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ABSTRACT 
 
The goal of probabilistic ecological risk assessment (PERA) is to estimate the likelihood 
and the extent of adverse effects occurring to humans and ecological systems due to 
exposure(s) to substances. It is based on the comparison of an exposure concentration 
distribution (ECD) with a species sensitivity distribution (SSD) derived from chronic toxicity 
data. This PERA framework was completed by also incorporating the uncertainty inherent 
to risk assessment. A case study on the pesticide atrazine in the surface waters of 
Flanders illustrates the completion. The availability of confidence intervals on the 
calculated risks is important for the decision-maker since these express how reliable the 
risk assessment is. 
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INTRODUCTION 
 
Today, over 60,000 chemicals are manufactured all over the world. Every year another 
1,000 new chemicals are synthesised by researchers and scientists, and these chemicals 
are partly, directly or indirectly, released in the environment e.g. into the surface waters. 
Regulation puts constraints on these chemical emissions and these are based on 
environmental risk assessment. 
 
The goal of a risk assessment is to estimate the likelihood and the extent of adverse 
effects occurring to humans and ecological systems due to exposure(s) to substances. 
Environmental risk assessment is based on the comparison of a predicted or measured 
exposure concentration (EC) with a ‘no effect concentration’ based on (acute or chronic) 
toxicity test results. In a deterministic framework, inputs to the exposure and effect 
prediction models are single values and the risk is calculated as simple ratios of EC and 



 

effects. In a probabilistic framework, the environmental concentration (EC) and species 
sensitivity (SS) are treated as random variables taken from probability distributions 
(respectively ECD and SSD) which are combined to give a risk distribution.  
 
In these types of risk assessments, the distinction between data uncertainty and variability 
must be made. Variability represents inherent heterogeneity or diversity in a well-
characterised population. Fundamentally a property of nature, variability is usually not 
reducible through further measurement or study. Temporal and spatial variations of 
chemical concentrations can be captured in a variability distribution, called Exposure 
Concentration Distribution (ECD). Various species sensitivities towards a chemical can 
also be captured in a variability distribution called Species Sensitivity Distribution (SSD). 
These distributions are also used in water quality standard setting (e.g. in EU 
environmental risk assessment practices). In Figure 1, an example of a cumulative 
variability distribution is visualised by the black line. 
 

 
Figure 1: Variability and uncertainty 

of a data set 

Uncertainty represents partial ignorance or 
lack of perfect information about poorly 
characterised phenomena or models (e.g. 
sampling or measurement error), and can 
partly be reduced through further research 
(Cullen and Frey 1999). In Figure 1, the 
uncertainty is visualised as a grey band 
around the cumulative variability distribution 
function. For each percentile of the variability 
distribution, an uncertainty or confidence 
interval can be calculated (i.e. the uncertainty 
distribution). 

 
The characterisation of the risk of toxicants to species, when both EC and SS are variable 
and uncertain, is the central issue in Probabilistic Ecological Risk Assessment (PERA). 
The methodology is well developed in literature (Aldenberg et al. 2001). Among all risk 
calculation techniques available, one method was selected in this study: the risk quotient 
method. 
 
The goal of this paper is to complete this PERA framework. Until now, only variability is 
considered. However, both EC and SS are characterised by uncertainty and variability, so 
risk should also be characterised by uncertainty and variability. Therefore, in this paper, 
the uncertainty will also be considered. Suppose, as an example, that the risk is 30%. A 
risk manager will feel more confident if he knows that the 90% uncertainty interval of that 
risk is between 25 and 35% rather than between 10 and 50%. A case study on the risk of 
atrazine in the surface waters of Flanders will be presented to illustrate the framework. 
 
 
METHODS 
 
Given are an EC and an SS data set. Variability and uncertainty for the EC and SS can be 
characterised using parametric or nonparametric procedures (Verdonck et al. 2001). For 
the case study, the lognormal (i.e. a parametric) model was selected. Several methods 
exist to determine the uncertainty band. Here, the numerical bootstrap/Monte Carlo 
technique was preferred since the technique is easy to understand and implement. 
 
