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Abstract: Hydrolysis mechanism plays a dominant role in the delicate balance of electron donor/

electron acceptor ratios in BNR and EBPR systems as an important carbon source. In this study, the

surface-saturation-type hydrolysis kinetics was investigated based on respirometric measurements,

within the context of the theoretical and the practical identifiability of mathematical models. The

identifiable parameters of a selected model were derived from respirograms. In addition, the

information from the experiments was evaluated on the basis of Optimal Experimental Design (OED)

methodology for different initial conditions of the batch respirometric experiment.
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NOTATION
bH Endogenous decay rate for

heterotrophs (day�1)

CS Biodegradable COD conc (SSþXS)

(mgCODdm�3)

fE Inert fraction of endogenous biomass

(dimensionless)

FIM Fisher Information Matrix

kh Maximum hydrolysis rate (day�1)

KS Half saturation constant for

heterotrophic growth

(mgCODdm�3)

Kx Half saturation constant for

hydrolysis (COD cellCOD�1)

ML(V)SS Mixed liquor (volatile) suspended

solid conc (mgSSdm�3)

Ssini Initial readily biodegradable COD

conc (mgCODdm�3)

Xsini Initial slowly biodegradable COD

conc (mgCODdm�3)

YH Heterotrophic yield coefficient

(cellCOD COD�1)

XHa Heterotrophic active biomass

(mgcellCODdm�3)

�̂�H Maximum heterotrophic growth rate

(day�1)

INTRODUCTION
Hydrolysis is an important process which initiates the

degradation of slowly biodegradable substrate in

wastewaters. This process is an integral part of

activated sludge models for the kinetic description of

the utilization of the slowly biodegradable substrate. It

is, by nature, defined as a process slower than

heterotrophic growth and, this way, it usually becomes

the rate-limiting step for the biodegradation of organic

carbon. The slowly biodegradable fraction, XS, repre-

sents the bulk of the biodegradable substrate in the

majority of wastewaters.1 As a relatively slow process,

hydrolysis is generally the decisive step for the quality

of the biological effluent. This statement is especially

true for industrial wastewaters with more complex

substrate compositions.2,3 Hydrolysis also plays a

dominant role in the delicate balance of electron

donor/electron acceptor ratio in BNR and EBPR

systems.4–6 Appropriate design, control, and upgrade
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of wastewater treatment plants therefore necessitates

accurate and rapid information gathering on the

degradation kinetics and quantity of substrate avail-

able.

The quantity and kinetic information for substrate

present in the wastewater can rapidly be collected by

laboratory-scale batch tests with an appropriate

mixture of wastewater and biomass.7–10 In the

literature, many batch and semi-continuous respiro-

metric methods have been proposed together with

alternative hydrolysis rate equations8,9,11–14 but still

difficulties remain with respect to the appropriate

modelling concept. The difficulties for the accurate

and representative characterization of wastewater and

biomass are not only based upon the modelling pitfalls

but also upon the microbiological aspects. From the

modelling point of view, the accurate identifiability of

hydrolysis kinetics depends on the complexity and

structure of the model and on the experimental

conditions.

A large number of parameters makes the activated

sludge models difficult to identify and may result in

parameter correlation, leading to significant uncer-

tainties in the model. One solution is to assume that

some of the parameters – difficult to determine from

the experiment – have to be fixed to default values.

