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Abstract: The goal of probabilistic ecological risk assessment (PERA) is to estimate the likelihood and the
extent of adverse effects occurring to ecological systems due to exposure(s) to substances. It is based on the
comparison of an exposure concentration distribution (ECD) with a species sensitivity distribution (SSD)
derived from chronic toxicity data. A PERA framework was proposed and illustrated with a case study on the
pesticide atrazine in the surface waters of Flanders. The risk and its uncertainty or confidence interval can be
visualised in a pie chart. A probabilistic approach results in a more realistic environmental risk assessment
and therefore improves decision support of handling impact of individual chemicals.
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1. INTRODUCTION

Yearly, thousands and thousands of existing and
new chemicals are released in the environment.
Regulation puts constraints on these chemical
emissions and these are based on environmental
risk assessment. The goal of a risk assessment is to
estimate the likelihood and the extent of adverse
effects occurring to humans and ecological systems
due to exposure(s) to substances. Environmental
risk assessment is based on the comparison of a
predicted or measured exposure concentration
(EC) with a ‘no effect concentration’ based on a set
of (acute or chronic) toxicity test results. In this
deterministic framework, inputs to the exposure
and effect prediction models are single values and
the risk is calculated as simple ratios of EC and
effects.

This approach does not account for uncertainty,
spatial and temporal variability of the
environmental concentration (EC) and the species
sensitivity (SS). Therefore, there is a need for more
realistic risk assessment frameworks. In a
Probabilistic Ecological Risk Assessment (PERA),
the EC and SS are treated as random variables
taken from probability distributions (respectively
ECD and SSD) which are combined to give a risk
distribution. Furthermore, incorporating spatial
characteristics of the receiving environment can
further increase realism. By geography referencing
the risk assessment, the spatial variability is
explicitly accounted for in each local risk

assessment and as a result the remaining overall
variability can be reduced.

In these types of risk assessments, the distinction
between data uncertainty and variability must be
made. Variability represents inherent heterogeneity
or diversity in a well-characterised population.
Fundamentally a property of nature, variability is
usually not reducible through further measurement
or study. Temporal and spatial variations of
chemical concentrations can be captured in a
variability distribution, called Exposure
Concentration Distribution (ECD). Various species
sensitivities towards a chemical can also be
captured in a variability distribution called Species
Sensitivity Distribution (SSD). These distributions
are also used in water quality standard setting (e.g.
in EU environmental risk assessment practices). In
Figure 1, the variability distributions are visualised
by a black line. Uncertainty represents partial
ignorance or lack of perfect information about
poorly characterised phenomena or models (e.g.
sampling or measurement error), and can partly be
reduced through further research [Cullen and Frey
1999]. In Figure 1, the uncertainty is visualised as
a grey band around the cumulative variability
distribution function. For each percentile of the
variability distribution, an uncertainty or
confidence interval can be calculated (i.e. the
uncertainty distribution).
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Figure 1. Probabilistic ecological risk assessment (PERA) framework in which data sets are characterised by
their variability and uncertainty

The goal of this paper is to perform a more
realistic risk assessment by means of existing and
new probabilistic tools and models. The outcome
of a PERA is a probability of expected risk with an
uncertainty interval. Suppose, as an example, that
the risk is 30%. A risk manager will feel more
confident if he or she knows that the 90%
uncertainty interval of that expected risk is
between 25 and 35% rather than between 10 and
50%. Also, a proposal will be made of how to
visualise and communicate risk in order to improve
decision support. A case study on the risk of
atrazine in the surface waters of Flanders will be
presented to illustrate the framework.

2. PERA FRAMEWORK

Two different approaches can be used to determine
the Exposure Concentration Distribution (ECD)
and the Species Sensitivity Distribution (SSD).
Data from either measurements in the environment
or toxicity tests can be used directly (see Figure 1,
right side). The alternative is to use prediction or
extrapolation models (see Figure 1, left side).
However, these models also need (other) data,
which are again characterised by uncertainty and
variability. As a consequence, a distinction should
be made between statistical methods for
characterising data uncertainty and variability  (full
arrows in Figure 1), and methods for propagating
uncertainty and variability through mathematical
models (open arrows in Figure 1).