 



 

Modelling The Risk Distribution When Only Variability Is Considered 
 
The probability of exceeding some randomly selected EC exceeding some randomly 
selected SS can be regarded as a measure of risk (Aldenberg et al. 2001). This can be 
written in formulae as: (((( ))))SSECPRisk >>>>==== . 
 
The quotient method is well described in literature (Burmaster and Bloomfield 1996) (Rai 
et al. 1996). The ecological quotient estimates are used to define risks to potential 
ecological receptors. In environmental risk assessment, this risk quotient is an index of risk 
calculated by dividing an exposure estimate (EC) by a toxicity value (SS). The nominator 
and denominator values are in the same exposure units (e.g. mg/l) so that the ratio is 
dimensionless. A critical value of the risk quotient may form the basis for some regulatory 
action, including possible collection of more information or performing a more refined 
analysis (Warren-Hicks and Moore 1995). 
In a probabilistic framework, the EC and SS are regarded as probability distributions rather 
than point estimates. As a result, the quotient will also be a probability distribution (see 
Figure 2). The probability of EC exceeding SS is equal to the probability that the quotient 
EC/SS becomes larger than 1. This probability can be considered as a measure of risk of 
adverse effects. This percentage can also be visualised as a column chart (see Figure 2). 
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Figure 2: Calculation of risk based on ECD and SSD 

 
When lognormal distributions are assumed for the ECD and the SSD, the risk can be 
calculated analytically. The result of a quotient of two lognormal distributions is again a 
lognormal distribution and its parameters can easily be calculated using the following 
equations (based on Burmaster and Bloomfield (1996) and also found by Aldenberg et al. 
(2001)):  

SSECRisk µµµ −−−−====  
2
SS

2
ECRisk σσσ ++++====  

with µµµµ and σσσσ respectively the mean and standard deviation of the log-transformed data 
 
Two important remarks have to be made. First, an important condition for using these 
formulas is that EC and SS are independent variables, which is the case. Second, in order 
to assess overlap of ECD and SSD, both sets of values have to be compatible (Aldenberg 
et al. 2001). One cannot compare 96h toxicity tests to hourly fluctuating concentrations at 
a discharge point. 
 
 
Modelling The Risk Distribution When Variability And Uncertainty Are Considered 
 

ECD SSD 

RISK 

Probability that EC exceeds SS 



 

Until now, only the variability of the ECD and SSD were considered. This resulted in a risk 
variability distribution. The ECD and SSD are also uncertain because of sampling error. 
Adding a Monte Carlo sampling loop to the risk calculation can capture the uncertainty. In 
each run, an ECD and SSD will be selected from their respective uncertainty bands and 
the risk distribution will be calculated. After many runs, the risk distribution will also have 
an uncertainty band (Figure 3). 
Remark that other uncertainty issues still need to be solved such as lab to field 
extrapolation uncertainties of the SS, the representativeness of the species in an SSD, 
model uncertainty (for choosing the lognormal distribution)… but these are not 
characteristic for PERA. 
 

   
Figure 3: Calculation of the mean risk and its uncertainty interval based on ECD and 

SSD 
 
The risk distribution visualised as a column chart in Figure 3 can also be visualised as a 
pie chart as in Figure 4. The entire pie represents 100%. The grey shades indicate how 
large the risk is with a pre-defined certainty. The larger the white piece, the lower the risk 
is. The more black, the larger the risk is. The larger the grey parts are, the more 
uncertainty there is on the estimated risk. The example shows that the median risk is 23% 
(50% certainty) and there is 95% certainty that the risk is smaller than 45%. 
 

 

0% risk probability 
 
5% certainty that risk < 9% 
 
50% certainty that risk < 23% 
 
95% certainty that risk < 45% 

 
Figure 4: Visualisation of the risk of 23% and its 90%-uncertainty interval 

 
 
CASE STUDY 
 
As an illustrative case study, probabilistic risks and their 90%-uncertainty intervals were 
predicted for the pesticide atrazine in the river catchments of Flanders in Belgium. Since 
atrazine is such a widely used herbicide and the chemical nature of this compound is 
persistent, it is considered a great potential for groundwater and surface water 
contamination. Therefore, it is frequently detected. The greatest risk of atrazine runoff 
occurs shortly after the application because it hasn’t had time to adhere to the soil particles 
and is still at the surface of the soil (Lipishan and Lee 1996). 
 