The assessed biokinetic parameters can be used as

default values which favour the estimation of the

remaining unknown model parameters.15 The second

solution is to break up the complete model into sub-

models. However, the batch experiments designed for

sub-model identification must be sufficiently informa-

tive for the parameter subsets under study. The

information obtained from the experiment and an

improvement in the accuracy of the estimation of

model parameters can be evaluated with the applica-

tion of Optimal Experimental Design method-

ology.16,17

In batch tests, the initial substrate to biomass, S0/X0,

ratio plays a crucial role in the accurate assessment of

the parameters related to microbiological and model-

ling aspects. If the ratio of S0/X0 is very large,

significant changes can occur in the culture during

the assay, resulting in parameters that are not reflective

of the culture as it existed in the environment from

which it was removed.9 From a microbiological point

of view, the adaptation period and response of mixed

culture population can be observed during the

sequential addition of subtrate in kinetic batch tests.18

The nature of the kinetic experiments is important

because some of them may alter the history of the

activated sludge culture and cause biased character-

ization of biomass.9,19,20 The reason is that activated

sludge is composed of a population of microorganisms

that each interact differently to biodegradable compo-

nents. Through competition, the sludge composition

may alter and therefore the history of the experiment is

important. In the literature, different substrates are

classified according to their different degradation rates

and, accordingly, the biodegradation kinetics of slowly

biodegradable substrate in activated sludge systems is

represented by the hydrolysis mechanism. In activated

sludge models, the hydrolysis mechanism is commonly

described by means of a surface-saturation-type of

reaction. This equation can be expressed as:

kh

XS=XH

KX þ XS=XH

XH or kh

XS

KXXH þ XS

XH ð1Þ

where

kh: maximum hydrolysis rate (d�1)

KX: half saturation constant for hydrolysis (mgCOD/

mgCOD�1)

XS: slowly biodegradable COD (mgCOD/dm�3)

XH: heterotrophic active biomass (mgCOD/dm�3)

In this approach, the rate of hydrolysis depends upon

the magnitude of two kinetic coefficients, namely, the

maximum hydrolysis rate, kh, and the half saturation

constant for hydrolysis, KX. Numerical values of these

coefficients are wastewater specific and exhibit a

significant variation, especially for industrial waste-

waters.21,22 The generally adopted procedure for the

experimental assessment of kh and KX under aerobic

conditions involves model evaluation and curve fitting

of respirograms. There are extensive data presented in

the literature based on this procedure, for different

wastewaters. A careful evaluation of the procedure

reveals that it is more likely to generate, not a single

set, but a relatively large number of different coeffi-

cient pairs equally applicable to the experimental data.

The calibration of the model can be carried out

successfully even using a domain of parameter values

to be estimated.

In this context, the scope of the study was first to

define a systematic approach for the determination of

the most appropriate coefficients that can be extracted

from respirograms within the framework of a surface-

saturation-type of hydrolysis kinetics. In the second

step, the proposed approach was experimentally tested

on textile effluent, a typical wastewater with a

significant slowly biodegradable substrate fraction. It

also covered the accurate estimation of the hydrolysis

coefficients for two different sets of initial experimental

conditions. This step also included the comparative

evaluation of the information obtained from the

experiments through the Fisher Information Matrix

(FIM) for the two runs.

MATERIALS AND METHODS
Model and wastewater selection
Multi-component activated sludge models23–27 are

becoming more popular, since the degradation kinetics

and fate of different substrates can be easily inter-

preted by means of experimental observations and

modelling studies. In this study, a commonly used

surface-saturation-type hydrolysis mechanism was

investigated for an industrial wastewater. Textile

wastewater was selected as a case study since it
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contains high amounts of slowly biodegradable sub-

strate.3,22,28 This feature is advantageous for the

characterization of the kinetics of slowly biodegradable

substrate in the framework of the selected simple

model presented in Table 1.

The state and parameter vectors of the selected

model are shown in Table 1 where S̃ =[S0, SS, XS, XH]

and p̃ =[kh;KX; �̂�H;KS;YH; fE] respectively. The het-

erotrophic yield coefficient, YH, was assumed to be

known and the inert fraction of endogenous biomass,

fE, was accepted as 0.2 in all similar activated sludge

models. The endogenous decay rate, bH, was deter-

mined with the method proposed by Ekama et al. 10

Theoretical identifiability
The investigation of identifiable parameters of a

selected model has an important role in view of

reliable unique parameter estimations. There are few

available methods applicable to non-linear models to

derive identifiable parameter subsets.29–32 Since the

application to a non-linear model is relatively simpler

than the other methods, the Taylor Series Expansion

method was used here to study the theoretical

identifiability.32 Other researchers have also applied

this method to activated sludge models.33–36 The

Maple V (Waterloo) software package was used for the

Taylor series expansion of the hydrolysis model.

