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Abstract: Some publications are indicating that the evaluation of kinetic parameters of 

Activated Sludge Models (ASM), is influenced by enzymatic regulation. The objective 
of this paper is to present an activated sludge model which mimics the enzymatic 
induction at the transcription level of active biomass within the frame of ASM models. 
The model has been fit on data found in literature. The proposed model gives a more 
realistic picture of active biomass and of its specific activity, but further research is 
required to support the model with experimental data. In the end, the objective is that a 
single set of values for the model parameters would allow to predict the response of 
different processes over a much wider range of conditions than currently possible. This 
will eventually extend the model to be an ever more helpful tool in research and 
understanding of processes in treatment systems. Copyright © IFAC 2004. 
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1. INTRODUCTION 
 
Most activated sludge models (eg. ASM models, 
Henze et al., 2000) are based on Monod kinetics. 
Thus, the underlying hypothesis is that cells or active 
biomass possess only one metabolic state, or level of 
specific activity.The parameters are thus intrinsically 
dependent on the operating conditions and the system 
configuration and have therefore to be evaluated for 
each of these. This is called calibration and is a major 
task in modelling activated sludge systems 
(Vanrolleghem et al., 1999). But as cells regulate 
their metabolic state according to environmental 
conditions (Daigger and Grady, 1982a; Grady et al., 
1996), significant modifications of the operating 
conditions or of the process configuration will induce 
metabolic changes. These metabolic changes are not 
taken into account in the ASM models, and thus lead 
to discrepancies between simulations and real 
process behaviour. Furthermore, it was also shown 
that evaluation of kinetic constants could be 
influenced by enzymatic regulation (Vanrolleghem et 

al., 1998; Çinar and Grady, 2001; Lavallée et al., 
2001).  
 
Actually, engineers use standard design rules and 
their experience to choose the process configuration 
or to perform the optimisation of the operation of a 
particular plant. Models are more and more often 
used, but in such cases, ASMs could only be of some 
assistance as they don’t take into account the 
metabolic adjustment of the active biomass and the 
subsequent variation of the parameters. Therefore, 
engineers interested in making modifications to a 
process configuration, or interested in optimising 
operating conditions, possess few tools to predict the 
behaviour of the real plant after the modifications. 
Thus, a new model would help in the understanding 
of transient behaviour of the activated sludge 
process, and in the optimised design and operation of 
the process. 
 
Also, nucleic acid probes are more and more often 
used in studies of wastewater treatment processes 



 

(Wilderer et al., 2002). So, quantification of active 
cells with probes will require models with further 
refinement in the description of active biomass as the 
variation of the specific activity would be taken into 
account.  
 
Some authors showed transient behaviours of pure 
cultures as well as activated sludge (Chiu et al., 1972; 
Daigger and Grady, 1982a and b). The understanding 
of these transient behaviours (in these cases the 
variation of the maximal growth rate) remained not 
well understood as the r-RNA theory could not 
explain all of these (Daigger and Grady, 1982b). 
Also, the start up of metabolic processes after sudden 
substrate addition has not been described entirely by 
the usual models describing substrate uptake and 
storage processes (Vanrolleghem et al, 1998; Daigger 
and Grady, 1982a). According to biochemistry 
literature, the mechanisms describing the growth 
process seem to be well understood, but the dynamics 
of the whole process is still not well defined 
(Cangelosi and Brabant, 1997; Muttray et al., 2001). 
So, a new model would help in the understanding of 
transient dynamics in microbial cultures.  
 
The objective of this research is to propose some 
modifications to the ASM by introducing enzymatic 
induction at the transcription level to model the 
variation of the specific activity of cells. The goal is 
to get a more realistic representation of active 
biomass, and therefore a better evaluation of the 
kinetic parameters. The aim of the proposed model is 
to model the varying specific growth rate of the 
active cells. With the proposed representation, 
parameter identification would become a procedure 
independent of sludge age, or independent of process 
configuration which is not possible with the current 
ASM. So, optimised design or operation of 
wastewater treatment plants could be done with the 
help of a better suited mathematical tool. 
 
