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Abstract

A new approach to nonlinear modeling and adaptive monitoring using fuzzy principal component regression (FPCR)

is proposed and then applied to a real wastewater treatment plant (WWTP) data set. First, principal component

analysis (PCA) is used to reduce the dimensionality of data and to remove collinearity. Second, the adaptive credibilistic

fuzzy-c-means method is used to appropriately monitor diverse operating conditions based on the PCA score values.

Then a new adaptive discrimination monitoring method is proposed to distinguish between a large process change and a

simple fault. Third, a FPCR method is proposed, where the Takagi�/Sugeno�/Kang (TSK) fuzzy model is employed to

model the relation between the PCA score values and the target output to avoid the over-fitting problem with original

variables. Here, the rule bases, the centers and the widths of TSK fuzzy model are found by heuristic methods. The

proposed FPCR method is applied to predict the output variable, the reduction of chemical oxygen demand in the full-

scale WWTP. The result shows that it has the ability to model the nonlinear process and multiple operating conditions

and is able to identify various operating regions and discriminate between a sustained fault and a simple fault (or

abnormalities) occurring within the process data.
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1. Introduction

Due to increasing environmental constraints

and the necessity of reliable wastewater treatment,

efficient modeling and monitoring methods are

becoming more and more important. A clear

necessity for reliable modeling and monitoring

techniques of biological wastewater treatment

plants (WWTP) exists to keep the system perfor-

mance as close as possible to optimal con-

ditions. An adequate model enhances the under-

standing of the biological processes and it can be a

basis for better process design, control, and

operation. On the other hand, process monitoring

and early fault detection methods in the bio-

logical process are very efficient to execute correc-

tive actions well before a dangerous situation

occurs.

Nomenclature

C number of clusters
/dik/ Euclidian distance between an observation and a cluster
/di

k/ sk nearest neighbors of xk

E residual matrices
F F distribution

m fuzzifier
N number of observations
p number of independent variables
P loading matrix
pi loading vector

/

Þ

P/ loading matrix of model subspace
Q Q statistic
Qlim confidence limit for Q statistic

T score matrix
ti score vector
tk score at time k

T2 Hotelling’s T2 statistic

/T2
lim/ confidence limit for Hotelling’s T2 statistic

U membership function matrix
uik membership value of an object (k ) on a cluster (i)
uj ,lim control limit for membership values in cluster j

uj ,max maximum of membership values in cluster j

V cluster prototype matrix
vi cluster prototype
X input data matrix
xk object or observation
xnew new on-line sample
Greek letters

b recursive update parameter
kk mean distance between xk and the sk nearest neighbors

/lk/ Lagrange multiplier
s number of observations whose membership value is above the specific limit value in

a cluster
/ck/ credibility of an object
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The underlying point is that improving process

monitoring and control necessarily means ensuring

better knowledge of the process: which variables

characterize the process, what are their physical

links and what degree of confidence can be

attributed to the measurements. . .? All these ques-

tions are concerned with the characterization of

processes, which involves several fundamental

stages: the description of the process the listing

of the variables characterizing the process, the

establishment of models between the variables, the

identification of the parameters which intervene in

these models, the simplification of the models to

make them compatible with real-time use and the

validation of the models. It is generally recognized

that, depending on the complexity of the process,

two approaches can be adopted to tackle this

modeling problem. The first is based on the

description of the physical phenomena which

enables the establishment of a knowledge model,

and the second uses only statistical processing of

data to supply ‘black-box’ type models, which take

no account whatever of the nature and intensity of

the physical links between the variables. The

‘truth’ seems a trade-off between these two view-

points, leading to a ‘grey-box’ model which uses

simplified hypotheses on the system’s operation

and fundamental equations of physics, for exam-

ple, in the form of matter balances and energy

balances, statistics and data processing tools

(Ragot et al., 2001).

To date, the most successful model and the

industrial standard in WWTP has been the deter-

ministic mechanistic model, called Activated

Sludge Model no. 1 or ASM1 (Henze et al.,

1987). It has proven to be the most effective model

for carbonaceous and nitrogenous substrate re-

moval processes in WWTPs. However, because the

ASM model is high-dimensional and contains a

large number of kinetic and stoichiometric para-

meters which should be determined by specific

plant data and process operation, it is not omni-

potent in every situation of model application. As

a result, the general application of such a complex

model to, for instance, process control and the

development of operational strategies has been

limited.

It is essential to bear in mind that both physical
and statistical models are applicable to systems

under very precise operating conditions, but these

conditions cannot always be controlled. These

models are therefore applied by making restrictive

hypotheses, and a single model can therefore not

be claimed to constitute complete descriptions of

the actual operation of a process. Furthermore,

WWTPs have different behavior patterns depend-
ing on the influent loads, temperature and the

activity of microorganisms. The models used for

the various operating conditions should be differ-

ent. The challenge is, however, to build a single

model for all conditions. One solution consists of

representing the process by a suite of several

models, each one being valid only in a specific

operating domain. Another way of representing
the process model consists of using a single

structure resulting from the aggregation of several

sub-models, is performed using weighting func-

tions that reflect the domains of influence of each

model (Wang et al., 1998; Yen et al., 1998; Tay

and Zhang, 1999, 2000; Ragot et al., 2001).

In recent years, data-driven ‘black-box’ model-

ing approaches have been successfully applied to
various WWTPs (Cote et al., 1995; Van Dongen

and Geuens, 1998; Lee and Park, 1998; Lee et al.,

2002; Ragot et al., 2001; Yoo et al., 2002a,b,c).

They have a distinct ability to model nonlinear

dynamic systems without requiring a structural

knowledge of the process to be modeled. Owing to

the complex interaction and various influent

variations, it is difficult to establish the relation
between input and output variables. Artificial

neural networks (ANN) are able to learn complex

nonlinear relationships in the biological process

and capture their behavior, but are not able to help

improve the heuristic understanding of the operat-

ing problems. Fuzzy modeling has been an effi-

cient alternative to describe this nonlinear

biological process (Fu and Poch, 1998; Huang
and Wang, 1999; Tay and Zhang, 1999, 2000;

Ragot et al., 2001; Yoo and Lee, 2001). Recently,

Takagi�/Sugeno�/Kang (TSK) fuzzy models have

received much attention because of their predic-

tion ability and suitability to continuous process

modeling. The TSK model allows to aggregate a

set of linearized models into a global model to
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approximate a complex nonlinear system with
relatively small complexity. Many researchers

have studied the TSK model extensively but only

little research has been done in the application of

TSK fuzzy modeling to WWTPs.

When there is a high dimensionality and corre-

lation exists between measured data (collinearity)

of a WWTP, it is significant to identify unim-

portant variables, remove them and reduce the
dimension of the dataset. Principal component

analysis (PCA) is a multivariate statistical data

analysis which uses projection into latent variables

(LVs) to reduce high-dimensional and strongly

correlated data to a much smaller data set that can

then be interpreted. This leads to reduced compu-

tational time, memory requirement and easy

interpretation. This approach is important for
problems with a large number of input variables

and features in chemical and biological processes,

and derives a compact set of data set, rule base,

visual interpretability and partial solution to the

determination of the number of rules. Kurtanjek

(1998) presented modeling techniques for a princi-

pal component (PC) based ANN in Baker’s yeast

production, where the model was applied to
adaptive control of the fermentation by internal

model control. Teppola (1999) used the score

vectors of partial least squares (PLS) as clustered

data in fuzzy c-means clustering (FCM). They

discovered that the compression of data before

clustering caused FCM to become more stable and

efficient when the original variables were highly

correlated and high-dimensional. Joo et al. (2000)
showed the necessity of data preprocessing of

neural networks in the determination of the

coagulant dosing rate, the preprocessing extracted

the required information from the noisy data.