The model was investigated through two different

modelling approaches together with the Taylor series

expansion. In the first approach, it was assumed that

there was no growth of XH during the duration of the

experiment. The expansion of the hydrolysis model

showed that the parameter subsets for the growth and

the hydrolysis processes could be estimated simulta-

neously under the assumption that no change in XH

took place. For this case, six parameter subsets can be

derived from the respirogram (Table 2, columns 1 and

3). In the second approach, the equation for the

growth of XH was additionally included in the series

expansion (eqn (2)). Thus, the maximum hydrolysis

constant, kh, could be separated from the parameter

subsets (Table 2, column 4).

Maple V is one of the most advanced symbolic

manipulation programs available for addressing the

structural identifiability evaluation using the Taylor

Series Expansion. It has been applied successfully in

previous studies. However, the computing limitations

of the program did not allow the complex model to be

coined when biomass growth was included in the

model. These limitations have also been observed

before.16,33,36,37 However, a pseudo steady state approx-
imation 16 for the growth process was made since it

became too complex for Maple V to solve the growth

and hydrolysis processes together. The change in the

SS concentration was assumed to be zero, as shown in

eqn (3). According to the model, the growth process is

limited by the hydrolysis rate. It should be noted here

that the parameters for the growth and the hydrolysis

could not be found simultaneously, because the

solution of the series expansion became too complex

to solve, as mentioned above.

dXH

dt
¼ �̂�H

SS

KS þ SS

XH ð2Þ

dSS

dt
¼ 0 0 < t < tend ð3Þ

According to the Taylor series expansion method, two

different parameter subsets can be found for the

hydrolysis kinetics, depending on whether the biomass

Table 1. Matrix representation of activated sludge
model

Process

Parameters

SS XS XH S0 Rate

Growth �1/YH 1 �(1�YH)/YH �̂�H
SS

KS þ SS
XH

Hydrolysis þ1 �1 kh
XS=XH

XS þ XS=XH
XH

Decay �1 (1� fE) bHXH

Parameter, ML�3 COD COD Cell COD O2

YH=0.67 (cellCOD COD�1),27 bH=0.19 day�1.

Table 2. Identifiable parameter combinations for
hydrolysis model

Growth kinetics 36 Hydrolysis kinetics (this study)

No biomass growth Biomass growth No biomass growth Biomass growth a

(1) (2) (3) (4)

ð1� YHÞ
�̂�HXH0

YH
ð1� YHÞ

XH0

YH

(1�YH)khXH0 (1�YH)XH0

(1�YH)SS0 (1�YH)SS0 (1�YH)KXXH0 (1�YH)KXXH0

(1�YH)KS (1�YH)KS (1�YH)XS0 (1�YH)XS0

– �̂�H – kh
a Based on the pseudo-steady state approximation.
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growth during the experiment is considered or not.

The identifiable parameter subsets that can be found

by parameter estimation are listed in Table 2. This

means that the parameter combinations give unique

values, but the individual parameters of that combina-

tion can vary as long as the value of the combination is

maintained. As a result, the hydrolysable COD

fraction, XS0, the maximum hydrolysis rate, kh, the

half saturation constant for hydrolysis, KX, and the

initial active heterotrophic biomass, XH0, are found to

be structurally identifiable if the heterotrophic yield

coefficient, YH, is known.

Practical identifibility
In a theoretical identifiability study the data, in this

case OUR data are assumed to be noise-free. In reality,

however, this situation is not achievable in practice

due to the lack of precision of equipment and

environmental conditions.18Moreover, problems such

as finding highly correlated parameters may arise if

insufficient and/or highly noise-corrupted data are

collected from real laboratory experiments. For

instance, the Monod-type growth model is a good

example when the maximum heterotrophic growth

rate, �̂�H, and the half saturation constant for growth,

KS, are found to be highly correlated if the experiments

are poorly designed.38 Batch experiments were used to

keep the study simple, the only experimental degree of

freedom used was the initial biomass concentration.