In the subsequent sections, the uncertainty and
variability characterisation and propagation, and
the risk calculation are discussed.

2.1 Variability and Uncertainty
Characterisation

One of the important issues to address is how
accurate the typically applied statistical techniques
(like (non-) parametric bootstrap, Bayesian
statistics, and maximum likelihood estimation) are
in characterising uncertainty estimates at low
sample sizes. Indeed, it was found that these
techniques (especially non-parametric versus
parametric methods) give different results and,
therefore, a comparison was made between them
[Verdonck et al. 2001]. A parametric method
depends on the assumption of an underlying model
(e.g. lognormal distribution). A non-parametric
method on the other hand only depends on the data
points themselves. The results of Verdonck et al.
[2001] indicate that the considered methods
display varying robustness and accuracy, especially
when sample size decreases. Most of the methods
were found suitable to be used with small sample
sizes, except for a particular kind of non-
parametric bootstrapping where resamples are
taken from the empirical distribution function.
There was no clear reason to prefer parametric or
nonparametric methods. However, the results are
very sensitive to the choice of the method.
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Here, the numerical bootstrap technique was
preferred since the technique is easy to understand
and implement. A detailed description of the
bootstrapping method can be found in literature
[Cullen and Frey 1999]; [Davison and Hinkley
1997]; [Efron and Tibshirani 1993]. Given a data
set of sample size n, the general approach in
bootstrapping is to assume a (non)parametric
distribution, which describes the quantity of
interest, to perform r replications (e.g. r = 5000) of
the original data set by randomly drawing, with
replacement, n values, and then calculate r values
of the statistic of interest. For the case study, the
lognormal (i.e. a parametric) model was selected.

2.2 Variability and Uncertainty Propagation

A very common sampling method for propagating
variability or uncertainty is Monte Carlo
simulation. Random samples of model input
parameters are selected according to their
respective assigned probability distributions. In
this way difficulties to estimate model input
parameters and taking into account the inherent
uncertainty or variability in specific processes are
overcome. Once the samples from each input
distribution are selected, the set of samples is
entered into the deterministic model. The model is
then solved as it one would do for any
deterministic analysis. The model results are stored
and the process is repeated until the specified
number of model iterations (shots) is completed.
Instead of obtaining a discrete number for model
outputs (as in a deterministic simulation) a set of
output samples is obtained [Cullen and Frey 1999].

In most current PERA, variability and uncertainty
are not treated separately although they are two
different concepts. To deal with the issue, a second
order or 2-dimensional or embedded Monte Carlo
simulation is developed [Burnmaster, 1996],
[Cullen and Frey 1999]. It simply consists in two
Monte Carlo loops, one nested inside the other.
The inner one deals with the variability of the input
variables, while the outer one deals with
uncertainty. For each uncertain parameter value in
the outer loop a whole distribution is created in the
inner loop based only on variability. In this way
changes in variability-dependent frequency
distributions under the influence of parameter
uncertainty can be quantified.

2.3 Modelling the Risk Distribution

The characterisation of the risk of toxicants to
species, when both EC and SS are variable and
uncertain, is the central issue in Probabilistic
Ecological Risk Assessment (PERA). The

methodology is well developed in literature
[Aldenberg et al. 2001]. Among all risk calculation
techniques available, one method was selected in
this study: the risk quotient method.

