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Abstract: Multiway principal component analysis
(MPCA) for the analysis and monitoring of batch pro-
cesses has recently been proposed. Although MPCA has
found wide applications in batch process monitoring, it
assumes that future batches behave in the same way as
those used for model identification. In this study, a new
monitoring algorithm, adaptive multiblock MPCA, is de-
veloped. The method overcomes the problem of chang-
ing process conditions by updating the covariance struc-
ture recursively. A historical set of operational data of a
multiphase batch process was divided into local blocks in
such a way that the variables from one phase of a batch
run could be blocked in the corresponding blocks. This
approach has significant benefits because the latent vari-
able structure can change for each phase during the
batch operation. The adaptive multiblock model also al-
lows for easier fault detection and isolation by looking at
the relationship between blocks and at smaller meaning-
ful block models, and it therefore helps in the diagnosis
of the disturbance. The proposed adaptive multiblock
monitoring method is successfully applied to a sequenc-
ing batch reactor for biological wastewater treatment.
© 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 82: 489–497,
2003.
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INTRODUCTION

With increasingly stringent regulations for effluent quality,
the on-line monitoring of wastewater treatment processes
becomes very important for enhancement of process perfor-
mance by detecting disturbances leading to abnormal pro-
cess operation at an early stage. The earlier a potential fault
can be detected, the less severe its influence will be, and the
corresponding corrective action will consequently be more
constrained (Lennox et al., 2001). Traditionally, wastewater
treatment plants have been monitored by using time-series
charts wherein operators can view the different variables as

historical trends and judge the deviation from the norm.
However, as the number of variables increases from modern
industrial plants with well-equipped computerized measure-
ment devices, it becomes difficult or impossible to interpret
all measurement data simultaneously. Therefore, a more
systematic way to handle and analyze data is needed to
effectively extract relevant information for monitoring and
supervision.

In recent years, multivariate statistical process control,
such as principal component analysis (PCA) and partial
least squares (PLS), has become increasingly popular in
many industrial fields (MacGregor and Kourti, 1995; Tates
et al., 1999; Wise and Gallagher, 1996). These techniques
can be used to extract the state of the system from the
enormous volume of stored data via application of statistical
methods. Recently, they have also been applied to waste-
water treatment process (WWTP) operation (Lee et al.,
2002; Rosen and Olsson, 1998; Teppola et al., 1998). How-
ever, most of the applications in WWTP have been found
for continuous processes.

In the application investigated here, a variant of the PCA
technique, multiway principal component analysis (MPCA),
is used as a basis to develop a monitoring system for a
sequencing batch reactor (SBR) process. The SBR process
is highly nonlinear, time-varying, and subject to significant
disturbances, such as hydraulic changes, composition varia-
tions, and equipment defects. Small changes in concentra-
tions or flows can have a large effect on the kinetics of
biological reactions leading to batch-to-batch variability in
effluent quality and microorganism growth. This behavior
distinguishes the SBR process from continuous WWTP.
Relative to continuous processes, batch data have an added
dimension of the batch number in addition to the measured
variables and sample times. Therefore, the most basic
method of conventional PCA is not directly applicable to
batch processes. Nomikos and MacGregor (1994) presented
the MPCA approach for monitoring batch processes. MPCA
is an extension of PCA for three-dimensional batch data
(batch number × variables × time).
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However, a major limitation of PCA-based monitoring is
that PCA models assume that the process conditions do not
change significantly, whereas this is rarely the case for
WWTP. When a time-invariant PCA model is used to moni-
tor processes with changing process conditions, false alarms
often result. Process operators will quickly lose confidence
with a monitoring system that puts forth many false alarms.
Fortunately, this problem can be solved by making the PCA
model adaptive (Li et al., 2000; Rosen and Lennox, 2001).

The SBR process has a cyclic nature, each cycle consist-
ing of several phases — fill, anaerobic, aerobic, anoxic, and
draw — depending on the objective of SBR operation. For
multiphase batch processes, the basic phenomenon is that
there are different covariance structures for the different
phases. Based on this knowledge, it is natural to consider
using different models for the various phases to achieve
better results. Multiblock PCA methods have been proposed
in the recent literature to improve the interpretability of
multivariate models (Westerhuis et al., 1998). These mul-
tiblock methods have been used in cases in which the num-
ber of variables is large and additional information is avail-
able for blocking the variables into conceptually meaningful
blocks. Applications include modeling and monitoring of
large chemical processes (MacGregor et al., 1994; Wold et
al., 1996). The multiblock PCA approach may have signifi-
cant benefits when monitoring SBR processes. Each local
model is intended to capture specific aspects of the corre-
sponding phases of SBR processes.