Also, previous work in this field of OED applied to

activated sludge systems11,17,34 only focused on this

kind of problem. In this way, we could compare the

results. It is clear that much more complicated

experimental design problems (substrate dosage

during the experiment, sampling times, temperature

changes, oxygen concentration) can be tackled but

these are beyond the scope of this paper. So, the

information obtained from the experiments can be

augmented either by setting better initial conditions or

applying different experimental techniques (eg fed

batch operation, multiple additions of substrate)

which makes the experiment much more informative

for reliable and accurate parameter estima-

tion.17,33,37–42 In addition, the mathematical tech-

niques used for the estimation of the model parameters

may have numerical problems such as slow conver-

gence to the solution or getting stuck in a local

minimum.16 The Fisher Information Matrix (FIM) is

regarded as a cornerstone of OED methodology.17 In

general, the FIM summarizes the sensitivity functions

for output variables and measurement errors with

respect to quantification, especially the shape of the

joint confidence regions of parameters.41,43 The FIM

can be expressed by the formula given in eqn (4):

FIM ¼
XN

i¼1

Y ðti; pÞT
QiYðti; pÞ ð4Þ

where Y (ti, p) is the output sensitivity function with

respect to the parameters. The weighting matrix, Qi is

typically the inverse of the measurement error covar-

iance matrix. There are several scalar functions that

can be derived from the FIM in order to compare the

information obtained from the experiments which

have, for instance, different initial conditions. Within

the scope of this study, two of these scalar functions

will be examined. The first one is the D-Criterion

which is calculated as the determinant of the FIM

known to be inversely proportional to the volume of

confidence region: the higher the value of determinant,

the smaller the confidence region. The second one is

the Mod-E criterion that deals with the shape of the

confidence region. It corresponds to the condition

number of the FIM. The condition number is the ratio

of the largest eigenvalue over the smallest eigenvalue.

If the minimum eigenvalue of FIM is found to be zero,

the information content of the experiment becomes

zero. This happens, for instance, when there is a strong

dependency or high correlation between the estimated

parameters, and means that the condition number

approaches infinity. The WESTþþ software package

was used for the simulation and calculation of the

sensitivity trajectories for the estimated parameters.

Experimental setup
In this study, textile wastewater was sampled from a

textile mill with a COD value of 1200mg dm�3.

Biomass was acclimated to the textile wastewater

before conducting the respirometric batch experi-

ments. Two different batch experiments were carried

out under different initial conditions with different

dilutions and S0/X0 ratios as proposed by Eleama et
al. 10 A nitrification inhibitor (Formula 25332, Hach

Co) was added to suppress the oxygen utilization due

to nitrification. The S0/X0 ratio was adjusted to 0.16

and 0.09gCOD gVSS�1 for the first and second

experiments, respectively. The oxygen uptake data

were measured with a Manotherm RA-1000 con-

tinuous type respirometer with a sampling rate of

sample per minute.44 COD andMixed Liquor Volatile

Suspended Solid (MLVSS) measurements were

carried out according to standard methods.45 The

initial conditions of the experiments are summarized

in Table 3.

Table 3. Initial conditions for experiments 1 and 2

Condition Unit Experiment 1 Experiment 2

S0/X0 ratio gCOD gML VSS�1 0.16 0.09

Total biomass, XMLVSS mgVSSdm�3 1530 1400

Total volume, VT dm�3 2.700 2.230

Wastewater volume, Vww dm�3 0.500 0.230
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RESULTS AND DISCUSSION
Parameter estimation and sensitivity analysis
Parameter estimation study using the OUR profiles

was carried out for the initial values of the following

state variables: the initial readily biodegradable COD,

SS0, slowly hydrolysable COD, XS0, and the initial

active heterotrophic biomass, XH0, and kinetic par-

ameters: the maximum hydrolysis rate, kh, the half

saturation for hydrolysis, KX, the maximum hetero-

trophic growth rate, �̂�H, and the half saturation

constant for heterotrophic growth, KS. In order to test

model validity, the parameter estimation study was

conducted in two stages. In the first stage, the

parameter estimation was carried out for the experi-

ments individually. However, in the second step,

multi-experimental fit16 was applied using two sets of

OUR data. These two different estimation methods

show that the selected model is reproducible because

individual and multi-experimental parameter estima-

tion gave identical parameter values. As shown in Fig

1, good simulation fits on real OUR profiles are

attained after estimation of the parameters. It is even

difficult to differentiate the simulation from the

experimentally-obtained data.