Choi and Park (2001) proposed a hybrid ANN

which combined PCA as a preprocessing step of an

ANN and applied it to the prediction of an

industrial wastewater treatment plant. Hybrid
ANN showed enhancement of the prediction

capability and reduced the over-fitting problem

of a neural network from a multidimensional and

collinear data set.

Process data from processes that work under

several operating conditions can be classified into

several clusters using an appropriate clustering

algorithm, where each cluster or group of clusters
covers a specific operating condition. The cluster-

ing procedure involves the creation of several

clusters and the identification of the cluster

centers. Most data samples belong to one or

more clusters. However, samples that correspond

to mixed and intermediate states between several

operating conditions do not belong to any cluster,

and it is easy to mistake such samples for modeling
and monitoring. We therefore need some method

for modeling and monitoring that allows to

distinguish between various operating regions if

we are to understand changes in operating states.

On the other hand, having a process monitoring

system of the biological treatment process is very

important because the recovery from failures is

time-consuming and expensive. Moreover, some of
the changes are not very obvious to detect and

may grow gradually until they produce a serious

operational problem. Therefore, early fault detec-

tion and isolation in the biological process is very

efficient as it allows to execute corrective action

well before a dangerous situation happens. A

monitoring system for abnormalities is of primary

concern. To accomplish this task, a reliable detec-
tion procedure is needed. A few statistical process

monitoring techniques based on a data-based

approach are available in the field of WWTPs

(Huang and Wang, 1999; Teppola, 1999; Rosen

and Lennox, 2001; Yoo et al., 2002a,b,c).

In this paper, we propose a nonlinear modeling

and monitoring method which models not only the

different normal operating regions of a process
with various operating conditions but also the

intermediate states between these normal states.

First, we use a PCA method to reduce the

dimensionality of the data and to remove colli-

nearity. Second, the transformed data in the

reduced dimension spanned by the transformation

vectors of the PCA are classified into several

clusters using an adaptive credibilistic fuzzy-c-
means (ACFCM) clustering algorithm. Here, we

propose an adaptive discriminant monitoring in-

dex to trace successive changes of states between

several operating conditions. Finally, a fuzzy

principal component regression (FPCR) method

is proposed in which the TSK fuzzy model gives a

powerful interpretation as well as a nonlinear
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regression property to predict the key components
of the WWTP. In summary, a nonlinear modeling

and monitoring approaches using PCA, adaptive

credibilistic fuzzy-c-means (CFCM), an adaptive

discriminant monitoring index, and TSK fuzzy

regression is presented in this paper. It is noted

that this approach is the method of choice when a

process has multi-operating conditions such as

WWTP.
The outline of this paper is as follows. First, we

briefly present the PCA and a simple statistical

monitoring method. Second, fuzzy-c-means

(FCM) and CFCM clustering is presented. Third,

the adaptive discriminant monitoring method is

proposed. Finally, we introduce the basic TSK

fuzzy model and then propose the FPCR method.

The proposed FPCR method is applied to predict
the important output variables in a real full-scale

wastewater treatment plant and the results are

discussed. Finally, the conclusion of this article is

given.

2. Materials and methods

2.1. Principal component analysis

Because the raw process data frequently contain

severe correlations between measured variables

and are of high dimensionality, it is useful to

introduce multivariate statistical LV methods to

provide independency and to reduce dimension-
ality. Two projection methods that are commonly

used to explain the relationships among complex

data sets are PCA and PLS, which are statistical

methods that explain the variance�/covariance

matrix structure using a small number of PCs.

These methods are usually used either to reduce

the data dimension while retaining the important

information or to display the data information in a
form that can be easily interpreted.

PCA is an optimal dimensionality reduction

technique in terms of capturing the variance of

the data. It decomposes the data matrix X into the

sum of the outer product of vector ti and pi and

the residual matrix, E.

X�TPT�E�
Xp

i�1

tip
T
i �E (1)

where ti is a score vector which contains informa-
tion about the relation of samples, pi is a loading

vector which contains information about the

relation of variables and p is the number of

independent variables. A score vector is orthogo-

nal and a loading vector is orthonormal. PCA can

be obtained by several methods such as singular

value decomposition (SVD) and nonlinear itera-

tive partial least squares. Latent projection into
the PC space reduces the original set of variables

to l LVs or PCs. Usually, all the score and loading

vectors are not required to explain important data

information. In practice, only a few PCs are often

sufficient to explain most of the variations in the

data. Designing the PCA model, we have to

determine the PC number. It should be determined

considering both the curse of dimensionality and
the loss of data information. Several techniques

exist to determine the number of PCs, but there

appears to be no dominant technique. Numerous

methods have been developed for determining the

number of PCs, including scree plot, parallel

analysis, cross-validation and Akaike Information

Criterion (AIC) (Jackson, 1991; Chiang et al.,

2001).
On the other hand, once PCA models have been

calculated, and those of interest retained, it is

possible to calculate values to determine whether

the process is in control or not, called ‘process

monitoring ’. In the monitoring phase, both the

score values and the residuals are monitored in

order to detect the occurrence of process faults and

disturbances. For process monitoring, statistical
control limits are needed to determine whether a

process is in-control. Hotelling’s T2 and Q statis-

tics are usually used for this purpose. After

decomposing the observed data, the score value

in the model space at time k ,

tk� [p1 p2 � � � pm]txk�P̂
t
xk �R

m (2)

is distributed as N (0, Ls), where Ls is the left-upper

m �/m diagonal part of L�/PtRP and R is the

sample covariance matrix. tk is thus a m -dimen-

sional reduced representation of the observed
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vector xk . On the other hand, the residual at time
k

ek�xk�x̂k�(I�P̂P̂
t
)xk �R

p (3)

is the part not explained by the PCA model.

Generally, the squared weighted score (Tk
2 �/

tk
t L�1tk) and the squared residual (Qk �/ekek

t )

are used as monitoring indices for process mon-
itoring or fault detection. Given that we do not

know the covariance matrix of the data exactly,

the two quantities may not be distributed as the

generalized x2. Fortunately, the approximated

100(1�/a )% control limit for T2 can be calculated

by means of a F-distribution as

T2
lim�

m(n � 1)

n � m
F (m; n�1; a) (4)

where F (m ,n�/1;a ) is a F -distribution with degree

of freedom m and n�/1 with level of significance a .
On the other hand, the 100(1�/a )% control limit

for Q is

Qlim�u1

�
ca

ffiffiffiffiffiffiffiffiffiffiffiffi
2u2h2

0

p
u1

�1�
u2h0(h0 � 1)

u2
1

�1=h0

(5)

where uj �ap
s�1(Sii)

j for j�/1, 2, 3, h0�
1�2u1u3=3u2

2 and ca is the normal deviate cutting

off an area a of the upper tail of the distribution if

h0 is positive and under the lower tail if h0 is

negative (Johnson and Wichern, 1992; Wise and

Gallagher, 1996; Montgomery, 2001; Teppola,

1999; Yoo et al., 2002a).

