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Abstract: A calibration methodology is presented for a Population Balance Model 
(PBM) using on-line flocculation data. The moving pivot discretisation technique is 
preferred to solve the PBM. A methodology for grid transformation and volume to 
number transformation is presented. Model fits on volume-based fitting variables fit the 
middle part of both the vol% and number distribution better, but under predict (30x) the 
smaller size classes. Model fits on number-based fitting variables fit the small size 
classes better, though still under predicting them (2x). For the application at hand, it is 
concluded that the model should be fitted to the number distribution. However, the im-
proved methodology pointed out that the model lacks flexibility to adequately describe 
the data. Copyright © 2004 IFAC. 
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1.INTRODUCTION 
 
The activated sludge process can roughly be divided 
into 2 steps: purification of the wastewater and liq-
uid-solid separation. During the first step the or-
ganic loading (COD) and nutrients (N and P), are to 
a certain extent removed from the wastewater to 
meet effluent standards. This process can occur in a 
variety of configurations combining aerobic, anoxic 
and anaerobic zones and has been thoroughly stud-
ied. The second step deals with the separation of the 
purified water and the sludge flocs. Compared to 
the first step, this process is much less understood 
and is still a frequently occurring bottleneck in the 
overall activated sludge process. Indeed, bad clarifi-
cation results on the one hand in a loss of biomass 
(which contains nutrients and COD) via the over-
flow, which deteriorates the effluent quality. On the 
other hand the overall removal efficiency of the 
plant deteriorates since biomass that is capable of 
purifying the incoming wastewater is lost from the 
system. Due to this lack of knowledge, simple 1-
dimensional models are often used to approximately 
describe the final clarification step when attempting 
to model the entire activated sludge process (purifi-

cation + separation). It is generally accepted that 
more accurate and knowledge-based models to de-
scribe the separation step are needed to achieve bet-
ter overall model predictions. 
 
One of the main reasons of the poor understanding 
of the activated sludge flocculation process is the 
difficulty of monitoring it on-line. Recently, a laser 
diffraction technique was used to provide the ex-
perimental data to which a population balance 
model (PBM) was fitted by estimating the aggrega-
tion and breakage parameters of sludge flocs (Biggs 
& Lant, 2000; Nopens et al., 2002). The current 
paper introduces a considerably improved overall 
methodology to calibrate a PBM for sludge floccu-
lation based on experimental size distribution data 
obtained on-line during flocculation. 
 

2. THE POPULATION BALANCE MODEL 
 
All models dealing with activated sludge use a 
lumped variable to describe the biomass: the sludge 
concentration X. However, in order to allow for 
description of processes including interactions be-
tween sludge flocs another way of describing the 
biomass is needed: a segregated model. This type of 



model segregates the biomass into individual sludge 
flocs implying all floc properties (e.g. size) to be 
segregated too. This results in property distributions 
instead of a single quantity for a certain property. 
Models describing the time evolution of these prop-
erty distributions are known as Population Balance 
Models (PBM). The general format of a one-
dimensional PBM (i.e. with one property) looks like 
(Ramkrishna, 2000): 
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where for this application x is the floc size (ex-
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scribes the time evolution of the floc size bu-
tion. Since the model will be used to de er 
short flocculation experiments (max. 4h), i  be 
assumed that no significant growth rs 
( X& (x,t)=0). h(x,t)agg/break account for discontinuous 
aggregation and breakage processes (Figure 1). 
They describe the birth (+) and death (-) of flocs of 
a certain size x during an infinitesimal time interval 
δt. Since both aggregation and breakage can give 
rise to birth and death of flocs, both terms consist of 
4 processes: aggregation birth, aggregation death, 
breakage birth and breakage death. The measured 
initial number distribution is used as initial condi-
tion for eq. 1. 
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Figure 1. Aggregation and breakage dynamics of the 
discretised population balance (Biggs, 2000). 

