
• Linear Alkylbenzenesulfonates (LAS), an anionic surfactant, is toxic and can be subjected
to different physicochemical and biological decay processes in rivers (see Figure 1).

• Using a completely mixed tank in series model, the mass balance for the total LAS in the
water phase in every river tank can be expressed as follows:

                                                                                                                         
         

     Where V  is  the volume of the tank [m3], Qin & Qe  are respectively  the inflow rate and outflow rate [m3d-1];
CT,in & CT are concentrations in the inflow and outflow, respectively [g m-3]; krem , ksed and kbiodeg  are the
overall pseudo first order in-stream removal, sedimentation, biodegradation and  volitalization rate
constants, respectively [d-1] ; Sexternal is the external source due to resuspension [g d-1 ].

   Assumptions: 
• Local equilibrium between sorbed and dissolved (Ctotal = Cdissolved + Csorbed).
• Equal degradation rate for both sorbed (in the Dissolved Organic Carbon (DOC) and

Particulated Organic Carbon (POC)) and dissolved phases.
• Aerobic  biodegradation in the bulk water and in the benthic sediment (biofilm).
• Atmospheric deposition, photolysis, bioaccumulation and sediment burial are negligible.

• The model was implemented on  the WEST® modelling and simulation software [3] (see
Figure 3). Using the monitoring data of February and May 1998 [4], the model was
calibrated [5] and validated (see Figure 4).

Figure 4. Model validation: measured (↵ ) and simulated (—) data sets in
four  river sections

• In both calibration [5] and validation (Figure 4) results, the general trend of simulated data
sets agrees well with the  measured data within 20% error.

• More reliable data can improve the model performance.
• As heterotrophic biomass density in the benthic sediment is higher than in the bulk water,

biofilm biodegradation in the benthic sediment dominates the biodegradation process.
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• Dynamic exposure modelling is a  realistic and feasible approach for time variable emissions.
• The model is relatively simple and detailed enough for short term simulation.
• The model can also simulate the concentration of sorbed LAS in the sediment.
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INTRODUCTION
Risk assessment requires the comparison of Predicted Environmental Concentration
(PEC) and Predicted No Effect Concentration (PNEC). The current PEC estimation
method in the European union is based on a steady state in-stream fate model [1]. This
model assumes uniform flow emissions, and does not consider temporal variability in the
system. However, dynamic exposure assessment accounts for  the temporal variability.

Thus, the objectives of  this study are:
•  To develop a dynamic environmental fate model for rivers, and
•  To evaluate this model in  view of dynamic exposure assessment.
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Figure 2. Scheme of river Lambro with four monitoring stations
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Figure 1.General representation of in-stream fate of toxic organic chemicals

Air

•  LAS pollution sources: treated (wastewater treatment plant effluent) and untreated
    combined sewer overflows) wastewater with variable flow emissions.
•  The river stretch of 26 km (part of river Lambro, in Italy) between Mulino di Baggero and
    Biassono) was divided into 4 monitoring stations (see Figure 2) that were subdivided
    into in total 11  completely mixed tanks in series (see Figure 3). Each tank was further
    subdivided (1- 6), and in total 47  tanks were used [2].
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Figure 3. Chemical fate model in WEST® interface
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