 

2. DESCRIPTION OF THE MODEL 
 
Recent works in biochemistry reveal some 
mechanisms that could help to explain the observed 
transients. So, the main feature of the new model is 
that variables are introduced in the model to take 
these phenomena into account. Based on an extensive 
literature review, these new variables will model 
some key components in the description of growth 
rate. The description of the heterotrophic biomass 
includes 23 processes, 28 parameters and 16 
components. Similar to ASM, the model is presented 
under a Peterson matrix form. As parameters are 
linked to processes with different time constants, it is 
possible to perform independent identification of 
subsets of parameters with a suitable experimental 
procedure.  
 

The representation of the biomass is a structured one. 
Cells will be separated in different components, i.e. 
intracellular substrate, endogenous reserves such as 
glycogen or PHA, and some proteins or enzymes. 
The enzymes produce the metabolites used by the 
cell for growth and are those describing the reactions 
shown in Figure 1.  
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Figure 1 Schematic representation of the main 

metabolic pathways. 

A similar representation was initially proposed by 
Dircks et al. (2001). In Figure 1, substrate (SS) is 
taken up by the cell to form an intracellular substrate 
(BS). The cell can grow on this intracellular substrate, 
make stored products (BSTO) or produce utilization 
associated products (UAP). Nutrients (N) are 
required for growth of active cells. All of these 
processes could be induced and regulated at the 
transcription level as proposed by Ramkrishna and 
co-workers (Kompala et al., 1986; Turner et al., 
1989; Baloo and Ramkrishna, 1991). So, rates 
associated to each process are dependent of enzyme 
levels within the cells. However, the induction and 
repression of the processes is modeled with 
Michaelis-Menten kinetics as in ASM rather than 
with cybernetic variables as in Ramkrishna models. 
So, it is possible to attribute a metabolic meaning to 
each function. The word cybernetic is used for 
description of a communication process within the 
cells. 
 
The new feature of the model is a simplified 
representation of the protein synthesis system (PSS). 
The PSS representation is given in Figure 2.  
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Figure 2 The conceptual model of the PSS. 



 

According to Baloo and Ramkrishna (1991) a 
component with a short half life is modeled by the 
variable mR. As messenger RNA (mRNA) has a 
short half life, it is assumed that the dynamics of 
mRNA is modeled by this variable. The increase rate 
of mRNA is regulated by the RNApolymerase level. 
The concentration of this enzyme will be mimicked 
by the variable EG. According to Marr (1991), a 
component with a longer half life such as stable 
ribosomal RNA (rRNA), is also modeled by the 
variable EG. According to this representation, the 
protein synthesis is dependent of two main steps. 
During the first step, the RNApolymerase will 
perform the transcription of DNA code and build the 
mRNA. During the second step, ribosomes will 
translate the message of mRNA and will elongate 
proteins. For modeling convenience, the initiation of 
transcription or translation, is all described by a 
classical Michaelis-Menten kinetic mechanism. The 
rate of translation is dependent of the mRNA 
concentration and ribosome subunits (Draper, 1996). 
Obviously, the real process is much more complex 
than this representation, and several steps and 
components are not included here.  
 
So the Monod (1949) equation, largely used in 
modeling of activated sludge, is modified as follows: 
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The ratio BS/XH is the concentration of the internal 
substrate. The ratio eG/eG

max reflects the specific 
activity of the active biomass and will change the µH 
value according to the r-RNA level within the cell. 
The saturation equation including mr will change the 
µH value according to the availability of mRNA 
(Vanrolleghem et al., 1998; Lavallée et al., 
submitted). Setting the mr saturation equation to 1, it 
is possible to find the Ramkrishna and co-workers 
equation, and setting also the eG ratio to 1, one 
obtains the Monod equation. Thus, the proposed 
equation is a more general expression of the usual 
growth rate definition, and is relying on biochemical 
concepts. Values for each parameter should be 
chosen in agreement with these meanings and the 
following time constants. The components mr and eG 
will model the limitation of the growth rate by 
transcription under stringency (i.e. when cells are 
starved of substrate), and the limitation by translation 
under fast growth rate (i.e. in excess substrate 
conditions). Accordingly, after a shift-up, the growth 
rate will increase quickly with mRNA, and 
afterwards it will increase slowly with ribosome 
level, as observed by Kjeldgaard et al. (1958) and 
Cangelosi and Brabant (1997). This regulation 
process is shown schematically in Figure 3. Under 
slow growing conditions, as mRNA has a high 
turnover, its level will reduce quickly, and according 
to the Michaelis-Menten kinetic, the ribosomes will 
become in excess compared to the actual growth rate. 
This seems in agreement with the observations of 
Flärdh et al. (1992). So, the schematic 

representations shown on Figure 2 and Figure 3 are 
coherent with trends shown in literature. The model 
is a simplified view of cell metabolism, but can give 
good trend predictions, and has been fitted on data of 
transient behaviour found in literature (see below).  
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Figure 3 Schematic of the growth rate regulation 
mechanism. 