Probability that EC exceeds 
SS + confidence interval 

ECD SSD 

RISK 



 

The data set for the SSD consists of chronic toxicity values (NOEC: No Observed Effect 
Concentrations) and can be found in Versteeg et al. (1999). A lognormal distribution was 
assumed and fitted to the data. The fit was satisfactory. 
 
The exposure concentrations were obtained from the Flemish environmental agency 
(VMM 2001). Atrazine was (mostly monthly) measured at 134 locations from 1991 till 
2000. Only the reliable data from the years 1997 till 2000 were considered. It is assumed 
that this monitoring network is representative for all rivers in Flanders. 
The cumulative empirical distribution function of all the EC is shown in Figure 5. A 
lognormal distribution was assumed and fitted to the data but the model does not fit very 
well to the data (see grey curve in Figure 5) because the data are left censored i.e. the 
value 50 ng/l is frequently observed. 
This value corresponds with the detection limit of 
atrazine. Censored data can be handled in 
different ways. Govaerts et al. (2001) 
recommends to replace every value below the 
detection limit with a random number between 
zero and the detection limit (here 50). After the 
correction for censoring, the lognormal 
distribution now fits very well to the data (see 
black curve in Figure 5). So, for every monitoring 
station, a lognormal distribution was fitted. The 
resulting ECD represents the variation (such as 
temporal) of the concentration for that station. 
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Figure 5: Cumulative probability 
distribution of atrazine 
measurements in surface waters in 
Flanders 

 
 
RESULTS FOR THE CASE STUDY 
 
The results of the local PERA of atrazine for all monitoring stations in the river networks of 
Flanders are visualised in Figure 6. Two monitoring stations in Alveringem and Aalter were 
selected for more detailed study. Their PERA is visualised in Figure 7. 
 

 
Figure 6: Atrazine risk in the catchments of Flanders (Belgium) 
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Figure 7: ECD, SSD and the risk uncertainty distribution for the monitoring points in 
(a) the �Westsluisbeek� in Alveringem (VMM NR. 914012) and (b) the �kanaal van 
Gent naar Oostende� in Aalter (VMM NR. 777000) 
 
DISCUSSION 
 
The results of the local PERA of atrazine in the basins of Flanders indicate that the 
predicted atrazine risks are around 1,6% for many monitoring locations. Most of the 
median risks are smaller than 5% and most of the upper risk 90% uncertainty intervals are 
smaller than 15%. 
 
The first selected monitoring station (Alveringem) shows that the calculated risk is only a 
comparative measure. Despite the large overlap of the ECD and the SSD, the predicted 
mean risk is 15%. A better measure would be obtained when more attention is paid on the 
upper tail of the ECD and the lower tail of the SSD. The second selected monitoring 
station (Aalter) shows that the width of the uncertainty interval on the risk heavily depends 
on the uncertainty of the ECD (or SSD). The lack of more EC information results in a larger 
uncertainty interval for the risk. 
 
The PERA framework improves transparency, credibility, it focuses data collection, it 
avoids worst-case assumptions, it improves decision support and, above all, it is more 
realistic compared to the current deterministic risk assessment approaches. As a result, 
this approach enables risk managers to evaluate the full range of variability and 
uncertainty instead of just using point estimates of exposure, effects and eventually risk. 
 
 
CONCLUSION 
 
A framework for uncertainty analysis in probabilistic environmental risk assessment 
(PERA) was proposed and illustrated with a case study. The uncertainty or confidence 
intervals are important for the decision-maker since these express how reliable the risk 
assessment is. A probabilistic approach results in a more realistic environmental risk 
assessment and therefore improves decision support of individual chemicals. 
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