As illustrated in Fig 1 by the simulated OUR profile

that corresponds to the slowly biodegradable COD,

the period in which the hydrolysis process is rate-

limiting is clearly observed. Figure 1, also shows that

the degradation of the readily biodegradable COD, SS,

was terminated after 0.02 and 0.01 days for experi-

ments 1 and 2, respectively. Evidently, the first OUR

experiment, started with a much higher initial S0/X0

ratio (0.16), reached the endogenous level later than

experiment 2.

Based on the selected model, it is also clear from the

respirograms that a longer second plateau was

obtained at high S0/X0 ratios, which can be interpreted

as a saturation of the aerobic hydrolysis depending

upon the XS concentration in the reactor. Hence, the

second shoulder of the respirogram contains informa-

tion on the hydrolysis kinetics. Estimated parameters

and calculated absolute standard deviations are given

in Tables 4 and 5. According to the results, the

individual and the multi-experimental estimations give

nearly identical results, showing good simulated fits on

the experimental respirograms. It can be concluded

from Tables 4 and 5 that the relative error for KS has

comparably higher values than that of the other

parameters.17,37,41 The errors contributed by each

estimated parameter were also checked by the eigen-

value decomposition of the covariance matrix. The

most uncertainties pertaining to the parameters of KS,

KX and �̂�H are found to be important (results not

shown). For the first experiment, the sensitivity

analysis was carried out using the absolute-relative

sensitivity function. This function measures the

absolute change in OUR for a 100% change in the

parameter. The sensitivity trajectories for the esti-

mated parameters are illustrated in Fig 1. The

sensitivity trajectories for the growth process (Fig 2,

left) show that the effects of �̂�H, KS and SS0 are

negligible after the first plateau (compare Fig 1, left).

The excitation of the sensitivities are confined in the

first OUR plateau.

Figure 2 reveals that the shapes of the sensitivity

trajectories obtained for �̂�H and KS are quite similar

but follow opposite directions with time. Since the

magnitude of the sensitivity for KS is lower than that of

Figure 1. Simulated and measured OUR values, experiment 1 (left),
experiment 2 (right).

Table 4. Estimated initial state variables and parameters and deduced
sludge and wastewater characteristics

Parameter

Experiment 1 Experiment 2

Value STD a Value STD a

�̂�Hðday�1Þ 1.088 0.015 1.081 0.027

KS (mgCODdm�3) 0.46 0.08 0.65 0.11

kh (day
�1) 1.140 0.005 1.146 0.009

KX (COD cellCOD�1) 0.0102 0.0003 0.0107 0.0004

Ssini (mgCODdm�3) 9.84 0.13 5.00 0.09

Xsini (mgCODdm�3) 137.01 0.31 77.20 0.26

XHa (mgcellCODdm�3) 1585 3.7 1367 4.6

SSww (mgCODdm�3)b 53 49

XSww (mgCODdm�3)b 740 748

CSww (mgCODdm�3)b 793 797

XT (VSS) – Experimental1530 1400

XHa/XT (cell-COD) 0.72 0.69

a Standard Deviation.
b Concentration in wastewater.

Table 5. Estimated initial states and parameters
(multi-experimental fit)

Parameter

Multi-experimental

fit

Value STD a

�̂�Hðday�1Þ 1.104 0.011

KS (mgCODdm�3) 0.509 0.049

kh (day
�1) 1.168 0.011

KX (COD cellCOD�1) 0.0106 0.0002

Ssini1 (mgCODdm�3) 9.97 0.117

Ssini2 (mgCODdm�3) 4.55 0.15

Xsini1 (mgCODdm�3) 139.73 0.59

Xsini1 (mgCODdm�3) 76.39 0.38

XHa1 (mgCODdm�3) 1571 8

XHa2 (mgCODdm�3) 1317 8

a Standard Deviation.