 
Aggregation models are often based on the Smolu-
chowski model (Ramkrishna, 2000): 
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in which:  υ
ε=G            (4) 

where G is the average velocity gradient (s-1), υ the 
kinematic viscosity (m2.s-1) and ε  

2 -3
the average tur-

bulent energy dissipation rate (m .s ). α was chosen 
to be a constant between 0 and 1. Breakage models 
typically look like (Ramkrishna, 2000): 

    (5) 

where S(x) is the breakage rate of particles of size x 
(s-1) and Γ the breakage distribution function. S(x) 
was taken from Spicer & Pratsinis (1996): 

  (6) 
where a is a constant (=1/3) and A the breakage rate 
coefficient (cm-3as-1). When binary breakage is as-
sumed, which was the case in this study, Γ equals 2. 
 
Eq. 1-6 describe the PBM used in this study. As can 
be observed from eq. 2 and 5, the birth and death 
terms are typically integral functions of n(x,t), mak-
ing eq. 1 a so-called integro-differential equation. 
This type of equation rarely has an analytical solu-
tion. Ramkrishna (2000) described a number of so-
lution methods, one of them being discretisation of 
the population property. This technique divides the 
property range in a finite number of classes (i), 
transforming the integro-differential equation into a 
set of i ordinary differential equations. Several 
discretisation schemes exist, differing in terms of 
(1) freedom of grid choice and (2) conserved 
properties during the discretisation. Kumar & 
Ramkrishna (1996) proposed 2 general techniques: 
the fixed and moving pivot. The pivot is the 
representative diameter of a size class. 
 

3. MATERIALS AND METHODS 
 
3.1 Experimental set-up 
 
The experimental data used in this study were ob-
tained from Biggs & Lant (2000) who studied the 
influence of mixing intensity on flocculation kinet-
ics. The sludge flocs were sonicated into single cells 
(1µm) and microcolonies (10µm) (avoiding signifi-
cant cell lysis) and then allowed to reflocculate un-
der different mixing intensities and was circulated 
through a Malvern Mastersizer E (Malvern, UK) in 
order to obtain on-line quantitative information 
about floc structure and floc size distribution (FSD) 
The measurement technique is based on laser light 
diffraction and has been used by others (Spicer & 
Pratsinis, 1996; Govoreanu et al., 2003). The FSD 
is presented as a vol% distribution. Other descrip-
tive parameters can be derived from these FSD’s 
such as the mass mean diameter (or D[4,3]) defined 
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where α (-) is the collision efficiency and β(x-x’,x) 
(cm3.s-1) the collision frequency for particles of vol-
ume x (cm3) and x-x’ (cm3). This model describes 
both the transport of flocs towards one another (β) 
and the probability that these collisions lead to ag-
gregation (α) accounting for short-range forces like 
van der Waals and hydrodynamic interactions. The 
description of β(x-x’,x) used in this study was taken 
from Spicer & Pratsinis (1996): 



as the ratio of the fourth and third moment of the 
distribution: 
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where xi represents the diameter of size class i (µm) 
and ∆FN(x)i the number fraction in size class i. 
 
The main advantage of the laser diffraction method 
is that it can be used in an on-line way by using a 
flow-through cell. Drawbacks are: (1) the assump-
tion of sphericity of particles and (2) the required 
dilution (< 0.2g/l). A flow rate to the flow-through 
cell of 3ml/s was selected to minimise shear effects 
and pump pulsation influences (to approximate 
isokinetic sampling) (Biggs & Lant, 2000). 
 
 
3.2 Numerical methods 
 
In order to solve the PBM, the fixed pivot technique 
and the moving pivot technique were used (Kumar 
& Ramkrishna, 1996). Both techniques were im-
plemented in the modelling and simulation software 
platform WEST (Hemmis NV, Belgium). Optimisa-
tions were conducted using a weighted least squares 
(WLS) method (Dochain & Vanrolleghem, 2001):  
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where J(θ) is the sum of squared errors (SSE), yi the 
experimental variable  the model prediction 

using parameter set θ, m the number of experimen-
tal datasets, Nj the number of experimental data 
points and 1/σi,j

2 the weight for measurement i, of-
ten taken to be the inverse of the measurement error. 
 