Some authors made the hypothesis that the ratios of 
cell wall and membrane per nucleus remain constant 
for all growth rates (Schaechter et al., 1958; Marr, 
1991). Their hypothesis is based on their 
observations that the ratio “surface areas of cell 
wall/nucleus” remains virtually constant. So, the 
same assumption is taken in the proposed model, and 
the cells will be represented by XH, the mass of 
structural components built of one nucleus, and the 
corresponding fraction of cell wall. As the ratio of 
these structural components is assumed constant, the 
evaluation of active cells should be performed by 
measurement of the DNA concentration. The specific 
COD of cells will rise and fall with the EG and mR 
levels. Thus, the variables EG and mR will be used to 
model the variation of the growth rate and also the 
rise and fall of biomass COD at the same time. 
 
 

3. THE PROPOSED EXPERIMENTAL 
METHOD 

 
Rather than a simultaneous estimation of all 
parameters at once, the estimation problem is 
subdivided in different estimations of subsets of 
parameters. The subsets of parameters are 
constructed according to their relevant time constant. 
As mR has a short time constant and EG a larger one, 
it is possible to perform parameters evaluations 
successively. Moreover, the fit of process rates and 
component concentrations (COD/L) has to be done 
simultaneously. Evaluation of the rates can be 
performed using oxygen consumption rate (rO2) 
measurements, while the evaluation of the state 
variables is performed using COD measurements. 
The evaluation of the actual growth rate should be 



 

performed using DNA measurements. The rO2/DNA 
ratio should be evaluated to estimate the specific 
activity or study the variation of the growth rate (µH,). 

From this information it is possible to deduce the 
dynamics of variables such as mR (mRNA), and EG 
(rRNA). As mR has a short half life, a quick variation 
of µH  will be caused by mR. A slow variation of µH  
will be related to EG variations as it has a larger half 
life.  
 
In the experimental results shown below, the biomass 
was cultivated in a chemostat with a hydraulic 
residence time of 8 days and glucose was the sole 
source of carbon. To simulate a start-up, a transient 
was induced by applying a 5 times dilution of the 
biomass. The rO2 evaluation was performed with a 
LSS respirometer (Spanjers et al., 1998). The DNA 
measurements were performed using bisbenzimide 
(Paul and Myers, 1982). DNA was extracted 
according to Muttray et al. (2001). Glucose and 
glycogen concentrations were evaluated using the 
anthrone method (Daniels et al., 1994). Growth of 
protozoa was inhibited by applying an anaerobic 
period of 3 hours daily. 
 
 

4. FIT OF THE MODEL 
 
With the chosen representation of active biomass, it 
is possible to model variations of the growth rate and 
some other processes (such as storage) within cells. 
The proposed mathematical formulation is able to 
describe the variation of the specific activity of active 
biomass.  
 
In figure 4 it is shown that it is possible to model the 
transient behaviour of activated sludge during short-
term batch experiments (Vanrolleghem et al., 1998).  
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Figure 4 OUR start-up phenomena observed 

when 3 pulses of Ss are dosed with 22 
minutes interval to sludge that was 
starved for 12 hours (data from 
Vanrolleghem et al., 1998). 

In this experiment, the sludge was first starved for 12 
hours. Following the starvation period, 3 pulses of 
substrate were injected in the respirometer at time 0, 
0.015 and 0.030 days. On the first and second pulse 
one can observe a gradual increase of the rO2 or, in 

other words, of the growth rate, until the added 
substrate is depleted, leading to the sudden drop of 
rO2. As mR has a short time constant, the model was 
fitted on these data by changing the increase and 
decay rate of the variable mR. In the experiment 
depicted in figure 4, the available substrate is used 
for reconstruction of the mR pool after the starvation, 
raising the specific rO2. After the second pulse (after 
0,025 d), the mR concentration has reached the 
saturation level and the decline of the specific 
activity associated to a decay of the mR concentration 
is no longer observed in the third pulse data. The 
proposed analysis is a simplified view of PSS 
activity, but fitting of the model on this experiment 
gives good agreement with the data.  
 
