use
of model selection criteria.

Discussion
The automatic model building algorithm that is implemented
in the software bomb has been applied to many titration
curves of diverse samples, with the objective to develop tailor-
made buffer capacity models. A number of shortcomings
that were detected and described in the first development
stage of this algorithm (23) are now completely solved. At
present, the model building algorithm has been evaluated
as sufficiently robust and fail-safe.

Six different model selection criteria were evaluated for
the purpose of selecting the most appropriate model from
the resulting set of automatically built models for each
individual sample. The AIC, AICC, FPE, and SIC criteria were
found to perform very similarly. The Runs-test and F-test
criteria often have a different behavior compared to each
other and compared to the AIC and related criteria. There
is no “best” criterion for general purposes, because all criteria
have their advantages and disadvantages. An interesting
perspective for further research could be to use a combination
of the results with the different model selection criteria to
make the proposed model building algorithm more robust.
The model selected by each of the criteria could be introduced
in an “expert system” that can make a choice based on the
advantages and disadvantages known for each criterion.

The benefits of automatic model building compared to
a fixed model approach are different for various applications.
In situations where prior knowledge about the sample is
already high, the main benefit of the automatic model
building is that extra information about the sample can be
obtained. This includes the detection of unexpected or
interfering buffers (e.g. silicates) and the detection of
experimental problems in the titration system. In the other
situations, where the prior knowledge is not high, the
automatic model building environment can be applied as a
support tool for a quick characterization of unknown buffer
capacity profiles. In practical situations where a buffer
capacity model has to be developed, applying the automatic
modeling approach on a number of preliminary samples
can help the expert to define the most appropriate model.

Acknowledgments
This research was part of the project 3G010297, which was
financially supported by the Fund for Scientific Research
Flanders (FWO-VL) and a scholarship from the Flemish
Institute for the Improvement of Scientific-Technological

Research in the Industry (IWT). The authors also want to
thank Carlo Mussche for the titration data collection and
express their gratitude to all reviewers for their constructive
comments.

Literature Cited
(1) Gibs, J.; Schoenberger, R. J.; Suffet, I. H. Water Res. 1982, 16,

699.
(2) Hill, A. R.; Irvine, D. M.; Bullock, D. H. J. Food Sci. 1985, 50, 733.
(3) Husted, S.; Jensen, L. S.; Jørgensen, S. S. J. Sci. Food Agric. 1991,

57, 335.
(4) Lucey, J. A.; Gorry, C.; Fox, P. F. Milchwissenschaft 1993, 48(4),

183.
(5) Sawyers, D. E.; Dentel, S. K. Water Sci. Technol. 1992, 26(9-11),

2265.
(6) Anderson, G. K.; Yang, G. Water Environ. Res. 1992, 64(1), 53.
(7) Bernard, O.; Polit, M.; Hadj-Sadok, Z.; Pengov, M.; Dochain, D.;

Estaben, M.; Labat, P. Water Sci. Technol. 2001, 43(7), 175.
(8) Bisogni, J. J., Jr. Water Environ. Res. 1994, 66(1), 16.
(9) Bisogni, J. J., Jr.; Witzmann, S. W.; Stedinger, J. R. Water Environ.

Res. 1998, 70(7), 1303.
(10) Buchauer, K. Water SA 1998, 24(1), 49.
(11) de Haas, D. W.; Adam, N. Water SA 1995, 21(4), 307.
(12) Moosbrugger, R. E.; Wentzel, M. C.; Ekama, G. A.; Marais, G.v.

R. Water Sci. Technol. 1993, 28(2), 237.
(13) Powell, G. E.; Archer, D. B. Biotechnol. Bioeng. 1989, 33, 570.
(14) Rozzi, A. In Biomethane, Production and Uses; Buvet, R., Fox,

M. F., Picken, D. J., Eds.; Turret-Wheatland; Rickmansworth,
1984; p 79.

(15) Rozzi, A.; Di Pinto, A. C.; Brunetti, A. Environ. Technol. Lett.
1985, 6, 594.

(16) von Sachs, J.; Feitkenhauer, H.; Meyer, U. Proceedings, 5th
international symposium on systems analysis and computing in
water quality management; Watermatex: Ghent, Belgium, 2000;
pp 2.43-2.46.

(17) Bastin, G.; Dochain, D. On-line estimation and adaptive control
of bioreactors; Elsevier: Amsterdam, 1990.

(18) Gordon, W. E. J. Phys. Chem. 1979, 83(11), 1365.
(19) Gordon, W. E. Anal. Chem. 1982, 54(9), 1595.
(20) Van Vooren, L.; Lessard, P.; Ottoy, J.-P.; Vanrolleghem, P. A.

Environ. Technol. 1999, 20, 547.
(21) Van Vooren, L.; Willems, P.; Ottoy, J.-P.; Vansteenkiste, G. C.;

Verstraete, W. Water Sci. Technol. 1996, 33(1), 81.
(22) Mussche, C. M. Sc. Dissertation, Ghent University, Belgium,

1997.
(23) Van De Steene, M. M. Sc. Dissertation, Ghent University,

Belgium, 1998.
(24) Van Vooren, L.; Van De Steene, M.; Ottoy, J.-P.; Vanrolleghem,

P. A. Water Sci. Technol. 2001, 43(7), 105.
(25) Van Vooren, L. Ph.D. Dissertation, Ghent University, Belgium,

2000.
(26) Gegenfurtner, K. R. Behaviour Research Methods, Instrum.,

Comput. 1992, 24(4), 560.
(27) Gustafsson, F.; Hjalmarsson, H. Automatica 1995, 31(10), 1377.
(28) Ljung, L. System Identification: Theory for the User; Prentice

Hall: New Jersey, 1987.
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