4. RESULTS 
 
4.1 Solution method 
 
Biggs & Lant (2000) used the discretisation tech-
nique of Hounslow et al. (1988), which is compara-
ble to the fixed pivot technique with a geometric 
grid with factor 2 (e.g. 1,2,4,8,… µm3) and conserv-
ing numbers and mass. Kumar & Ramkrishna 
(1996) compared this fixed pivot technique with an 
analytical solution for a simple PBM and found that 
it suffers from overpredictions of numbers when 
large gradients are present in the distribution. To 
deal with this, they introduced the moving pivot, 
and showed that this technique gave a much better 
prediction of the analytical solution, even for a 
coarse grid. To confirm this improved accuracy in 
this study, the PBM was solved with both tech-
niques for α=0.0065 and A=201.5. The simulation 
results in Figure 2 are represented as cumulative 
oversize numbers (CON) 

  (9) 

in order to emphasise the predictions of the large 
floc size range and the 0th  moment of the distribu-
tion in one single plot. It can be seen that the fixed 
pivot predictions starting from the same initial dis-
tribution indeed yield a lower 0th moment and a 
larger number of flocs in bigger size classes (Figure 
2), meaning that the aggregation has occurred faster 
compared to the moving pivot. Also, the model 
solved with the different solution techniques was 
fitted to one of the experimental D[4,3] data sets of 
Biggs & Lant (2000). The resulting parameter val-
ues are given in Table 1. It can be observed that the 
estimate of parameter α is much lower when the 
fixed pivot is used. This can be explained by the 
fact that the solution technique inherently speeds up 
the aggregation process. In order to fit the same data 
set, the aggregation parameter α must be decreased 
(by 50%), leading to erroneous estimates. The dif-
ference in A is less pronounced. Corroborating the 
conclusions by Kumar & Ramkrishna (1996), it is 
therefore advisable to use the moving pivot to solve 
the PBM. 
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Figure 2. Difference between fixed and moving 

pivot solutions at t=2000s. 
 

Table 1. Parameter estimates using fixed and mov-
ing pivot on the same dataset (G=19.4 s-1) 

 
technique α A 

fixed 
moving 

0.00648 
0.01364 

201.5 
195 

 
4.2 Data transformation 
 
The raw output of the Mastersizer is a vol% distri-
bution for a given grid. From this, the number dis-
tribution, necessary for the model, and some sum-
marising parameters can be calculated. This creates 
some problems: (1) recalculation of experimental 
data in case of differences between the Mastersizer 
grid and the model grid, (2) volume-to-number con-
version to obtain initial distributions to feed the 
model (3) selection of the fitting variable. The first 
two problems require data transformation. 
 
Biggs & Lant (2000) tackled the transformations by 



fitting log-normal distributions to the original raw 
vol% distributions. The fits were claimed to be good 
based on high correlation coefficients (R2 of 0.92), 
although clear deviations can be observed. This is 
illustrated in Figure 3 by comparing the raw cumu-
lative vol% distribution and the one recalculated 
from the number distribution of Biggs and Lant 
(2000). An underestimation of the volume in the 
lower end classes can be observed. From these log-
normal fits, volume fractions were interpolated over 
the entire floc size range. In a second step, the vol-
ume distribution was then transformed into a num-
ber distribution assuming the particles to be spheri-
cal. 
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Figure 3. Comparison of original and recalculated 
cumulative volume %. 

 
Although this allows the conversion of the raw data 
into the desired format for model calibration, fitting 
the log-normal distribution as intermediate step in-
troduced large errors in the number distributions. In 
fact, small deviations between the log-normal dis-
tribution and the experimental data become signifi-
cantly large when number distributions are calcu-
lated. Biggs (2000) reported this as a shift in D[4,3] 
between the raw D[4,3] and the one calculated from 
the transformed number distribution (Figure 4). 
Such differences are unacceptable and therefore an 
alternative method is needed. 
 
First, an alternative approach to deal with the differ-
ence in discretisation grid of raw data and model is 
proposed. A cumulative vol% distribution is calcu-
lated from the raw distribution and then interpolated 
at the pivots of the new grid resulting in a cumula-
tive distribution in the new grid. From the latter, the 
vol% distribution is calculated. An example of this 
transformation is given in Figure 3. The cumulative 
vol% distribution matches the raw one and the 
D[4,3] is preserved (Figure 4).  
 