In figure 5, several batch experiments that are 
extending over several hours were fitted with the 
same set of parameters used in figure 4.  
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Figure 5 Fit of lag phase (data from Chiu et al., 

1973). 

In these experiments, mixed cultures with different 
initial growth rates (µ0) showed different lag phases 
(Chiu et al., 1973). Only the initial values of the state 
variables had to be changed to obtain these fits. The 
Ks value for substrate uptake was the only parameter 
that was used as degree of freedom. According to 
Ferrenci (1999), modelling of two transport enzymes 
with different Ks values could describe the Ks 
variation. This feature could be added to the model in 
the future. The results show that the model is able to 
predict the transient in short-term experiments as 
well as in experiments extending over several hours 
which is not possible with ASM. Consequently, with 
this model the calibration procedure can be reduced, 
and several process configurations can be modelled 
without recalibration of the parameters for each 
configuration as required with the current ASM.  
 
Modelling of transcription and translation is required 
to model the growth rate variations in natural 
populations. These observations are in agreement 
with Daigger and Grady (1982a) that concluded that 
physiological adaptation occurred even in the 
presence of species selection. Of course, other 
processes as predation, parasitism or selection of 
particular species are of importance and are 

 rO2 

SS 

mR 



 

limitations in the use of the proposed model. But the 
same holds for ASM.  
 
The relative concentrations of EG, XH and the growth 
rate are presented in Figure 6. The cell components 
are expressed as a ratio to the initial concentration. In 
this figure one can see that between 0 and 0.15 d, the 
growth rate increases faster than the EG component, 
indicating that the mR variable has an effect on the 
growth rate. Between 0.15 d and 0.22 d the growth 
rate increases at the same rate as EG, indicating that 
EG is rate limiting according to the RNA-limiting 
theory. After 0.22 d the growth rate increases slower 
than EG indicating that another process is rate 
limiting. The exogenous substrate concentration 
becomes rate limiting (SS<2KS) only after 0.35 d, and 
according to the calibration procedure, in such 
circumstances the substrate uptake is rate restrictive. 
This analysis is in agreement with the analysis 
performed by Daigger and Grady (1982b) on the 
RNA, proteins and DNA increase rates in batch 
experiments. So, the use of the proposed model could 
help in the understanding of transient dynamics in 
activated sludge.  
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Figure 6 Relative concentrations of components 

during a batch experiment (µ0=0,067 h-

1). 

In figure 7, data from a start-up experiment were fit 
with the parameters used to perform the fit in the 
previous figures. Here, the decay of cells and 
hydrolysis processes were introduced in the model. 
The response of the model is in good agreement with 
the COD and glycogen data. However, the increase 
of active cells concentration (calculated with a 
COD/DNA ratio) showed a lag time of 8 days, while 
the fit of the model on these data gives a lag time of 
only 4 days. Also, the model didn’t fit the maximal 
rO2 variation (figure 8). So, the model needs some 
improvement. As the substrate uptake induced 
respiration, it is expected that the modelling of the 
successive induction of the dual substrate uptake 
systems would give a better fit on the specific 
respiration rate. 
 
So, a single set of parameter values can fit several 
experiments and simultaneously models the variation 
of several components of the biomass. Thus, the 
chosen representation of the cells seems appropriate 

to model transient phenomena in the activated sludge 
process. However, further studies are required to 
define the limitations of this new model, and more 
experimental data should be collected.  
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Figure 7 Fit of start-up transient in a chemostat. 
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Figure 8 Fit of specific respiration rate on a start-
up experiment. 
 
 

5. CONCLUSION 
 
The proposed model is aimed to increase the 
understanding of the dynamics or transitory 
behaviour of wastewater treatment systems. This 
model will also improve the quality of the kinetic 
information obtained by parameter estimation. Also, 
the specific activity description of biomass is 
expected to make the kinetic constant evaluation a 
procedure that is independent of sludge age and in 
many cases, of process configuration. Thus, a single 
set of values for the kinetic parameters would 
describe the response of the wastewater treatment 
processes. This will eventually extend the model to a 
helpful tool for research, understanding and design of 
processes in treatment systems. 
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