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Abstract 
This contribution describes the monitoring on a pilot-scale sequencing batch reactor 
(SBR) using a batchwise multiway independent component analysis method (MICA) 
which can extract meaningful hidden information from non-Gaussian data. Given that 
independent component analysis (ICA) is superior to principal component analysis 
(PCA) to extract features from non-Gaussian data sets, the use of ICA may improve 
monitoring performance. The monitoring results of a pilot-scale SBR for biological 
wastewater treatment showed the power and advantages of MICA monitoring in 
comparison to conventional monitoring methods.  
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1. Introduction 
Sequencing batch reactor (SBR) processes have demonstrated their efficiency and 
flexibility in the treatment of wastewaters with high concentrations of nutrient, nitrogen, 
phosphorous, and toxic compounds from domestic and industrial sources. A SBR has a 
unique cyclic batch operation, usually with five well-defined phases: fill, react, settle, 
draw and idle. Most of the advantages of SBR processes may be attributed to their 
single-tank designs and the flexibility that allows them to meet many different treatment 
objectives, and which is derived from the possibility of adjusting the duration of the 
different phases. But the SBR process is highly nonlinear, time-varying and subject to 
significant disturbances like hydraulic changes, composition variations and equipment 
failures. Small changes in concentrations or flows can affect effluent quality and 
microorganism growth. However, treatment performance, the key indicator of process 
performance, is often only examined off-line in a laboratory. Even though operators are 
aware that there are some problems in treatment performance, they cannot quickly find 
out or predict what the causes are and when the problems will occur because most batch 
processes are run without any effective form of real-time on-line monitoring. Therefore, 
multivariate analysis and process monitoring of SBR are crucial to detect faults that can 
be corrected prior to completion of the batch or can be corrected in subsequent batches 
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because it may take several days, week or ever months for the biological process to 
recover from abnormal operation (Lee and Vanrolleghem, 2003). 
Multiway principal component analysis (MPCA) developed by Nomikos and 
MacGregor (1994) has been shown to be a powerful monitoring tool in many industrial 
batch processes. However, it has the shortcoming that the measurement variables of the 
batch process should be normally distributed. In this work, it is shown that multiway 
independent component analysis suggested by Yoo et al. (2003) can be used to 
overcome this drawback and obtain better monitoring performance.  
 
2. Theory 
2.1 Independent component analysis (ICA) 
What distinguishes ICA from other methods is that it looks for components that are both 
statistically independent and non-Gaussian. PCA is a dimensionality reduction 
technique in terms of capturing the variance of the data which is capable of extracting 
uncorrelated latent variables from correlated data, while ICA is designed to separate the 
independent components (ICs) that are independent and constitute the observed 
variables. Furthermore, PCA can only impose independence up to second order 
statistics information (mean and variance) while constraining the direction vectors to be 
orthogonal, whereas ICA has no orthogonality constraint and also involves higher-order 
statistics (Hyvärinen et al., 2001). Hence, ICA may reveal more useful information in 
the non-Gaussian data than PCA (Hyvärinen et al., 2001).  
In the ICA algorithm, it is assumed that d measured variables x1,x2,…,xd can be 
expressed as linear combinations of m( d≤ ) unknown independent components  

msss ,,, 21 K . The relationship between them is given by 
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where X )](,),2(),1([ nxxx K= ndR ×∈  is the data matrix (in contrast to PCA, ICA 

employs the transposed data matrix.), A=[a1,…,am] mdR ×∈  is the unknown mixing 
matrix, S )](,),2(),1([ nsss K= nmR ×∈  is the independent component matrix, E ndR ×∈ is 
the residual matrix, and n is the number of samples. Here, we assume md ≥  (when d=m, 
the residual matrix, E, becomes the zero matrix). The basic problem of ICA is to 
estimate both the mixing matrix A and the independent components S from only the 
observed data X. Alternatively, one could define the objective of ICA as follows: to find 

a demixing matrix W whose form is such that the rows of the reconstructed matrix Ŝ , 
given as 

 WXS =ˆ  (2) 
become as independent of each other as possible (Hyvärinen et al., 2001).  
 