2.3.1 When Only Variability is Considered

The probability of exceeding some randomly
selected EC exceeding some randomly selected SS
can be regarded as a measure of risk [Aldenberg et
al. 2001]. This can be written in formulae as:

( )SSECPRisk >=

The quotient method is well described in literature
[Burmaster and Bloomfield 1996] [Rai et al.
1996]. The ecological quotient estimates are used
to define risks to potential ecological receptors. In
environmental risk assessment, this risk quotient is
an index of risk calculated by dividing an exposure
estimate (EC) by a toxicity value (SS). The
nominator and denominator values are in the same
exposure units (e.g. mg/l) so that the ratio is
dimensionless. A critical value of the risk quotient
may form the basis for some regulatory action,
including possible collection of more information
or performing a more refined analysis [Warren-
Hicks and Moore 1995].
In a probabilistic framework, the EC and SS are
regarded as probability distributions rather than
point estimates. As a result, the quotient will also
be a probability distribution (see Figure 2 but
remove visually the grey bands). The probability of
EC exceeding SS is equal to the probability that
the quotient EC/SS becomes larger than 1. This
probability can be considered as a measure of
expected risk of adverse effects. This percentage
can also be visualised as a column chart (see
Figure 2 but remove visually the grey bands).

When lognormal distributions are assumed for the
ECD and the SSD, the risk can be calculated
analytically. The result of a quotient of two
lognormal distributions is again a lognormal
distribution and its parameters can easily be
calculated using the following equations (based on
Burmaster and Bloomfield [1996] and also found
by Aldenberg et al. [2001]):

SSECRisk ��� −=

2
SS

2
ECRisk ��� +=

with µ and σ respectively the mean and standard
deviation of the log-transformed data
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Figure 2. Calculation of the expected risk and its uncertainty interval based on ECD and SSD

In case the ECD or SSD have a different
probability distribution, the risk can always be
calculated numerically by means of a Monte Carlo
analysis.

Two important remarks have to be made. First, an
important condition for using these formulas is that
EC and SS are independent variables, which is the
case. Second, in order to assess overlap of ECD
and SSD, both sets of values have to be compatible
[Aldenberg et al. 2001]. One cannot compare 96h
toxicity tests to hourly fluctuating concentrations at
a discharge point. The time interval of EC
measurements or simulation results should be equal
to (or larger than) the time interval of SS toxicity
testing.

2.3.2 When Variability and Uncertainty are
Considered

In the previous section, only the variability of the
ECD and SSD was considered. This resulted in a
risk variability distribution. The ECD and SSD are
also uncertain because of sampling error. Adding a
Monte Carlo sampling loop to the risk calculation
can capture this uncertainty. In each run, an ECD
and SSD will be selected from their respective
uncertainty bands and the risk distribution will be
calculated. After many runs, the risk distribution
will also have an uncertainty band (Figure 2).

Remark that other uncertainty issues, not dealt with
here, still need to be solved such as lab to field
extrapolation uncertainties of the SS, the
representativeness of the species in an SSD, model
uncertainty, etc.

The risk distribution visualised as a column chart
in Figure 2 can also be visualised as a pie chart as
in Figure 3. The entire pie represents 100%. The
grey shades indicate how large the risk is with a
pre-defined certainty. The larger the white slice,
the lower the risk is. The more black, the larger the

expected risk is. The larger the grey slices are, the
more uncertainty there is on the estimated risk. The
example shows that the median expected risk is
23% (50% certainty) and there is 95% certainty
that the risk is smaller than 45%.

0% risk probability

5% certainty that
potential risk < 9%

50% certainty that
potential risk < 23%

95% certainty that
potential risk < 45%

Figure 3. Visualisation of the potential risk of 23%
and its 90%-uncertainty interval

3. CASE STUDY

As an illustrative case study, probabilistic risks and
their 90%-uncertainty intervals were predicted for
the pesticide atrazine in the river catchments of
Flanders in Belgium. Since atrazine is such a
widely used herbicide and the chemical nature of
this compound is persistent, it is considered a great
potential for groundwater and surface water
contamination. Therefore, it is frequently detected.
The greatest risk of atrazine runoff occurs shortly
after the application because it hasn’t had time to
adhere to the soil particles and is still at the surface
of the soil [Lipishan and Lee 1996].