For a new on-line sample xnew; if T2
newBT2

lim and
QnewBQ2

lim; we consider the process to be in-

control with 100(1�/a )% confidence. Otherwise,

the process may be out of control. Here, the T2

value is used to detect faults associated with

abnormal variations within a model subspace,

whereas the Q value is used to detect new events

that are not taken into account in the model

subspace. The Q value additionally tells us
whether or not the current model subspace is

valid. Thus, the evaluation of the monitoring

statistics of the PCA model can be a ‘reality check’

in order to decide if the prediction of a FPCR

model is reliable and it can thus be used to create a

monitoring concept.

2.2. Fuzzy c-means clustering

Clusters can be described as continuous regions

of the measurement space containing a relatively

high density of points, separated from other high

density regions by regions containing relatively

low densities of points. Clustering algorithms can

be divided into two types: hard (crisp) clustering

and fuzzy clustering. In the fuzzy schemes, each
data point can simultaneously belong to more than

one cluster, whereas in the crisp clustering based

on a probabilistic scheme, each data point belongs

exclusively to a single cluster. Naturally, fuzzy

clustering algorithms provide more realistic parti-

tions than crisp clustering algorithms.

The FCM clustering algorithm is a clustering

method in which an object can be a member of
different classes at the same time, i.e., it is possible

to be between two or more classes (Bezdek, 1981;

Teppola, 1999; Rosen, 2001). This method is an

unsupervised classification algorithm which uses a

certain objective function to iteratively determine

the local minima. The objective function, which is

minimized iteratively, is a weighted within-groups

sum of distances dk ,i . The weighting is done by
multiplying the squared distances by membership

values uk ,i .

Jm(C; m)�
XC

i�1

XN

k�1

(uk;i)
md2

k;i (6)

where C is the total number of clusters, N is the

total number of objects in the calibration data, dk ,i

is the distance between an object k and a proto-
type (cluster) i , uk ,i is the membership function.

An important parameter in this algorithm is the

exponent m . This exponent m determines the

fuzziness of the classification. The closer the

exponent is to unity, the closer the fuzzy partition

is to a crisp partition. The higher the exponent, the

more vague the boundary between different clus-

ters is. This also serves as a way to diminish the
effect of noise in identifying the cluster prototypes.

Roughly estimating, a good value for the exponent

(m ) lies somewhere between 1.5 and 2.5. Different

types of distance measures can be used to measure

the distance between an object k (xk ) and a cluster

i(vi), for example, an Euclidean and a Mahalano-
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bis distances (Teppola, 1999). Euclidean distance
measure:

d2
k;i� (xk�vi)(xk�vi)

T ; � i; k (7)

Mahalanobis distance measure:

d2
k;i� (xk�vi)A

�1
i (xk�vi)

T ; � i; k (8)

A covariance matrix, Ai , can be estimated by using
the following sample covariance.

Ai�

XN

k�1

(xk � vi)
T (tk � vi)

N � 1
; � i (9)

where xk is the measured value, vi is the cluster
centroid and N is the number of a training data

set. Membership values for the individual objects

are calculated using Eq. (10). The most important

properties of FCM clustering are that the sum of

an object’s membership value over all clusters is

equal to unity and the memberships get values

only between zero and one. Membership ui ,k to a

certain cluster i of an instance at time k can be
calculated by:

uk;i�
1

XC

j�1

(d2
k;i=d2

k;j)
2=(m�1)

; � i; k (10)

XC

i�1

uk;i�1; �k (11)

After computing the membership values for all

calibration objects, the cluster centers (vi ) are

described by prototypes, Eq. (12), which are fuzzy
weighed means.

vi�
PN

k�1(uk;i)
mxkPN

k�1(uk;i)
m

; � i (12)

The minimization of Eq. (6) commences after

giving initial values for the prototypes. Then Eqs.

(8)�/(12) are repeated successively in each iteration

step. In the monitoring stage of a new test sample,

a new value is computed using Eq. (13) along with

the chosen distance measure (Teppola, 1999).

uN�1;i�
1

XC

j�1

(d2
k;i=d2

k;j)
2=(m�1)

(13)

2.3. Credibilistic fuzzy c-means clustering

The most basic fuzzy clustering scheme, FCM
clustering, was developed by Bezdek (1981). Many

modifications have been made to FCM to address

its shortcomings. To identify the relative belonging

of data points to each cluster, Krishnapuram and

Keller (1993) introduced the possibilistic c-means

(PCM) clustering and then showed intra-cluster

information. PCM has a mode-seeking property

and can reduce the effect of noise. Pal et al. (1997)
proposed the fuzzy possibilistic c-means clustering

method, which simultaneously generates inter- and

intra-cluster information. In the search for a noise-

resistant algorithm, many robust clustering algo-

rithms such as the noise cluster algorithm and the

least biased fuzzy clustering method (Beni and Liu,

1994) were developed. Moreover, FCM was mod-

ified in various ways to automatically determine
the relevant number of clusters in the data set.

Because outliers in data can significantly affect

the prototype clusters and may have large mem-

bership values, the issue of how to deal with noise

in clustering has been of particular importance.

Here we use the CFCM method for clustering. The

CFCM algorithm was proposed by Chintalapudi

and Kam (1998). The objective function of CFCM
and its constraint are as follows.

J(V; U)�
XN

k�1

XC

i�1

(uik)mkxk�vik
2

subject to

XC

i�1

uik�ck; k�1; . . . ; N

(14)

where C is the total number of clusters, N is the
number of observations, uik � [0; 1] represents a

membership value of the k th object on the ith

cluster, m is known as the fuzzifier, vi is the ith

cluster prototype, xk is the k th object, and ck is

the credibility of object xk . In this research, the

PCA score values of tk are used in FCM instead of
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the original data of xk . The difference between
FCM and CFCM is the constraint term, i.e.,

CFCM becomes FCM when ck �/1 for all k .

Using the Lagrange multiplier method, the above

optimization problem is converted to the following

unconstrained optimization problem,

J(V; U)�
XN

k�1

XC

i�1

(uik)mkxk�vik
2

�
XN

k�1

lk

�XC

i�1

uik�ck

�
(15)

where lk is a Lagrange multiplier.

The optimization problem is solved by setting

the gradient of J with respect to uik and vi equal to

zero,

@J(V; U)

@uik

�mum�1
ik d2

ik�lk

�
1�

@ck

@uik

�
�0 or

uik�
	
lk

�
1�

@ck

@uik

�
(md2

ik)�1


 1

m�1
(16)

@J(V; U)

@vi

�2
XN

k�1

um
ikdik�

XN

k�1

lk

@ck

@vi

�0 (17)

where dik�kxk�vik is the Euclidian distance

between the k th observation and the ith cluster.

Substituting Eq. (16) into the constraint in Eq. (14)

yields,

lk�cm�1
k

�XC

i�1

	�
1�

@ck

@uik

�
(md2

ik)�1


 1

m�1
��(m�1)

(18)

and by combining Eqs. (18) and (16) and rearran-

ging, we obtain

uik�
ck

XC

j�1

�
d2

ik(1 � @ck=@ujk)

d2
jk(1 � @ck=@uik)

� 1

m�1

(19)

In most cases, the credibility is a function of all

variables involved in the clustering scheme. The

more similar an object is to another object, the

larger the credibility value. Similarity can be

represented in several ways; for example, the

distance between two objects is a measure of their
similarity. That is, credibility can be considered as

the degree of isolation of a vector in the feature

space. Let fdi
k � X½i�1; :::; sg be the s nearest

neighbors of xk in terms of Euclidian distance.