Second, the incompatibility between the experimen-
tal vol% distributions and the number distributions 
in which the model is specified needs to be solved. 
In order to calculate a number distribution from the 
volume distribution, one is confronted with the fact 
that experimental data is expressed as vol% (Vi/Vf = 
ratio between the floc volume in class i and the total  
floc volume in all classes) whereas the model is 

expressed in number concentrations (Ni/VT = ratio 
between the number of particles of class i and the 
total sample volume). To convert Vi into Ni, the 
total floc volume fraction Vf/VT is needed. Since the 
Mastersizer-given Vf/VT was not trusted, an alterna-
tive method is needed. Kinnear (2002) derived a 
ratio C between the liquid and solid mass (ml/ms) 
within a sludge floc, based on the heterogeneous 
floc model and the densities of liquid (ρl), flocs (ρf) 
and dry solids (ρ ): s
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Figure 4. D[4,3] based on (1) raw Mastersizer data, 

(2) the recalculated number distribution of Biggs 
(2000) and (3) the new approach. 

 
Combining eq. 10 and the floc mass balance yields 
the following expression for the total floc volume: 
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where X is the biomass concentration (g.L-1). 
At this stage, the volume concentration and, hence, 
the number concentration can be calculated assum-
ing the flocs to be spherical: 
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where di is the diameter of a particle in size class i. 
Distributions calculated like this are now compati-
ble with the PBM and can be used for parameter 
estimation. 
 
4.3 Measurement errors 
 
Since every FSD is determined by using a large 
number of measurements, one can assume every 
Mastersizer measurement to be a counting of parti-
cles in each size class Ni. Based on this assumption, 
every single measurement of Ni can be assumed to 
be multinomial distributed (Agresti, 1990). The 
variance of such a multinomial distribution repre-
sents the measurement error and can be calculated 
as follows (Agresti, 1990): 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

N
N

NN i
ii 1)(2σ   (13) 

where N is the total number of particles. This allows 
determination of the measurement errors for all size 
classes Ni. 



 
4.4 Parameter estimations 
 
Two datasets were obtained from Biggs & Lant 
(2000) for calibrating the PBM. They contain data 
of flocculation experiments at G  equal to 19.4 and 
37.0 s-1. The new approach was used for the conver-
sion of raw vol% distributions into number distribu-
tions (X=3g.L-1, ρl=1g.cm-3, ρf=1.04g.cm-3, 
ρs=1.7g.cm-3). The PBM was fitted to 4 different 
fitting variables: (1) vol% distribution, (2) D[4,3], 
(3) number distribution and (4) weighted number 
distribution. The parameter estimates of all situa-
tions are summarised in Table 2.  
 

Table 2. Optimal values for a and A for different 
fitting variables in 2 experiments 

 
G  Fitting Variable α A J(θ) 

19.4 

Vol% 
D[4,3] 

Ni 
Weighted Ni 

0.0121 
0.0136 
0.0073 
0.0078 

166 
195 
12 
12 

1336 
2712 

1.60e19 
2.64e10 

37.0 

Vol% 
D[4,3] 

Ni 
Weighted Ni 

0.0083 
0.0081 
0.0098 
0.0078 

260 
260 
32 
18 

1926 
1958 

1.47e19 
3.76e10 

 
Results of the predictions of both the vol% and 
number distribution after a simulation time of 1920s 
are given in Figure 5 for the four optimised cases 
( G =19.4s-1). Similar results were found for 
G =37.0s-1 (not shown). From the parameter esti-
mates and the predictions of both the vol% and 
number distribution, it can be seen that the choice of 
fitting variable is critical. Both fits show that the 
model lacks flexibility and that the structure needs 
to be improved. This is not the focus of this paper, 
though. 
Fitting on the vol% distribution yields a good fit for 
the vol% distribution (Figure 5, top). However, 
when zooming in on the tails of the distribution, it 
seems that the lower and higher end size classes are 
under predicted (Figure 6). The reason for this is the 
fact that the frequencies in these classes are low and 
will have a smaller contribution to the J(θ). Fitting 
on the vol% distribution focuses on the high fre-
quency classes, which are in this case the middle 
size classes ranging from roughly 35-350 µm. For 
the application under study, these are not the most 
interesting classes, since flocs with these diameters 
will settle anyway. When looking at the vol%-fitted 
model prediction of the number distribution (Figure 
5, bottom), similar conclusions can be drawn, how-
ever, much more pronounced. Under predictions by 
a factor 10-15 occur in the classes with sizes up to 
10 µm. Parameter estimates are such that both ag-
gregation and breakage rates are high (Table 2) 
making that all particles end up in the middle of the 
size range. When fitting the model to D[4,3] similar 

