

Geo - referenced toxicity of chemicals

An application of a Biotic Ligand Model with a Geographical Information System

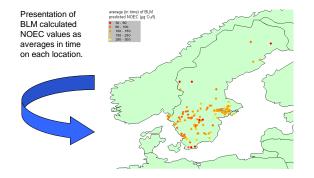
F. De Laender¹, F.A.M. Verdonck¹, K.A.C. De Schamphelaere², C.R. Janssen², P.A. Vanrolleghem¹

¹Ghent University - BIOMATH, Department of Applied Mathematics, Biometrics and Process Control, Coupure Links 653, B-9000 Gent, BELGIUM ²Laboratory of Environmental Toxicology and Aquatic Ecology, Ghent university, J. Plateaustraat 22, B-9000 Gent, BELGIUM

Introduction

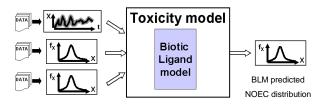
Water quality standards were always put forward as fixed values over time and location. There exist however models which can predict water quality standards as a function of water characteristics determining bioavailability: in this case a Biotic Ligand Model (BLM) for copper and the organism Daphnia Magna was used which calculated a No Observed Effect Concentration (NOEC).

Objectives

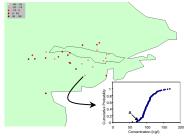

The goal of this research was to bring into account the temporal and geographical variation in the No Observed Effect Concentration (NOEC), as calculated by a chronic BLM through the application of a Geographical Information System (GIS) and Monte - Carlo simulations.

Developed methodology

•Taking into account geographical variability: GIS


 Tables containing water characteristics (e.g Dissolved Organic Carbon) determining bioavailability are geo - referenced through coordinates and thus water quality standards are also geo referenced.

location number	location - X	location - Y	Date	рΗ	DOC(mg/l)	
1	17.58	59.22	1/2/99	7.2	12	
			1/5/99	6.9	10	
			1/8/99	7	14	
5	17.55	58.92	1/2/99	6.6	10	
			1/5/99	7	8	
			1/8/99	7.1	7	


Taking into account temporal variability: Monte Carlo

- •A selection of locations (province of Svealand) was made to apply Monte Carlo simulations.
- •Input variables are substituted by their probability distributions.
- •Every location is characterised by other input distributions.
- → every location has different water characteristics.

New type of map: geographic variation of the mean of the BLM predicted NOEC distribution around the overall mean for Svealand (100 µg/I Cu)

Point A indicates that in 90% of the time, the BLM NOEC prediction will exceed 70 µg/l

Future Applications

- Initial localisation of possible problematic spots for metal toxicity.
- Application for a whole country and determining a sensitivity for a whole community instead of one species (Daphnia Magna): a global tool for ...
 - ...risk assessment: comparing species sensitivity distributions with environmental exposure distributions.
 - Comparing input with output of a model in a geo referenced way (e.g. influence DOC on BLM calculated NOEC predictions).

Take home message

Using models to account for bioavailability and using statistical techniques like a Monte Carlo simulation to account for temporal variability significantly improves risk assessment and water quality standard estimation procedures. Representing these results in a GIS allows to locate possible problematic spots.