The credibility of a vector xk is defined as

ck�1�
(kk � min(k1; . . . ; kn))

max(k1; . . . ; kn) � min(k1; . . . ; kn)

(20)

kk�

Xs
i�1

(kdi
k � xkk)

s
and s�g

N

C
(21)

In Eq. (20) kk is the mean distance between xk and

its s nearest neighbors and g � [0; 1] is a constant.

Under this scheme, outliers are dissimilar to most

other objects because they are far away from other

objects. Hence, outliers have low credibility values.

On the other hand, non-outliers are similar to
most other objects and therefore have high cred-

ibility values.

If we use the above credibility, which is a

function only of x, Eqs. (17) and (19) are

simplified to

uik�ck

�XC

j�1

�
d2

ik

d2
jk

�*
1

m�1
��1

and

vi �

XN

k�1

um
ikxk

XN

k�1

um
ik

(22)

The CFCM clustering method explained above

has the following good characteristics. First, it

provides inter and intra-cluster information simul-

taneously. That is, for an arbitrary sample, we can

know its relative membership to each cluster.
Furthermore, for each cluster, we can know the

samples’ relative membership to it. Second, the

isolated samples, which are dissimilar to the rest of

the samples in the data set, are automatically

identified since they have low credibility values

compared to non-outliers.
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2.4. Adaptive discriminant monitoring method

Based on the CFCM clustering algorithm, the

complete data set can be classified into several

pattern groups. Each of these groups is then

regarded as a normal operating region for a

specific operating condition, and is monitored

using the conventional monitoring method. How-

ever, this scheme is limited to time-invariant
processes. Process data obtained under adaptive

and multiple operating conditions which have a

number of operating models and changes in

operating conditions (such as biological WWTP)

should be monitored carefully. In many cases it

may be necessary to include some trend-following

capability, thus making the clustering procedure

adaptive. It is hard to discriminate changes due to
adaptive and multiple conditions, because both

may appear to be out of control when compared

with one operating region. In this section, we will

propose an adaptive discriminant monitoring

method that uses the adaptive CFCM and a

membership value monitoring system.

Most WWTPs are time-varying due to changes

of influent characteristics, temperature, and mi-
croorganism activity. It may be useful to use this

knowledge in partitioning a given set to classify

more data during on-line operation. The data

clusters will evolve with the process shifts. In

general, the clusters could be chosen in such a

way that they represent a set of preferred states

among various operating conditions. Because of

this continuous drift from one end of the operating
condition to the other, the fuzzy boundaries and

memberships also evolve. In order to achieve this

objective, the FCM and CFCM approach can be

made adaptive or flexible (Marsili-Libelli and

Müller, 1996; Marsili-Libelli, 1998; Teppola,

1999).

A basic form for adaptive updating was pro-

posed by Marsili-Libelli and Müller (1996). It is
based on using the new membership values to

change the prototype locations, assuming that the

generic (n�/1)-th point is considered and that all

the previous n points have already been classified.

However, this adaptation rule works well only in

the case of a relatively small number of objects and

for a small period of time because the effect of

every new object will be added into the summation
terms. The larger the summation terms, the less

adaptive the rule becomes. This concept is very

similar to the recursive PCA monitoring method

which consists of recursive updating the mean,

variance and covariance matrix, and especially

updating of the mean (Li et al., 2000). Conversely,

adaptive FCM and CFCM are updating the center

of each cluster. In this paper, we used the modified
flexible updating rule suggested by Teppola (1999)

in order to preserve the adaptation efficiency. An

effect of every new object (xn� 1) is multiplied by

the number of added objects times the parameter

b .

vi½n�1�

Xn�1

k�1

(uk;i)
mxk

Xn�1

k�1

(uk;i)
m

�
S(N) � bN(un�1;i)

mxn�1

M(N) � (un�1;i)
m

(23)

where S(N)�aN
k�1(uk;i)

mxk; M(N)�aN
k�1(uk;i)

m;
N is the number of calibration sets, and n is the

parameter which continuously counts the number
of added objects. This restriction works in a way

that clusters are virtually fixed in the sense that a

drifting of a cluster’ location is not allowed. The

effect of the modified flexible rules can be seen as a

contrast enhancement in a membership plot, i.e., a

plot in which the memberships of each cluster are

shown against time. There is no rule how to

determine to use its parameters. Teppola (1999)
suggested the following ‘quick and dirty’ rule: the

parameters are used to put more weight on the new

objects in order to more quickly respond to

changes in the process mean and the value for

the parameter b can be set to be between 0.01 and

0.1. Other updating rules or criteria such as the

partition entropy, moving window and conditional

updating criteria can be used as well as an
evaluation criterion for the sharpness increase of

the updated partition.

The membership values of measurements for all

clusters obtained through CFCM can give infor-

mation on the current operating condition. That

is, the membership value for the cluster responsible
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for the current operating condition is relatively
large compared to the membership values for

other clusters. Therefore, the following adaptive

monitoring guideline is proposed. If ujk:�
max(uik)]uj;lim; where ujk is the new value of a

membership function for the new object calculated

with Eq. (23), and uj;lim is a predefined control limit

for the cluster j responsible for the current sample,

then the process condition is considered to be in-
control. The control limits for the membership

values of every cluster are determined by simple

statistics or heuristic methods, such as a confi-

dence limit for the average uj using the Student’s t-

test and the percent of maximum membership

values in the calibration data set (Johnson and

Wichern, 1992; Montgomery, 2001; Yoo et al.,

2002b). In this paper, we use the simple statistics,
i.e., Student’s t-test. The control limits allow to

find the (1�/a )100% confidence interval of each

membership value. Based on the data obtained

under normal operating conditions, the interval

(1�/a )100% of the membership values is expressed

as

uj�t1�a=2;N�1

sfuigffiffiffiffiffi
N

p 5uj

5uj�t1�a=2;N�1

sfuigffiffiffiffiffi
N

p (24)

where uj is the sample mean of membership values

of the jth cluster and sfujg is the sample variance

of membership values of the jth cluster. Typically

the value of a is 0.05 for the warning limit and 0.01

for the action limit.
Various abnormal situations can be easily

detected using the method described above. How-

ever, this method may on occasion mistakenly

identify a process shift from one operating condi-

tion to another as a fault. In practice, it is hard to

immediately distinguish between a process shift

and a fault, because the detection scheme simply

shows both situations to be out of control.
Fortunately, the time traces of the membership

values of an adaptive CFCM gives information

that can be used to overcome this problem.

Teppola (1999) reported that the membership

value for an extreme object such as an outlier

approaches the value 1/C , which is the reciprocal

of the number of clusters, whereas a membership
value close to zero states that an object belongs to

another class. That is, membership values of

different classes are connected to each other.

Based on the connectivity of membership values

of each class, we propose an adaptive discrimina-

tion measure (ADM) method to distinguish be-

tween a large disturbance change and a short

disturbance, which also considers the adaptive
characteristics existing in the process (Choi et al.,

2003). The basic idea comes from the following

simple observation of the variation of membership

functions, which differs between a large process

change and a momentary disturbance. For a

momentary disturbance, a sudden decrease occurs

in the membership value of the one cluster,

whereas the membership value of the other clusters
is hardly affected. However, for a large process

change, both the membership value in the one

cluster and the membership value in the other

clusters gradually decrease together, and they

cannot be classified to any specific cluster. Hence,

the membership values are significantly correlated

during a large process change.