In this study, a real-time monitoring system for batch
processes is developed using an adaptive multiblock MPCA
model to detect abnormal batch behaviors and to identify
the major sources of process disturbances. Detection of ab-
normalities directly after completion of a batch cycle may
even prevent detrimental effects on the following batch run.
In this application the monitoring frequency is appropriate
because SBR process monitoring is especially focused on
the microorganism activity changes that have a time con-
stant of a few days. The methodology is applied to a bench-
scale SBR used to grow sludge that has the most stable
properties possible, as this sludge is to be used in a com-
prehensive study of flocculation (Nopens et al., 2002). A
SBR free from major problems is likely to be more stable
than one subject to significant disturbances. The proposed
MPCA supervision is used as a tool to monitor the stability
of the sludge on the basis of simple on-line measurements.

MONITORING ALGORITHMS

Multiway Principal Component Analysis

In a typical batch run, j � 1,…, J variables are measured at
each of k � 1,2,…,K time intervals throughout the batch.
Similar data will exist on a number of batches, i � 1,2,…,I.
All data can be summarized in the X(I × J × K) of a his-
torical database (Fig. 1). Multiway PCA is equivalent to
unfolding the three-dimensional data matrix, X, into a large
two-dimensional matrix, X, and then performing a regular

PCA (Nomikos and MacGregor, 1994). In case of monitor-
ing batch processes, it is important to determine differences
between batches and to project new batches on the model.
Therefore, in this work, X is unfolded in such a way as to
put each of its vertical slices (I) side by side to the right,
starting with the one corresponding to the first time interval.
The resulting two-dimensional matrix has size (I × JK). This
unfolding allows for analysis of the variability among the
batches in X by summarizing the information in the data
with respect to both variables and their time variation.

Before a PCA is performed on the batch data, the data are
normalized using the mean and standard deviation of each
variable at each time interval in the batch cycle over all
batches. Subtracting the average batch trajectory generally
eliminates the major nonlinear behavior of the process
(MacGregor et al., 1994). MPCA then decomposes the data
into a series of principal components consisting of score
vectors (tr) and loadings (pr), plus residuals (E):

X = �
r =1

R

tr pr + E (1)

The loading vectors (pr) define the reduced dimension
space (R) and are the directions of maximum variability.
Each element of the score vectors (tr) corresponds to a
single batch and depicts the overall variability of this batch
with respect to the other batches in the database throughout
the entire batch duration (Nomikos and MacGregor, 1995).
Usually, a few principal components can express most of
the variability in the data when there is a high degree of
correlation among the data (R << min(I, JK)). R is chosen
such that most of the systematic variability of the process
data is described by these principal components and that
the residual matrix, E, is as small as possible in a least-
squares sense. The nonlinear iterative partial least squares
(NIPALS) algorithm can be used for sequential computation
of the dominant principal components (Geladi and Kowal-
ski, 1986).

Abnormal behavior of new batches is identified by pro-
jecting the new batches onto the model. Control charts that

Figure 1. Decomposition of a three-way data matrix, X, by MPCA.
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are used in monitoring batch processes are generally based
on the Q-statistic and D-statistic, in which control limits are
used to determine whether the process is in control or not.
The assumption behind these approximate confidence limits
is that the underlying process exhibits a multivariate normal
distribution with a population mean of zero. This is to be
expected, because any linear combination of random vari-
ables, according to the central limit theorem, should tend
toward a normal distribution.

The Q-statistic is a measure of the lack of fit with the
established model. For batch number i, Qi is calculated as:

Qi = �
j=1

J

�
k=1

K

�ejk�
2 ∼ g�(h)

2 (2)

where ejk are the elements of E. Qi indicates the distance
between the actual values of the batch and the projected
values onto the reduced space. The distribution of the
calculated Qi values can be approximated by a chi-square
distribution, g�2

(h), where g is a constant and h is the effec-
tive degrees of freedom of the chi-square distribution.