2.2 Multiway Independent Component Analysis (MICA) 
The monitoring method based on MICA is similar to that based on MPCA. MICA is 
equivalent to performing ICA on a large two-dimensional matrix X constructed by 
batchwise unfolding the three-way data matrix X. MICA decomposes the three-way 
array X into a summation of the product of independent vectors sr and loading matrices 



Ar plus a residual array E so that the ICs s become as independent of each other as 
possible: 
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where ⊗ denotes the Kronecker product ( AsX ⊗= is ),()(),,( kjAiskjiX = ) and R 
denotes the number of ICs retained. The S and A matrices in Eq. (3) can be equivalent 
to the loading matrix and score matrices by analogy with MPCA, i.e. S can be regarded 
as the score matrix T, and A can be treated as the loading matrix P. The ith elements of 
the independent vector s correspond to the ith batch and summarize the overall 
variations in this batch with respect to the other batches over the entire history of the 
batch. The mixing matrix, A, summarizes the time variations of the measured variables 
about their average trajectories. The elements of this matrix are the weights, which give 
the independent vectors s for a batch when applied to each variable at each time interval 
within that batch (Yoo et al., 2003). 
Similar to MPCA, the key idea is to exploit the ability of MICA to extract features from 
three-way batch data by projecting the data onto a low-dimensional space that 
summarizes both the variables and their time trajectories. First, the three-way matrix 

)( KJI ××X  is unfolded into a two-dimensional matrix, )( JKI ×X  using a batchwise 
unfolding scheme. Second, the mean trajectory is removed from each variable and each 
time of the unfolded data matrix to remove the majority of the nonlinear behavior of the 
batch process. Third, the data matrix is normalized (i.e., mean centered and standardized 
to unit variance). The normalized )( JKI ×X  is then transposed, yielding the transposed 
matrix )( IJKnormal ×X . Fourth, whitening is performed on )( IJKnormal ×X  to acquire the 

uncorrelated whitened matrix 
normalnormal QXZ = . Fifth, the matrices of A, W and S are 

obtained using the FastICA algorithm. Sixth, the procedures for ordering and dimension 
reduction method of ICs are executed. The m rows of W constitute a reduced matrix Wd 

(deterministic part of W), and the remainder of the rows of W constitute a reduced 
matrix We (excluded part of W). Finally, the MICA model with the matrices Wd, We, 
Sd and Se is constructed. Then, independent data vectors for a new batch k ( )(knewx ), 

)(ˆ knewds  and )(ˆ knewes , can be obtained by transformation through the demixing matrices 

Wd and We, i.e., )()(ˆ kk newdnewd xWs =  and )()(ˆ kk newenewe xWs = , respectively. 
In MICA, two statistics are deduced from the process model in normal operation: the D-
statistic for the systematic part of the process variation and the Q-statistic for the 
residual part of the process variation. The D-statistic for a batch k, also known as the I2 
statistic, is the sum of the squared independent scores and is defined as follows: 
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The Q-statistic for a batch k, also known as the SPE statistic, is defined as follows: 
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where x̂  can be calculated as follows: 
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The confidence limits of the I2 and SPE statistics in MICA can be obtained by kernel 
density estimation. Here, the I2 value is used to detect faults associated with abnormal 
variations within an MICA model subspace, whereas the SPE value is used to detect 
new events that are not taken into account in an MICA model subspace (Yoo et al., 
2003). 
 
3. Result and Discussion 
3.1 Process description of the pilot-scale SBR system 
The data used in this research were collected from a pilot-scale SBR system shown in 
Fig. 1. A fill-and-draw sequencing batch reactor (SBR) with a 80-liter working volume 
is operated in a 6h cycle mode and each cycle consists of fill/anaerobic (1h), aerobic (2h 
30 min), anoxic (1h), re-aerobic (30min) and settling/draw (1h) phases. The hydraulic 
retention time (HRT) and the solid retention time (SRT) are maintained at 12 hrs and 10 
days, respectively. Six electrodes for pH, oxidation-reduction potential (ORP), 
dissolved oxygen (DO), temperature, conductivity and weight are connected to the 
individual sensors to check the status of the SBR, where a set of on-line measurements 
is obtained every one minute. The historical data set of the SBR consisted of 280 
batches (70 days) for which 6 variables were measured at 300 time instants (Lee and 
Vanrolleghem, 2003). 