On the basis of the above difference, the ADM
is proposed as the minimum value of the entries in

the adaptive membership function matrix

ukut
k; uk� [u1ku2k . . . uCk]t:

ADMk:�arg min ukuT
k (25)

For two cluster cases, it means the inner product

matrix for two membership values, uik and ujk ,
where each element becomes each inner product

(uik , ujk) between the adaptive membership values

(uik and ujk) for clusters i and j , respectively. It has

a similar mathematical form as the covariance

matrix. With this definition, a gradual increase in

the ADM means that the process has undergone a

large operating condition change. Otherwise, the

detected disturbance is due to a short disturbance.

2.5. TSK fuzzy modeling method

A fuzzy inference system is an effective means of

creating models based on human expertise in a

specific application by a selection of fuzzy IF-

THEN rules, which form the key components of

the system. Having selected the IF-THEN rules,
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fuzzy set theory provides a systematic calculus to
deal with information linguistically, and it per-

forms numerical computation by using linguistic

labels stipulated by membership functions. The

fuzzy inference system has the properties of a

structured knowledge representation in the form

of fuzzy IF-THEN rules. Therefore, this system

provides a good framework for applying human

expertise in the construction of inference models.
The fuzzy inference system proposed by Takagi,

Sugeno and Kang, known as the TSK model in

fuzzy system literature (Jang et al., 1997; Bang et

al., 2002; Yoo and Lee, 2001), provides a powerful

tool for modeling complex nonlinear systems. It

decomposes the input space into fuzzy regions and

approximates the system in every region by a

simple model. The overall fuzzy model is thus
considered as a combination of interconnected

subsystems with simpler models. Typically, a TSK

model consists of IF-THEN rules that have the

form

Ri: if x1 is Ai1 and . . . and xr is Air

then yi�b0�b1x1� � � ��brxr

for i�1; 2; . . . ; L (26)

where L is the number of rules, xi �
[x1 x2 � � � xr]

T are input variables, yi are local

output variables, Aij are fuzzy sets that are

characterized by the membership function Aij (xj),

and bi�[bi0 bi1 � � � bir]
T are real-valued para-

meters. In general, Gaussian-type membership

functions are used to build the model. They are

defined by

Air(xr)�exp

�
�

(xr � cir)
2

2s2
i

�
;

i�1; 2; . . . ; L

(27)

where cir is the center of the ith Gaussian

membership function of the r th input variable xr

and si is the width of the membership function.

The overall output of the model is computed by

aggregating the individual rules’ contributions.

y�

XL

i�1

tiyi

XL

i�1

ti

�

XL

i�1

ti(bi0 � bi1x1 � � � �� birxr)

XL

i�1

ti

�
XL

i�1

wi(bi0�bi1x1� � � ��birxr) (28)

where ti is the firing strength of rule Ri , which is

defined as

ti �Ai1(x1)�Ai2(x2)� � � ��Air(xr) (29)

and wi�ti=a
L
i�1ti is the normalized firing strength

of the ith rule. Fig. 1 shows a schematic block
diagram of the TSK fuzzy model. Since each rule

has a crisp output in the TSK model, the overall

output is obtained via a weighted average.

The great advantage of the TSK fuzzy model is

its descriptive power, which stems from its ability

to describe complex nonlinear systems using a

small number of rules. Moreover, the output of the

model has an explicit functional form of Eq. (28)
and the individual rules give insights into the local

behavior of the model. The good interpretability

of the fuzzy system may match the utility of the

PCA method in intuitive data analysis.

2.6. Fuzzy principal component regression method

Since in practice data are usually nonlinear in

most processes, it is desirable to have a nonlinear

modeling approach which can represent any non-

linear relationship and still attain the robust
prediction property of the PCA approach. For

such a nonlinear modeling method, we propose the

FPCR method which is basically an integration of

PCA preprocessing and a TSK fuzzy model. First,

we use PCA methods to reduce the dimensionality

of the data and to remove the collinearity. The

original variables are replaced by PCA score

values that have better properties (orthogonality)
and also span the multidimensional space of the

original variables. The inverse of the PCA scores

should give no problems because of the mutual

orthogonality of the PCA scores. Then, the TSK

fuzzy model is used to regress the PCA scores on

the output variables. It captures the nonlinearity
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and multi-model property of the biological treat-

ment system.

Like the original TSK fuzzy model, the overall

output of the FPCR model with score values (ti ) of

the PCA model is computed by aggregating the

individual rules’ contributions:

y�

XL

i�1

tiyi

XL

i�1

ti

�

XL

i�1

ti(bi0 � bi1t1 � � � �� birtr)

XL

i�1

ti

�
XL

i�1

wi(bi0�bi1t1� � � ��birtr) (30)

where y is the output variable, L is the number of

rules, r is the number of PCs, and ti are the score

values of the PCA model. Since the TSK fuzzy

model needs to construct linear regression models

in different partitions, we should design the

parameters of the membership function and the

rule base of these partitions in the input space. The
parameters of a fuzzy membership function can be

determined by various heuristics and it can be a

topic of research by itself. However, because it is

difficult to manually design the fuzzy system, a

clustering method can be utilized to automatically

carry out this task. For simplicity, we use simple

heuristic rules in this paper. Fuzzy rule bases are

determined using the input space partition method

with the CFCM clustering algorithm to identify

natural grouping behavior of input data. The ci , si

and bi values are determined using the CFCM

clustering algorithm, the nearest neighbor heuristic

rule suggested by Moody and Darken’s (1989) and

a global learning procedure (see Appendix A).

The FPCR method differs from the direct TSK

fuzzy modeling approach in that the data are not

used directly to train the TSK model but rather the

score values of the PCA are used as feature vector.

This transformation decomposes the multivariate

regression problem into a few univariate regression

problems and simplifies the TSK model. The TSK

method is a type of kernel regression method,

where the input variables are transformed non-

linearly to feature space variables and then the

transformed data set is regressed linearly. Well-

designed nonlinear transformation procedures

usually reduce the collinearity problem. In the

kernel regression method, the method of nonlinear

transformation is directly related to the regression

performance. However, designing an optimal non-

linear transformation for high-dimensional and

collinear data sets is very difficult, and the result-

ing models often suffer from over-fitting or local

minima. However, the robust data reduction

Fig. 1. Block diagram of the TSK fuzzy model.
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characteristic of the PCA method can compensate
for this problem in the TSK fuzzy modeling

method. Moreover, the interpretation based on

fuzzy rules can give a new way to monitor

nonlinear systems. For example, each sample of

a system modeled by FPCR can be classified

according to the fuzzy rule that has the largest

firing strength value on it.

Fig. 2 shows the framework of the proposed
FPCR nonlinear modeling and monitoring

method. First, a PCA model is constructed with

normal historical data as a dimension reduction

tool in order to remove the high-dimensional,

collinear and over-fitting problem of the original

TSK fuzzy model. Second, the transformed data in

the reduced dimension spanned by the transforma-

tion vectors in PCA are classified into several
clusters using an adaptive fuzzy c-means clustering

to trace a successive change of states between

several operating conditions, and are monitored

using an ADM to distinguish between a long

process change and short disturbances. Third,

the TSK fuzzy model predicts the key output

variable, which is able to capture the nonlinearity

and multi-model characteristics of the process.

3. Results and discussion

Advanced modeling and monitoring strategies

for WWTP have recently attracted much interest

as a consequence of the increasing stringency of

environmental regulations. However, most

changes in biological processes are slow and
recovery from failures can be time-consuming

and expensive. For example, it can take several

weeks or even months for the process to recover

from an abnormal operation. Therefore, advanced

modeling and monitoring methodologies are espe-

cially important for this process. The proposed

method is applied to modeling and monitoring of

the process data obtained from a full-scale waste-
water treatment plant in Korea.