The D-statistic, or Hotelling T2 statistic, measures the
degree to which data fit the calibration model:

Di = ti
T S−1 ti ∼

I�I − R�

R�I2 − 1�
FR,I−R (3)

where S is the estimated covariance matrix of the scores.
The D-statistic gives a measure of the Mahalanobis distance
in the reduced space between the position of a batch and the
origin that designates the point with average batch process
behavior. The distribution of the D-statistic for all batches
can be approximated by an F-distribution, FR,I−R, and con-
fidence limits for the D-statistic are calculated from this
F-distribution.

Adaptive MPCA

PCA monitoring is based on the assumption that the process
conditions are time-invariant, whereas most real WWTPs
are time-varying due to changes of influent characteristics,
temperature, and microorganism activity. The time-varying
characteristics of WWTPs include their mean, variance, and
correlation among their measurements (Rosen and Lennox,
2001). When a time-invariant PCA model is used to monitor
processes with time-varying behaviors, false alarms often
result, significantly compromising the reliability of the
monitoring system (Li et al., 2000).

To overcome the problem of changing process condi-
tions, an adaptive MPCA model based on a moving window
can be developed. A window is a fixed-length batch data set
of unfolded data matrix X with respect to batch number.
When a new batch is available, another window is created
by omitting the first batch in the set and by adding the new
batch to the window. Hence, the new window overlaps all
but one of the batches of the old window and includes new
information. In this approach a new covariance structure is

identified for each new batch and all batches inside the
window frame will have a constant influence on the model
until it leaves the window. The model for batch i is based on
the following covariance matrix:

XTX�i� = �
n=0

W

�xjk�i − n��T xjk�i − n� (4)

where XTX(i) is the covariance matrix for batch i, W is the
length of the window, and xjk are the elements of X.

Multiblock MPCA

Many industrial batch processes are operated in different
phases. Usually, the input variable profiles and reaction
conditions vary greatly from one phase to the next. A better
alternative is then to divide the batch data sets into several
blocks and build local MPCA models for each data block.
This approach has significant benefits because the latent
variable structure is allowed to change at each phase (Qin et
al., 2001; Ränner et al., 1998; Wold et al., 1996). Analyzing
the data with a multiblock model also allows for detecting
more specific locations of faults in a process (Smilde et al.,
2000).

Figure 2 shows the arrow scheme for a multiblock PCA
algorithm. The data matrix X (I × KJ) is divided into B
blocks (X1, X2,…,XB). In the lower layer of the model, each
data block is considered as a separate source of information
and the details of the blocks are modeled by corresponding
block models. In the super layer, information from all
blocks on the lower data level is combined and the relative
importance of the different blocks, Xb, for each dimension is
obtained.

The multiblock PCA algorithm derives from a sequence
of “NIPALS steps” and has the following formulation
(Westerhuis et al., 1998):

Figure 2. Arrow scheme for multiblock PCA algorithm.

LEE AND VANROLLEGHEM: MONITORING OF A SBR USING PCA 491



1. Arbitrarily choose a column of one of the blocks,
Xb, as tT:
(1) Block variable loadings, pb, are obtained by regress-

ing t on all blocks, Xb:

pb = Xb
T � tT�tT

T � tT (5)

then normalize pb to ||pb|| � 1.
(2) From pb, block scores, tb, for all blocks are calcu-

lated:

tb = Xb � pb (6)

(3) All block scores are combined into a super block, T:

T = �t1, t2, . . . , tB� (7)

(4) Super weight, wT, is obtained by regressing tT on the
super block:

wT = TT � tT�tT
T � tT (8)

then normalize wT to ||wT|| � 1.
(5) A new tT is calculated.

Until the super score, tT, converges, a new iteration
(1) to (5) starts.

2. Deflate block data matrix, Xb:

pb = Xb
T � tT�tT

T � tT (9)
Xb = Xb − tT � pb

T (10)

Go to step 1 to calculate the next principal component.
The block Qb- and Db-statistics for batch i can be

calculated as follows (Qin et al., 2001):

Qi,b = �
j=1

J

�
k=1

K

�eb, j k�
2 (11)

Di,b = ti,b
T Sib

−1 ti,b (12)

where eb,jk
are the elements of the block residuals and

Si,b is the covariance matrix of ti,b.