Figure 1. Schematic diagram of the pilot-scale sequencing batch reactor. 
 
3.2 Multivariate analysis of historical data set in SBR (MPCA and MICA) 
Fig. 2 shows the monitoring result of all 280 batches of the SBR using the MPCA and 
MICA methods, where the dotted lines correspond to the 95 and 99% confidence limits. 
Five components of the MPCA model were selected by the cross-validation method. To 
ensure comparison of equivalent models, five ICs were selected for the MICA model. 
From this figure, we notice that the MICA plot shows characteristics dissimilar from the 
MPCA one. Compared to MPCA, MICA points to a lower number of abnormal batches 
in SBR. This difference can be explained by the density estimation of the SBR data. Fig. 
3 (left) shows that the density estimate of the first score (t1) in MPCA does not follow 
the Gaussian distribution but the ‘supergaussian distribution’ in which process 
variables take relatively more often values that are very close zero, where the 
probability density of the data is peaked in the middle and has heavy tails (large values 
far from zero). Thus, the T2 and SPE charts of MPCA that are based on the assumption 
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that the data are Gaussian distributed may cause a false result when it is used for SBR 
monitoring. This observation is the motivation of the MICA method because MICA is 
sensitive to modes whose influences on the measured variables follow a supergaussian 
distribution. Fig. 3(right) represents the loading plot of each variable of each time 
interval of the first IC. It shows the types of information that can be extracted when 
MICA is used in batch modeling. The loading plot obtained from MICA gives the 
history and identified important features of the SBR. From this figure, we notice that the 
DO, conductivity, and pH show large variations and have large influences during a 
batch, whereas ORP and weight show relatively small variations. 

 
Figure 2. Multivariate analysis of all 280 batches, (left) MPCA, (right) MICA.  
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Figure 3. The density estimate of MPCA and the variable loading plot of MICA. (left) 
Non-Gaussian distribution of the first principal score (t1) obtained from MPCA, (right) 
Variable loading plot for the first independent score (i1) obtained from MICA. 
 
3.3 Batch monitoring of SBR (MPCA and MICA) 
The MPCA and MICA models for the SBR monitoring were developed after an analysis 
of the historical SBR data set in Fig. 2. The MPCA model selected 143 batches to create 
a rather broad scope of normal batches, where 7 abnormal batches (batch number: 
8,18,26,51,60,84,85) were excluded for the normal operating condition (NOC) model. 
The MICA model selected 146 batches, where 4 abnormal batches (batch number: 57, 
58, 84, 85) were excluded for the normal NOC model. The test data set that consisted of 



the following 30 batches was projected onto the reduced MPCA and MICA model 
spaces. Fig. 4 shows the batch monitoring result by MPCA and MICA. While both of 
them could detect two abnormal batches (batch 12, 13), MPCA detected batch 9 as an 
abnormal batch while MICA left batch 9 as a normal batch. Actually, batch 9 is a 
normal batch. When MPCA is applied to non-Gaussian data, the T2 chart of MPCA may 
suffer oversensitivity for normal batches, e.g., batch 9. As a data set deviates from a 
Gaussian distribution, the variance tends to increase and hence the T2 statistic tends to 
decrease. Typically, this increases the false alarm rate of the MPCA in which a normal 
batch might be judged as a non-conforming one. Obviously, this deteriorates the 
reliability of the monitoring system.  

 
Figure 4. Monitoring result of 30 test batches. (left) MPCA and (right) MICA. The 
dotted lines correspond to the 99% confidence limit. 
 
4. Conclusion 
This paper describes the application of a pilot-scale SBR monitoring using MICA which 
can extract meaningful hidden information from non-Gaussian data sets. The result 
showed a more powerful monitoring performance than the MPCA approach. 
Furthermore, the MICA method can be easily applied to most batch or fed-batch 
processes which have non-Gaussian distributed data. 
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