3.1. Process data

Process data were collected from a biological

wastewater treatment plant which treats cokes

wastewater from an iron and steel making factory.

The data contained daily average values measured

between 1 January 1998 and 9 November 2000,

with a total of 1034 samples. This treatment plant

uses an activated sludge process that has five

aeration basins (each of size 900 m3) and a
secondary clarifier (1200 m3). The plant layout is

shown in Fig. 3. The treatment plant has two

influents: wastewater arrives either directly from a

cokes making plant (called BET3) or as pretreated

wastewater from an upstream WWTP at another

cokes making plant (called BET2). The cokes-oven

plant wastewater is produced during the conver-

sion of coal to cokes. This type of wastewater is
extremely difficult to treat because it is highly

polluted and most of the chemical oxygen demand

(COD) contains large quantities of toxic, inhibi-

tory compounds and coal-derived wastewaters

Fig. 2. Schematic diagram of the FPCR nonlinear modelling and monitoring method (for a detailed discussion, see text).

C.K. Yoo et al. / Journal of Biotechnology 105 (2003) 135�/163 147



that contain e.g., phenolics, thiocyanate, cyanides,

poly-hydrocarbons and ammonium.

Eleven measured variables which are the X

blocks in PCA, were used to model the process

output variables, the removed COD, that is,

CODin�/CODout. Table 1 describes the process

variables and presents the mean and standard

deviation (S.D.) values of the input and output

variables. The process data consisted of daily

mean values with a total number of 948 observa-

tions, where 86 observations were eliminated due

to measurement errors, based on discussion with

the operators. The first 635 observations were used

for the training of the PCA model with the mean-

centered and auto-scaled data that were prefiltered

with a median filter. The remaining 314 observa-

tions were used as a test data set in order to verify

the proposed method.

3.2. Process analysis using the PCA method

When designing the PCA model, it is important

to determine the number of PCs of the PCA

model. It should be determined considering both

the curse of dimensionality and the loss of

information. Several techniques exist for determin-

ing the number of PCs, but there appears to be no

dominant technique (Chiang et al., 2001). Four

PCs were found adequate based on the cross-

validation of the prediction residual sum of

squares (PRESS). It managed to capture about

56% of the input variance by projecting the

variables from dimension 12 to dimension 4. The

results of the PCA model are given in Table 2.

For the interpretation of the WWTP data, we

consider the PCA loading weights to see how X

variables are interrelated. Fig. 4 shows that

Fig. 3. Plant layout of a cokes wastewater treatment process in Korea.

Table 1

Process variables in coke WWTP

No Variable Description Unit Mean S.D.

X1 Q2 Flow rate from BET2 m3 h�1 178 15.3

X2 Q3 Flow rate from BET3 m3 h�1 84.8 8.1

X3 CN2 Cyanide from BET2 mg l�1 2.5 0.35

X4 CN3 Cyanide from BET3 mg l�1 14.9 1.768

X5 COD2 COD from BET2 mg l�1 157.8 19.88

X6 COD3 COD from BET3 mg l�1 2088 306.9

X7 MLSS_%E MLVSS at final aeration basin mg l�1 1547 292.8

X8 DOAT DO at final aeration basin mg l�1 1.99 0.98

X9 Tinfluent Influent temperature 8C 37.43 2.353

X10 TAT Temperature at final aerator 8C 30.9 2.288

X11 pHAT pH at final aeration basin mg l�1 7.225 0.23

Y CODred COD reduction mg l�1 605.4 97
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specific X variables load strongly in the first two

PCs dimension. It confirms that the PCA method

distinguishes the chemical and biological variables,

which occupy the different regions of the plot and

exhibit a well-defined pattern. Eleven input vari-

ables fall into three groups. The first group is

connected with the influent substrate and environ-

mental conditions (COD2, COD3, TAerator, pHAera-

tor). It demonstrates that the COD removal rate is

strongly correlated with the COD load and the

temperature in the aerators. This corresponds to

the fact that heterotrophic biomass activity is

influenced by the temperature in the biological

treatment. These variables are uncontrolled or

partially controlled throughout the process and

therefore exhibit large variations. The second

group is related to the microorganism concentra-

tion and reaction kinetic component (MLSS_#E

and DOAerator) which are rate related component

(DOAerator) in the biological reaction rate, such as

in the Monod equation. This grouping indicates

that the DO concentration in the aerator and

temperature in the influent is strongly related to

the amount of microorganisms in the total system

(aerator and settler). This suggests that the DO

concentration in the aeration tank should be

controlled. The third group of CN2, CN3 and Q2

in the upper region of the loading plot is associated

with a reaction inhibition effect. Cyanides are

toxic to heterotrophic bacteria and inhibitory to

the reaction rate. Hence, the cyanide load is

counter-correlated with the heterotrophic organ-

isms concentration (MLSS_#E). This relationship

manifests itself in opposing directions of the first

and second clusters in the loading plot. Hence,

shock loading of cyanides in the wastewater

influent causes a deterioration of the biological

treatment process. The adverse effects of cyanides

have been well established in previous experimen-

tal studies (Lee et al., 2002; Yoo et al., 2002b).

Table 2

Percent variance explained by PCA model with 4 PCs

Eigenvalue X blocks (cumulative)

PC 1 2.27 20.6

PC 2 1.50 34.3

PC 3 1.35 46.6

PC 4 1.21 57.6

Fig. 4. Loading plot of variables of PCA model.
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3.3. Statistical process monitoring

Fig. 5 describes the Hotelling’s T2 chart and

SPE plot of the PCA analysis, where the 95%

confidence limit is used. During samples 90�/120,

the T2 and SPE values exceed the confidence limit,

detecting a fault. We can infer a certain process

change interval from Fig. 5. To identify the cause

for the deviation, the contributions from every

measurement variable can be calculated. Fig. 6

shows the contribution plot at sample 212, where

the WWTP received a high input of cyanide, a high

COD load and at high temperature in the aerator.

It reduced the activity of the microorganisms. The

second event, from sample 210 to the last sample

of the test dataset is due to a change of the

operating strategy. This results in a change of data

structure in this period. After sample 200, the SPE

chart fluctuates above and below the confidence

limit. The operators confirmed that this fluctua-

tion of the SPE chart originated from the new

operating condition, in which the microorganisms

had adapted to the disturbance and the WWTP is

operating normally under the new conditions.

That is, because of the microorganism’s adapta-

tion ability and the control actions applied in the

WWTP that would bring the system to a new

steady state after process changes or disturbances

occurred, one could assume that a relation with

similar variance but different mean could approxi-

mately hold. However, process monitoring based

on a single PCA model is inadequate because not

all of the measurements are static, which means

that the assumptions of data normality and

absence of time-correlation are not satisfied. As

an alternative approach, the membership values of

each cluster for the multiple operating conditions

and an adaptive scheme to deal with the micro-

organism’s adaptation will be tested.

In CFCM, appropriate values must be deter-

mined for several parameters. The number of

partitions C was determined to be 4, the fuzzifier

m was set to 1.5 and the adaptation constant b

was set to 0.01 on the basis of the results of many

simulations under various conditions. In addition,

g of Eq. (21) was set to a value of 0.9, although g

could vary over the range of 0.1�/0.99 without

significantly affecting the clustering results. A

suitable initial cluster prototype matrix must be

determined for fast convergence of the algorithm.