Subscripts 1 and 2 refer to experiment number.
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�̂�H, the uncertainty pertaining to KS is higher. This

conclusion can also be derived from the results of

parameter estimation. As discussed above, the relative

standard deviation is calculated to be around 16% for

KS, which is approximately 10 times larger than for the

other parameters. However, the situation is different

for the hydrolysis process. The parameters of kh, KX

and XS0 have influences on the OUR profile during the

whole of the experiment. The sensitivity of kh shows

that the effect of this parameter reaches its maximum

during the transition between OUR plateau (the first

and second drops in OUR). The sensitivity trajectory

for SS0 is only visible during the first plateau. As

expected, after the first plateau the sensitivity of SS0 is

zero since the hydrolysis process is then the rate-

limiting step according to the simulation. However,

the sensitivity profile of the initial slowly biodegradable

COD component, XS0, is active until the endogenous

level is reached. Maximum sensitivities for XS0 were

obtained when the OUR was between the hydrolysis

and the endogenous levels, indicating that this

provides important information on this parameter.

The sensitivity trajectories presumably look similar

for KX and kh, possibly leading to a correlation

between these parameters. Indeed, an increase in one

parameter can be compensated by the increase in the

other parameter. The contour plots of the sum of

squared errors (SSE) with respect to the different

parameters exert a valley-like shape of the confidence

region, illustrating the extent of this correlation (Fig

3). The greater sensitivity for the slowly biodegradable

COD fraction, XS0, is located between the second and

the third OUR plateau (compare Fig 1, left). This

period contains much more information for the

estimation of the XS0 fraction.

However, it should be noted here that some diffi-

culties may arise for the accurate estimation of this

fraction if the hydrolysis plateau cannot easily be

distinguished from the endogenous level. This situa-

tion is quite common, especially for respirometric

measurements carried out for domestic wastewater

under low initial S0/X0 (substrate/biomass)

ratios.2,11,15 Therefore, the initial experimental con-

dition should be optimized in order to gain more

information both on the XS0 fraction and the kinetic

constants via OED techniques.17 As expected, the

parameters for the hydrolysis kinetics are not effective

during the endogenous level and at the beginning

(t =0) of the OUR experiment because the sensitivities

are almost zero. The contours of the sum of squared

errors (SSE) concerning the hydrolysis constants, kh,

KX and the initial heterotrophic active biomass, XH0,

are plotted two by two against each other, as illustrated

in Fig 3 in a two-coordinate system. These figures give

information about the uncertainties of the parameters

relative to each other. For instance, it can be con-

cluded from Fig 3 that the estimation of XH0 is much

more accurate than that of KX. The optimum values of

the parameters (ie their estimates) are located in the

middle of the inner circle. From a modelling point of

view, the parameter ranges are also quite small both for

XH0 and KX. However, the shape of the confidence

region is valley-like. On the contrary, the kh and KX

parameters are inversely proportional to each other

according to Fig 4. The shapes of the contour plots are

circle-like which is a desirable situation for accurate

parameter estimation. However, it should be noted

that one should consider the overall effect of the

estimated parameters in a multi-dimensional vector

space (with dimension=number of parameter).

OED concept
In this section, two experimental runs are evaluated on

the basis of the OED concept using the scalar

functions of the Fisher Information Matrix (FIM).

For these batch experiments, only the initial biomass

concentration in the reactor is considered as a degree

of freedom. However, absolute values of this compo-

nent cannot be determined without calibration. Still,

the added mixed liquor and the calibrated active

biomass are proportional. In this respect, the effect of

different initial active heterotrophic biomass concen-

Figure 3. SSE contour plots for kh and
Kx, experiment 1 (left), experiment 2
(right).