PROCESS DESCRIPTION

Sequencing Batch Reactor

The data used in this study were collected from a bench-
scale SBR system shown in Figure 3. A fill-and-draw se-
quencing batch reactor (SBR) system with an 80-L working
volume is operated in a 6-h cycle mode and each cycle
consists of 1 h fill/anaerobic, 2 h 30 min aerobic, 1 h anoxic,
30 min aerobic, and 1 h settling/draw phases. The hydraulic
retention time (HRT) and solid retention time (SRT) are
maintained at 12 h and 10 days, respectively. Loading
amounts of COD as synthetic municipal-like sewage, NH4

+-
N and PO4

3−-P per cycle in standard conditions are 440, 60,
and 9.5 mg/L, respectively.

The controls of the duration/sequence of phases and on/
off status of peristaltic pumps, mixer, and air supply are
automatically achieved by a LABVIEW data acquisition and
control (DAC) system. The DAC system consists of a com-

puter, interface cards, meters, transmitters, and solid-state
relays (SSRs). Electrodes for pH, ORP (oxidation–reduction
potential), DO (dissolved oxygen), temperature, weight, and
conductivity are installed and connected to the individual
meters. The status of the reactor is displayed on the com-
puter and the time series of the electrode signals are stored
in a data file.

A set of on-line measurements is obtained every 1 min for
pH, ORP, DO, conductivity, temperature, and weight of the
SBR reactor. Thus, no advanced or expensive measurement
devices need to be installed to make the methods work. All
measurements are simple, standard measurements. These
measurements were stored for 280 past cycles (� 70 days),
forming a database of historical information regrading the
process.

RESULTS AND DISCUSSION

Pretreatment of SBR Data Sets

It has been reported that the on-line sensor values were
somehow related to the dynamic characteristics of the nu-
trient concentrations (NH4

+, PO4
3−, and NO3

−) in the SBRs
(Chang and Hao, 1996; Demuynck et al., 1994; Lee et al.,
2001). The derivatives of the pH, ORP, and DO profiles can
accurately detect the ends of phosphate release, ammonia
conversion, and phosphate uptake, and can be a useful in-
formation source. Therefore, first and second derivatives of
pH, ORP, and DO were calculated from the on-line sensor
profiles and included into the database. Because the differ-
encing operation magnifies the noise it is necessary to
smooth the data beforehand. This can be done by Savitzky–
Golay smoothing, which is a moving window method fitting
a polynome by least squares (Savitzky and Golay, 1964). In
addition, only the measurement data from the first 300 sam-
pling time instants were used to develop monitoring models,
because biological reactions in the settling and drawing
phases (corresponding to those of the last 60 time instants)

Figure 3. Schematic diagram of sequencing batch reactor system.
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were assumed to be negligible. Moreover, due to the ab-
sence of mixing, the sensor signals were unreliable. The
MPCA algorithms were applied to the three-way data array,
X, with dimensions 280 × 12 × 300.

Analysis of Historical Process Data

Initially, the whole data set of 280 batches was analyzed by
the multivariate statistical projection method of MPCA (see
later). By examining the process data in the reduced pro-
jection spaces, defined by a small number of latent vari-
ables, it is often possible to extract very useful information
for interpreting the behavior of the SBR process.

Figure 4 shows a score plot of the collected data in the
space of the resulting first two principal components. The
score plot can provide an adequate representation of the
process behavior. Figure 4 presents two clusters: cluster 1
(batch i � 1 to 162) and cluster 2 (batch i � 165 to 280).
The separation between cluster 1 and cluster 2 is due to
disturbances (batch i � 163 to 164). The scatter character of
this plot indicates that the operating data started from the
lower part of cluster 1 and gradually moved up; after the
process instability occurred, the projected process data re-
turned to the confidence limits inside cluster 2. This implies
that the SBR operation was changing slowly, but switched
to another operating state after disturbances occurred in the
process. The disturbances are discussed in what follows.

Multiway PCA

A MPCA model was developed from the historical data set
of a consecutive 30 batches. Five principal components,
which explained approximately 73% of the total variability,
were determined by cross-validation (Krzanowski, 1987).
Validation data consisting of the remaining 250 batches
were projected onto the model space. Figure 5 shows the Q-
and D-statistic charts. It can be seen that the D-statistic
barely exceeds its limit, whereas the Q-statistic is far above

the 95% limit from batch 37 on. This indicates that the
process variation in the validation batches cannot be de-
scribed by the model developed. It is obvious that the static
MPCA model is not valid because the fixed reference da-
tabase is not representative of the SBR process that is time-
varying and exposed to various disturbances such as influ-
ent composition variations, temperature changes, and equip-
ment defects.