The data set for the SSD consists of chronic
toxicity values (NOEC: No Observed Effect
Concentrations) and can be found in Versteeg et al.
[1999]. A lognormal distribution was assumed and
fitted to the data. The fit was satisfactory.

Probability that EC exceeds
SS + confidence interval

ECD SSD

RISK
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The ECs were obtained from the Flemish
environmental agency [VMM 2001]. Atrazine was
(mostly monthly) measured at 134 locations from
1991 till 2000. Only the reliable data from the
years 1997 till 2000 were considered. It is assumed
that this monitoring network is representative for
all rivers in Flanders. The cumulative empirical
distribution function of all the EC is shown in
Figure 4. A lognormal distribution was assumed
and fitted to the data but the model did not fit very
well to the data (see grey curve in Figure 4)
because the data are left censored i.e. the value 50
ng/l is frequently observed. This value corresponds
with the detection limit of atrazine. Censored data
can be handled in different ways. Govaerts et al.
[2001] recommends to replace every value below
the detection limit with a random number between
zero and the detection limit (here 50). After the
correction for censoring, the lognormal distribution
now fits very well to the data (see black curve in
Figure 4). For every monitoring station, a
lognormal distribution was fitted to the data. The
resulting ECD represents the variation of the
concentration (mostly temporal) at that station.
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Figure 4. Cumulative probability distribution of
atrazine measurements in surface waters in

Flanders

4. RESULTS

The results of the local PERA of atrazine for all
monitoring stations in the river networks of
Flanders are visualised in Figure 5.

The results of the local PERA of atrazine in the
basins of Flanders indicate that the predicted
atrazine risks are around 1,6% for many
monitoring locations. Most of the median risks are
smaller than 5% and most of the upper risk 90%
uncertainty intervals are smaller than 15%.

5. DISCUSSION

Based on the discussed framework and the results
of the case study, one can say that PERA improves
transparency and credibility, it focuses data
collection, it avoids worst-case assumptions, it
improves decision support and, above all, it is
more realistic compared to the current
deterministic risk assessment approaches. As a
result, this approach enables risk managers to
evaluate the full range of variability and
uncertainty instead of just using point estimates of
exposure, effects and eventually risk.

The case study additionally shows that by
geography referencing the risk assessment, the
spatial exposure variability is explicitly accounted
for in each local risk assessment and as a result the
remaining overall variability can be reduced.

Visualisation of the expected risk as pie chart
promises to be a good communication tool. The
darker the slice of the pie chart, the larger the
expected risk is. The larger the grey slices are, the
more uncertainty there is on the estimated expected
risk.

Figure 5. Atrazine risk in the catchments of Flanders (Belgium)
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However, the framework can still be further
improved. First, the example in Figure 2 shows that
the calculated risk is only a comparative measure.
Despite the large overlap of the ECD and the SSD,
the predicted expected risk is 23%. The tails of the
ECD and SSD are very important since the largest
EC (like the 95th-percentile of the ECD) will first
have effects on the most sensitive organisms (like
the 5th-percentile of the SSD). A better risk
measure would be obtained when more attention is
paid on the upper tail of the ECD and the lower tail
of the SSD.  Second, geography referencing the
risk is only useful when both the ECD and the SSD
are geography referenced. In the case study, only
the ECD was geo-referenced. The SSD was the
same for every location while in reality spatial
differences lead to different local SSD’s [Janssen
et al. in press]. Hot spots could also be found based
on the geo-referenced ECD’s.

6. CONCLUSION

A framework for performing probabilistic
environmental risk assessment (PERA) was
proposed and illustrated with a case study. The risk
and its uncertainty or confidence interval can be
visualised in a pie chart. This uncertainty interval
is important for the decision-maker since it
expresses how reliable the risk assessment is. A
probabilistic approach results in a more realistic
environmental risk assessment and therefore
improves decision support of handling impact of
individual chemicals. Some suggestions for further
improvement of the PERA were made: the tails
should be considered more in the risk calculation
and the effects assessment should also be
geography referenced in order to refine the risk
assessment.
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