results are found (Figure 5, left). This could be ex-
pected since it is based on higher moments of the 
distribution. The underpredictions of the lower end 
classes are now even larger (15-30 times) as can be 
clearly observed from Figure 5 (left). Parameter 
estimates are somewhat higher (Table 2). 
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Figure 5. Comparison of model predictions at 

t=1920s of the vol% distribution (top) and the 
number distribution (bottom) after the model 
was fitted to different fitting variables. 

 
Fitting on Ni, the prediction of the vol% distribution 
is bad (Figure 5, top). However, one can also see 
that the predictions of the lower size tail are better 
compared to fitting on vol% or D[4,3]. The predic-
tion of the number distribution yields similar results. 
Under predictions of the lower end tail now range 
between 1.5-2.5, which is much better compared to 
fits on vol% or D[4,3]. The reason for this is that 
when fitting on numbers, the absolute number of 
flocs in every class will determine which classes 
will contribute most to the J(θ). Since a lot of flocs 
are present in the lower end of the distribution, 
these classes will be focused upon during the cali-
bration. In order to do so, the parameter estimates 
are decreased, i.e. both the aggregation and break-
age occur at slower rates. In the application at hand, 
gravitational solid-liquid separation, one is mainly 
interested in a good prediction of the small flocs 
that will not settle. In this regard, it is better to fit 
the current model to the number distribution instead 
of the vol% distribution. It should be noted that this 
could be different for other applications. Finally, 
when fitting on weighted Ni using the multinomial 
approach to calculate the weights, similar results as 



the fits on Ni were found. Since the calculated 
measurement errors are positively correlated with 
the absolute numbers in the size classes, they will 
be larger for classes containing large numbers of 
particles and, hence, their weights will be smaller. 
This results in somewhat lower predictions of both 
vol% and numbers in the lower and middle range. 
Under predictions of the lower end size classes 
range between 2-3.3. Only the parameter estimate 
for α is somewhat higher due to the fact that the 
contribution of the lower end class prediction to 
J(θ) is reduced (less certain measurements) whereas 
the contribution of larger classes to J(θ) has in-
creased. 
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Figure 6. Zooming in on the small particle tail 

model predictions at 1920s after the model was 
fitted to different fitting variables. 

 
5. CONCLUSIONS 

 
A methodology was presented that deals with prob-
lems arising when calibrating a PBM using on-line 
collected experimental flocculation data. It was 
shown that the fixed pivot solution method tends to 
over predict both the 0th moment and the number of 
flocs in the large size class range leading to a severe 
under prediction of the aggregation parameter α 
(50%). It is advised to use the moving pivot solution 
method instead. The calculation of the vol% distri-
bution in the model grid was accomplished by in-
terpolating the cumulative vol% distribution at the 
pivots of the model grid. A new approach for vol-
ume to number conversion based on a fixed total 
floc volume was presented, conserving the D[4,3] 
of the original distribution. Finally, the PBM was 
fitted to 4 different fitting variables. Fitting on vol-
ume-based variables resulted in good predictions of 
the vol% distribution. However, both tails of the 
distribution are under predicted. Lower end classes 
of the number distribution were underestimated by a 
factor 10-30. Parameter estimates are such that par-
ticles end up in the middle of the size range. Fitting 
on numbers resulted in bad overall predictions of 
the vol% distribution, but the under predictions in 
the lower end tail were found to be smaller. Under 
predictions of the lower end size classes of the 
number distribution were in the range 1.5-3.3. Pa-
rameter estimates correspond to lower aggrega-

tion/breakage rates. For the application at hand, 
gravitational solid-liquid separation, it is advised to 
calibrate the model by means of the number distri-
bution since the smaller size flocs are problematic 
in wastewater treatment. However, the results ob-
tained with the theoretically better founded method-
ology have clearly pointed out that the first task at 
hand is model improvement. 
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