Fig. 5. Monitoring performance based on T2 and SPE charts of the PCA model with 95% confidence limits.
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Following the initialization scheme proposed by

Chintalapudi and Kam (1998), we initialized the

parameters of s , Ck and g which represented their

corresponding clusters mixed with some noise as

the initial centroid vectors. For process monitor-

ing, each membership value for every local cluster

from ACFCM was monitored. Additionally, the

ADM’s were used to detect the process drift or

shift and to discriminate such process changes

from instantaneous disturbances.

The score values of the independent data set X

are displayed in the reduced dimension spanned by

the first four loading vectors, as shown in Fig. 7.

Most observations fall into four small regions,

where each region represents a distinct operating

condition. The centers of the cross signs in Fig. 7

indicate cluster centroids (also called cluster pro-

totypes). Four centroids represent the seasonal

variations with successively the summer, spring,

autumn and winter from the left side. This is, of

course, due to the seasonal variations in the mean

value. The process indeed has four local process

operating conditions which change periodically

according to the seasonal variations. The conver-

gence toward the cluster prototypes is shown in

Fig. 8. The circle symbols in this figure indicate the

locations of cluster centers in the model subspace.

All prototypes converge to their optimal points

within 30 iterations. If the initial values of the

cluster centers are selected reasonably, conver-

gence is very fast and the prototypes converge.

Evaluating Fig. 9 in which the membership

values of all samples are plotted against sample

number can be more relevant than comparing

several T2 charts for the separate class models.

Membership values of each cluster show periodic

seasonal variations in a similar manner. The

dotted lines represent the confidence limit using

Students’ t-test in each cluster. Here, the value of

a , 0.05, is used to find the (1�/a )100% confidence

interval of each membership value for the warning

limit. According to this approach, a sample

belongs to a cluster if its membership value

exceeds the confidence limit for the cluster.

The recursive updating of the cluster prototypes

by CFCM is shown in Fig. 10. Cluster prototypes

of CFCM are recursively updated with the flexible

updating rule, Eq. (23). Also, the projection of the

Fig. 6. Contribution plots of the PCA score values at sample 230.
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test data into the model space reveals that large

process changes and drifting occurred during the

test. Fig. 11 shows the membership values of the

test data using the ACFCM clustering. Inspection

of Fig. 11 reveals that under the above classifica-

tion scheme some samples do not belong to any

cluster. These samples correspond to an operating

mode change. However, each cluster prototype is

affected very little by samples in such new condi-

tion because samples in a new operating region are

Fig. 7. CFCM clustering results in the reduced dimension spanned by the four loading vectors. The cross point of each�/sign

represents the corresponding cluster prototype.

Fig. 8. Convergence of four cluster prototypes. (a) cluster 1, (b) cluster 2, (c) cluster 3, (d) cluster 4. Circle symbols represent the

location of a cluster center in the reduced feature dimension.
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assigned low credibility and, hence, have low

membership values to both neighboring clusters.

This confirms the ability of the CFCM clustering

method. In general, FCM provides only inter-

cluster information, whereas PCM provides only

intra-cluster information. As compromising con-

cept of these two different clustering algorithms,

the membership values in the CFCM provide not

only inter- but also intra-cluster information.

As mentioned above, the ADM can help to

solve an important shortcoming, that is, the

discrimination between an operating condition

change and an instantaneous disturbance. The

static discrimination measure (SDM) and the

ADM of the membership values for the four

clusters in the test data are shown in Fig. 12(a)

and (b), where the SDM is composed of the

membership functions computed using the non-

adaptive CFCM clustering. As shown in Fig.

12(b), the ADM shows peaks at samples 100 and

120 and another peak at samples 220 and 250,

indicating that process changes occurred at these

times. At samples 100 and 120, the process

received influents with a high cyanide and COD

content and a small influent flow rate, i.e., a highly

concentrated load. This influent reduced the

activity of the microorganisms. These variations

of the microorganism characteristics which were

caused by the influent load, led biological process

to a gradual operating change. In addition, we

Fig. 9. Membership values of training data resulting from CFCM clustering. (a) cluster 1, (b) cluster 2, (c) cluster 3, (d) cluster 4.
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found that an external disturbance, the large

influent load, was transformed into an internal

disturbance that changed the process operating

region of the activated sludge process. Also,

membership values of cluster 4 in Fig. 11 during

this period show large changes indicating that a

process change occurred in this interval. The

ADM values show another deviation from sample

220 to 250. At this time, the wastewater treatment

plant was modified, with the addition of facilities

and treatment equipment. These changes made it

feasible for operators to adjust the operation

policy, i.e., they increased the MLSS concentration

and maintained the DO concentration at a high

value. The modifications to the plant caused

substantial changes to the process and affected

all process conditions after this time. This man-

ifests itself as a variation of the ADM in Fig.

12(b). After sample 250, the ADM can describe the

process change well by the recursive update of the

clusters, whereas the SDM in Fig. 12(a) cannot

catch these adaptive characteristics. This result

confirms that the proposed method is efficient for

adaptive process changes of unknown character-

istics. Thus, the proposed method could easily

distinguish normal process shifts from abnormal

deviations or process faults. It is therefore an

effective technique for extracting information
related to changes in process operating conditions

and can also be used to localize several process

disturbances. On the other hand, other variations

in the local clusters such as an instantaneous

disturbance did not affect the ADM.

3.4. FPCR modeling

In this work, a FPCR predictor was designed

which has four inputs and one output variable,

where the input consists of the four score values of

the PCA method and one output variable which is

the reduction of COD in the wastewater treatment

plant. Considering this parsimonious model and
avoiding over-fitting, we aimed for a small rule

base and selected L�/4 as the number of rules by

clustering on the PCA score plane. This can also

be changed by a visual check on the score plot by

experts. It comes from the fact that the number of

fuzzy partitions determines the number of fuzzy

Fig. 10. Adaptation of cluster prototypes of CFCM with adaptive updating: Training data (�/), test data (k), trajectory of cluster

prototype (�/).
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rules constituting the underlying TSK fuzzy

model. Visual checking is possible because of the

robust data reduction by the PCA method and the

2D presentation properties of the PCA method.

Other PCR methods such as linear PCR and

nonlinear PCR also have these properties, but

they lack the interpretability and high nonlinear

regression capacity of the TSK inner relation

function. The fuzzy rules of the TSK function

provide insights into the model which allows us to

make a simple linear prediction of its behavior

even in the extrapolation range.

Fig. 13 shows plots of the three membership

functions of the TSK fuzzy model and Table 3

represents the result of the fuzzy rule sets using the

CFCM clustering method, where both MF para-

meters and corresponding fuzzy rule bases are

determined and linear parameters of the conse-

quent part are determined by the generalized least

square method. The membership function and the

Fig. 11. Membership values of test data resulting with ACFCM clustering. (a) cluster 1, (b) cluster 2, (c) cluster 3, (d) cluster 4.
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rule bases are determined using the input space

partition method with the CFCM clustering algo-

rithm identifying natural grouping behavior of the

input data. Figs. 14 and 15 present the prediction

results and the scatter plot of the PCR and FPCR

model for the reduction of COD in the training

data set and test data set, respectively. Fig. 16

shows the prediction results and scatter plot of the

simple TSK fuzzy model using all eleven variables

to predict the reduction of COD in the test data

set. As expected, the FPCR shows a better

prediction ability for the COD reduction than

the simple TSK fuzzy model and the PCR method.