Figure 2. Absolute-relative (AR) sensitivity trajectories of the parameters
for growth (left) and hydrolysis (right) (experiment 1).
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trations on the information contents can be evaluated

by means of the D-criterion and the Modified-E

criterion (Fig 5). According to the Mod-E criterion,

the experiments were found to be optimal with an

initial active biomass concentration around 1500mg

dm�3, ie the parameter correlations are minimal.

Increasing the active biomass concentration results in

an increase of the Mod-E criterion value. As a result,

the degree of parameter correlation is higher. In other

words, the shape of the confidence ellipsoids becomes

more elongated with the increase in the initial value of

XH0. The optimality of the experiments could not be

satisfied for the D-Criterion (the determinant of FIM)

at 1500mg dm�3 initial active biomass, ie the volume

of the multi-dimensional confidence ellipsoid is getting

smaller as the initial active biomass is increased.

According to Fig 5, starting up the experiment with a

much higher initial biomass will provide overall

smaller confidence regions but larger parameter corre-

lations will result. In short, by lowering the S0/X0 ratio,

the parameters can be estimated more accurately, but

they become more correlated.

It should be stressed here that the first OUR plateau

which is important for the growth kinetics (�̂�H, KS,

XH0) can be non-informative due to the sudden (too

short) peak in the first plateau under very low S0/X0

ratios.15,46 The multi-experimental fits can be sug-

gested for the experiments performed under high and

low S0/X0 ratios for accurate and unbiased estimation

of the parameters for growth and hydrolysis kinetics,

because a shift in the value of one parameter may

inevitably influence the values of the other parameters.

On the other hand, the confidence regions only for kh

and KX were found to be comparably smaller and

elongated for lower S0/X0 ratios.
47 If these two experi-

ments are compared with respect to their information

contents, it can be seen from Fig 5 that the first

experiment contains comparably more information

than the second one.

The OED-based methodology applied in this paper

is shown to be useful for evaluating the accuracy of

parameter estimation for surface-saturation-type hy-

drolysis kinetics. According to the applied method,

besides readily and slowly biodegradable COD frac-

tions, the kinetic constants for hydrolysis can be

estimated from a batch respirogram. More accurate

estimation of parameters could be provided by the full

application of Optimal Experimental Design (OED).

Since the optimal initial conditions of the experiment

are dependent on the parameter values and wastewater

type, experimental design should be applied for each

case. Generalized conclusions on parameter values

may lead to erroneous and biased parameter estima-

tion of hydrolysis parameters. Therefore, hydrolysis

parameters should be estimated for each case.

Evaluation of two sets of parallel experiments

Figure 4. SSE contour plots for KX and
XH0 (left) and kh and XH0 (right) for
experiment 1.

Figure 5. Information obtained from experiment 1 (left) and experiment 2 (right).
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carried out at markedly different initial ratios of

wastewater and sludge provides a refinement to the

procedure, without however, providing, a definitive

solution to the problem. It is therefore essential to

define an experimental evaluation system that would

enable identification of the most appropriate set of

coefficients associated with the hydrolysis kinetics.

CONCLUSIONS
The proposed method allows estimation of the kinetic

constants and initial states of the surface-saturation-

type hydrolysis model. The information content of the

experiment can be improved by starting the respiro-

metric experiment under a low S0/X0 ratio. Although

the confidence region becomes smaller by adjusting

the initial conditions to a low S0/X0 ratio, the par-

ameter correlations become greater with the increase

in initial heterotrophic biomass concentration.

Accurate estimation and model validation can be

performed using the multi-experimental fit approach.

It also provides a solution for the correlated par-

ameters and high standard deviations which are known

to be common problems for the estimation of par-

ameters from batch experiments. As a result, the initial

conditions of the experiments should be well defined,

depending upon the selected model.

The parameters of the growth and the hydrolysis

processes can be estimated quite easily from the batch

respirogram if two plateaux are observable. However,

the hydrolysis parameters and the concentration of the

initial slowly biodegradable COD fraction can only be

estimated with the aid of the second plateau and the

endogenous OUR levels. In this study, a textile

wastewater was tested as an example and for this

wastewater, the growth, hydrolysis and endogenous

phases can easily be distinguished from each other.
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