Adaptive MPCA

A monitoring model with adaptive covariance structure was
subsequently developed to reduce the problem of changing
process conditions. In this application, different window
lengths, ranging from 10 to 50 batches, were tested. The
time span of the moving window was optimally set to 7.5
days (30 batches) to allow detection of slower disturbances
as well as fast ones. The criterion for the selection of the
window size was how fast and correctly the model could
detect known disturbances in the validation data sets. When
a new block of batch data becomes available, the covariance
matrix is updated over the selected window. Because the
number of significant principal components can change
over time, it is necessary to determine the number of prin-
cipal components recursively. However, the cross-valida-
tion approach that was used for the MPCA model indicated
is not suitable, because old data are not representative for
the current process. Therefore, the number of significant
principal components is calculated recursively using the cu-
mulative percent variance (CPV) method (Li et al., 2000).
The CPV is a measure of the percent variance captured by
the first R principal components:

CPV�R� =
�
l=1

R

�i

trace(V)
�100% (13)Figure 4. Score plot for all 280 batch data. The solid line corresponds to

95% confidence limit.

Figure 5. Multiway PCA. Q- and D-statistic charts with 95% confidence
limits.
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where the �l represents the eigenvalues of X and V �
EET/(I − 1). The number of principal components is chosen
when CPV reaches a predetermined limit (75%). A potential
adaptation problem is that the model may adapt not only to
normal process evolution, but also to disturbances and fail-
ures. To prevent this, model updating was skipped when Qi

and Di indices of new batches were exceeding certain limits.
Figure 6 shows Q- and D-statistics calculated from the

adaptive PCA model as well as their 95% confidence level.
The Q-statistic here was mostly well inside the confidence
limits; this implies that as the covariance structure adapted
to the new process conditions, and the updating model ef-
fectively captured the variability of the process and signifi-
cantly reduced false alarms. The Q-statistic for batch num-
ber 197 to 198 far exceeded the 95% confidence limit, in-
dicating that an unusual event occurred resulting in a change

of the process mean or covariance structure. The D-statistic
violates its limit more distinctively compared with the static
model in Figure 5. This implies that most of the variations
are now in the model plane (D-statistic). The reason is that
some of the variations in the Q-statistic chart have been
transferred to the D-statistic chart as the model captured the
variations in a correct way (Rosen and Lennox, 2001).

Adaptive Multiblock MPCA

The SBR cycle consists of four distinct phases wherein the
latent variable structure can change due to the different
environments. It is thus logical to break up the data matrix
X into four different blocks in such a way that the variables
from one phase of a cycle can be blocked in the correspond-
ing blocks: anaerobic; first aerobic; anoxic; and second
aerobic (Fig. 7). The reference data set, X(280 × 12 × 300),
is divided into four parts: X1(280 ×12 × 60); X2(280 × 12 ×
150); X3(280 × 12 × 60); and X4(280 × 12 × 30).

The results presented indicate that adaptive MPCA meth-
ods should be used to capture the important variability of
the SBR process. Therefore, a model with an adaptive co-
variance structure as well as a multiblock approach was
used to monitor the same historical data set. The window
size and method to determine the number of principal com-
ponents for the adaptive multiblock MPCA were equal to
those of the adaptive MPCA — both for simplicity and ease
of comparison.

The multiblock monitoring approach can detect and di-
agnose a fault using the block Qi,b- and block Di,b-statistics
in conjunction with the Qi- and Di-statistics of the super
block. Because the same variable scalings of the adaptive
MPCA were used for the adaptive multiblock MPCA
model, the super Qi- and Di-statistics are identical to the Qi-
and Di-statistics shown in Figure 6 (Qin et al., 2001). The

Figure 6. Adaptive MPCA. Q- and D-statistic charts with 95% confi-
dence limits.

Figure 7. Dividing the three-way data matrix, X, into four different blocks.
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block Qi,b- and Di,b-statistics were calculated for each block
as shown in Figure 8. From Eqs. (2) and (11), the summa-
tion of block Qi,b-statistics is simply the Qi-statistic of the
adaptive MPCA in Figure 6. Therefore, adaptive multiblock
MPCA monitoring simply groups the contributions to the

Qi-statistic of adaptive MPCA in terms of blocks (Qin et al.,
2001).