We can infer from the scatter plot that the FPCR

method is capable of reducing the variability of the

scatter plot in the training data, that is, it is more

normally distributed. The scatter plot shows some

disparity between the predicted and the measured

values in the test data. The reason of disparity in

the scatter plot is due to the disturbance. As shown

in the ADM, the WWTP had experienced a large

change in operating conditions in the test periods.

These process transitions altered the type of

microorganisms and sludge, which changed the

process dynamics. Because the FPCR model is

designed to capture the adaptive and multiple

operating conditions, the FPCR model showed

superior prediction results in these disturbance

events. In particular, the simple TSK fuzzy regres-

sion and the PCR model show almost the same

prediction performance in the training and test

data. This result confirms that the collinearity

between the original eleven variables clearly exists.

It can be concluded that a few PCs are enough to

model the output variable in the process without

using all variables and a considerable dimension

reduction can be achieved by the PCA method.

To compare the prediction capability of the

simple TSK fuzzy regression, the PCR and the

FPCR, a root mean square error (RMSE) and

nondimensional error index (NDEI) was used. The

NDEI is defined as the RMSE divided by the S.D.

of the target output. Table 4 lists the prediction

capability results of different methods. The FPCR

method shows a more accurate prediction cap-

ability and has a lower RMSE and NDEI than the

simple TSK fuzzy regression and the PCR. On the

other hand, it is possible to use the FCM method

with more PCs or all eleven variables directly.

Because there is no projected plane in the simple

Fig. 12. Static and ADM of membership values for four clusters in the test data: (a) SDM, (b) ADM.
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TSK approaches using all eleven variables, it is not

possible to visualize the data. Moreover, the

collinearity problems between the original vari-

ables cannot be eliminated. That is, there are many

variables and the collinearity between the different

variables increases the inverse problem of the TSK

fuzzy regression and the chance of spurious sub-

optimal solutions of the FCM method (Teppola,

1999). On the other hand, with the PCA approach,

the number of PCs is significantly smaller than the

number of variables and these PCs are uncorre-

lated. Additionally, it is not necessary to include

many PCs because a sufficient cluster separation is

already obtained by using the first four PCs. Still it

is true that an even better solution could be

obtained by using more than the four PCs.

Additional PCs are mainly needed to improve

the prediction ability which is to be determined by

using cross-validation. The use of PCA, as a data

compression method, decreases the chance of

getting spurious solutions.

Fig. 13. Membership functions of the TSK fuzzy model.

Table 3

Fuzzy rule sets

Rule number 1 2 3 4

PC 1 L H M H

PC 2 M H L L

PC 3 H H L L

PC 4 M H M M
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Fig. 14. Prediction results and scatter plot of the PCR and FPCR model for the reduction of COD in the training data set: (a)

prediction of COD reduction by PCR; (b) scatter plot of PCR, (c) prediction of COD reduction by FPCR; (d) scatter plot of FPCR.
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Fig. 15. Prediction results and scatter plot of the PCR and FPCR model for the reduction of COD in the test data set: (a) prediction of

COD reduction by PCR; (b) scatter plot of PCR, (c) prediction of COD reduction by FPCR; (d) scatter plot of FPCR.
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4. Conclusion

In this paper, nonlinear modeling using FPCR

and a disturbance diagnosis method using an

ADM and an ACFCM clustering are proposed.

First, PCA is used to reduce the dimensionality of

the data and to remove collinearity. Second, the

adaptive credibilistic fuzzy-c-means method is

used to model diverse kinds of operating condi-

tions based on a recursive update of clusters.

Subsequently, a new adaptive discrimination mon-

itoring (ADM) method is proposed to distinguish

between a large process change and a simple fault

or a short disturbance. Third, FPCR which models

the relation between the score value of PCA and

the target output is suggested to avoid the over-

fitting problem with the original variables. The

proposed FPCR model not only possesses a non-

linear modeling ability, but also the robustness

and interpretability of the PCA and fuzzy meth-
ods. The case study clearly showed that the

proposed method gave good modeling perfor-

mance and reasonable monitoring results. It was

able to identify various operating regions and

discriminate between a sustained disturbance and

a short disturbance.
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Appendix A: Identification of structure and

parameters of FPCR model

(1) The center of a TSK fuzzy model (FCM)
The center of a TSK fuzzy model ci in each rule

can be decided on the basis of the clusters of the

CFCM algorithm which is previously described.

ci�

XN

j�1

um
i;j*tj

XN

j�1

um
i;j

; i�1; 2; . . . ; L (A1)

where ui ,j is the membership function of each rule
i . This clustering method essentially deals with the

task of splitting a set of patterns into a number of

clusters with respect to a suitable similarity

measure. It is able to identify regions where the

system can be locally approximated by the TSK

model. So it is applied to obtain a rule-based

model focusing on compactness and transparency.

As a result, each fuzzy rule built at this point can
become a representative regression model of its

cluster.

(2) Moody and Darken’ rule (1989)

The widths of a TSK fuzzy model, si , are

determined using the nearest neighbor heuristic

suggested by Moody and Darken, that is

si �
�

1

p

Xp

l�1

(ci�cl)
2

�1=2

; i�1; 2; . . . ; L (A2)

where cl (l�/ 1, 2, . . . ; p) are the p (typically p�/2)

nearest neighbors of the center ci . In this paper, we

assume that all Gaussian membership functions

have the same width s , which is obtained by
averaging si in Eq. (A2) over all L centers.

(3) Global learning algorithm

The parameters, bi , of the TSK fuzzy model can

be determined by using a global learning method.

Global learning chooses the parameters of the

fuzzy rules that minimize the objective function

JG .

J� (y�Xb)T(y�Xb) (A3)

where

b� [b10 b1l � � � b1r � � � bL0 bL1 � � � bLr]

(A5)

y� [y(1) y(2) � � � y(N)]T (A6)

wi is the normalized firing strength and N is the
number of training datasets. If the parameters of

the antecedent membership functions are prede-

termined, the only unknown component in J is the

parameter vector b whose elements are the para-

meters in the linear regression equations of the

TSK model. We can use the well-known least

squares estimation (LSE) method to solve the

parameter vector.

b�(XTX)�1XTy (A7)

Or we can use a computationally efficient meth-

ods, such as SVD, to solve the singularity problem

in computation of the inverse of XTX. Applying

SVD to X yields

X�

w1(1)w1(1)x1(1)w1(2)x1(2) � � �w1(1)xr(1) � � �wL(1)wL(1)x1(1) � � �wL(1)xr(1)
w1(2)w1(2)x1(2)w1(2)x1(2) � � �w1(2)xr(2) � � �wL(2)wL(2)x1(2) � � �wL(2)xr(2)

n
w1(N)w1(N)x1(N)w1(N)x1(N) � � �w1(N)xr(N) � � �wL(N)wL(N)x1(N) � � �wL(N)xr(N)

2
664

3
775 (A4)
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X �USV T (A8)

where U� [u1 u2 � � � uN ]T
/ � /RN�N and

V� [v1 v2 � � � v2L]T
/ � /R 2L�2L are orthogonal

matrices, and S�diag(s1;s2; � � � ;s2L)/ � /RN�2L is

a diagonal matrix with s1]s2] � � �]s2L]0:
Substituting Eq. (A8) into Eq. (A3) and after
simple manipulations, the minimum Euclidean

norm solution of the fuzzy rule parameters, b , is

computed as

b�
Xs

i�1

uT
i y

si

vi (A9)

where s is the number of nonzero singular values

in S (Yen et al., 1998). There are only small

differences between the LSE and SVD approaches

because the FPCR method eliminates the singu-

larity problem by PCA preprocessing.
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