Abnormal batches were first monitored with the Qi- and
Di-statistics in Figure 6. Block Qi,b- and block Di,b-statistics
(Fig. 8) were then applied for decentralized monitoring and

Figure 8. Adaptive multiblock MPCA. Qb- and Db-statistic charts for each block with 95% confidence limits.

Figure 9. Identification of faulty blocks and variables for batches 163 and 197.
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fault diagnosis. For batch 163, a disturbance that might have
caused the shifting of the operational state (Fig. 4) was
clearly alarmed in the Di-statistic in Figure 6. The Di,b-
statistic for each block (Fig. 8) shows that the fault was
located mainly in block 2. To identify the disturbance for
batch 163 a contribution plot of the block residuals is shown
in Figure 9a. Again, it is quantitatively identifiable from
Figure 9a that block 2 was the block in which the fault was
mainly located. Figure 9a also shows the contribution to the
D-statistic for block 2, which clearly identifies that DO
contributed to the disturbance. Figure 10 shows the univari-
ate plot of the DO concentrations in the SBR for normal
batches and for batch 163. It can be seen that the DO con-
centrations in batch 163 had highly oscillatory peaks during
the aerobic phase. These peaks were caused by an increase
of the air flow rate to the SBR.

For batch 197, a disturbance was detected in the super
Q-statistic chart of the residuals (Fig. 6). Consequently,
block contributions to the Q-statistic should be investigated.

Figure 9b shows the calculated block contributions to the Q
value for batch 197. This simply consisted of grouping the
contributions to the Q-statistic for batch 197 in terms of the
blocks. It is obvious that the main perturbation was present
in block 3. The contributions to the Q-statistic in block 3
(Fig. 9b) show that pH contributed to the disturbances. Fig-
ure 11 shows the univariate plot of the pH for normal
batches and for batch 197. This higher pH was indeed
caused by an accidental feeding of acetic acid solution to the
SBR process during the anoxic phase (Sin et al., 2002).

Compared with the adaptive monitoring results, the mul-
tiblock model helps to localize the potential cause of the
fault or disturbance and gives a much clearer indication of
the faulty variables. Therefore, the main advantage of the
multiblock approach is to allow for easier interpretation of
the data by looking at the relationship between blocks and at
smaller meaningful block models.

CONCLUSIONS

A new monitoring algorithm, adaptive multiblock MPCA,
has been developed. The method combines the elements of
adaptive MPCA and multiblock PCA to monitor batch pro-
cesses. Adaptive PCA, in terms of updating the covariance
structure, overcomes the problem of changing operational
conditions. A historical operational data set is split into
several blocks based on the multiphase operation strategy of
the SBR. Dividing the process data into meaningful blocks
based on process knowledge makes it possible to localize
the cause of a detected fault and disturbance in a decentral-
ized manner and allows for clear indication of the faulty
variables. The application of the proposed algorithm to a
SBR process has demonstrated the feasibility and effective-
ness of this adaptive process monitoring approach. The
methodology is relatively simple, based on simple on-line
sensor values, and can easily be included in standard MPCA
monitoring. Finally, for further study, multiscale monitoring
approaches (Bakshi, 1998; Rosen and Lennox 2001) could
be integrated in the adaptive multiblock monitoring ap-
proach to adapt to a much wider time scale of changes.

The authors thank I. Nopens, R. Govoreanu, and F. Tola for
helping in the operation of the SBR process, and in the pretreat-
ment of on-line sensor values.

NOMENCLATURE

b index for blocks
B total number of blocks
CPV cumulative percent variance
D Hotelling statistic
E residual matrix for historical database
FR,I − R F-distribution with R and I − R degrees of freedom
g constant associated with chi-square distribution
h degrees of freedom for chi-square distribution
i index for batches
I total number of batches
j index for measurement variables

Figure 10. Univariate profile of the DO concentrations for normal
batches and batch 163.

Figure 11. Univariate profile of the pH for normal batches and batch
197.
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J total number of measurement variables
k index for sampling time instants
K total number of sampling time instants
n index for moving window
p loading vector
Q squared prediction error
r index for principal components
R total number of principal components
S covariance matrix of t scores
t score vector
tT super score vector
*V residual covariance matrix
W length of the window
wT super weight vector
X unfolded historical database
X historical database

Greek letters

� eigenvalue
� chi-square variable
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