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Abstract

In this paper, a new nonlinear process monitoring technique based on kernel principal component analysis (KPCA) is developed. KPCA
has emerged in recent years as a promising method for tackling nonlinear systems. KPCA can e6ciently compute principal components in
high-dimensional feature spaces by means of integral operators and nonlinear kernel functions. The basic idea of KPCA is to 8rst map the
input space into a feature space via nonlinear mapping and then to compute the principal components in that feature space. In comparison
to other nonlinear principal component analysis (PCA) techniques, KPCA requires only the solution of an eigenvalue problem and does
not entail any nonlinear optimization. In addition, the number of principal components need not be speci8ed prior to modeling. In this
paper, a simple approach to calculating the squared prediction error (SPE) in the feature space is also suggested. Based on T 2 and SPE
charts in the feature space, KPCA was applied to fault detection in two example systems: a simple multivariate process and the simulation
benchmark of the biological wastewater treatment process. The proposed approach e<ectively captured the nonlinear relationship in the
process variables and showed superior process monitoring performance compared to linear PCA.
? 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The monitoring of chemical and biological processes and
the diagnosis of faults in those processes are very important
aspects of process systems engineering because they are in-
tegral to the successful execution of planned operations and
to improving process productivity. In recently designed in-
dustrial process plants, numerous variables are measured in
various operating units, and these variables are recorded at
many time points. The resulting data sets are highly corre-
lated and are subject to considerable noise. In the absence of
an appropriate method for processing such data, only limited
information can be extracted and consequently plant opera-
tors have only a poor understanding of the process. This lack
of understanding leads to unstable operation. However, if
properly processed, the abundance of process data recorded
in modern plants can provide a wealth of information, en-
abling plant operators to understand the status of the process
and therefore to take appropriate actions when abnormalities
are detected.
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Traditionally, statistical process control (SPC) charts such
as Shewhart, CUSUM and EWMA charts have been used
to monitor processes and improve product quality. How-
ever, such univariate control charts show poor fault detection
performance when applied to multivariate processes. This
shortcoming of univariate control charts has led to the devel-
opment of many process monitoring schemes that use mul-
tivariate statistical methods based on principal component
analysis (PCA) and partial least squares (PLS) (Nomikos
and MacGregor, 1995; Ku et al., 1995; Wise and Gallagher,
1996; Dong and McAvoy, 1996; Bakshi, 1998). PCA is the
most widely used data-driven technique for process moni-
toring on account of its ability to handle high-dimensional,
noisy, and highly correlated data by projecting the data onto
a lower-dimensional subspace that contains most of the vari-
ance of the original data (Wise and Gallagher, 1996). By ap-
plying multivariate statistics to the lower-dimensional data
representations produced by PCA, faults can be detected
and diagnosed with greater pro8ciency. However, for some
complicated cases in industrial chemical and biological pro-
cesses with particularly nonlinear characteristics, PCA per-
forms poorly due to its assumption that the process data are
linear (Dong and McAvoy, 1996).
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To handle the problem posed by nonlinear data, Kramer
(1991) developed a nonlinear PCA method based on
auto-associative neural networks. However, the network
proposed by Kramer is di6cult to train because it has 8ve
layers. Moreover, it is di6cult to determine the number of
nodes in each layer. Dong and McAvoy (1996) developed
a nonlinear PCA approach based on principal curves and
neural networks. However, their principal curve algorithm
assumes that the nonlinear function can be approximated
by a linear combination of several univariate functions, and
thus that it can be decomposed into a sum of functions of
the individual variables. Such mappings can only be made
for a limited class of nonlinear models, restricting the appli-
cation of the principal curve algorithm to the identi8cation
of structures that exhibit additive-type behavior (Jia et al.,
2001). Furthermore, a nonlinear optimization problem has
to be solved to compute the principal curves and train the
neural networks, and the number of principal components
(PCs) must be speci8ed in advance before training the neu-
ral networks. That is, if the number of PCs changes, the
modeling procedure using the neural networks must be per-
formed again. Alternative nonlinear PCA methods based on
an input-training neural network (Jia et al., 2001) and on
genetic programming (Hiden et al., 1999) have also been
developed.
A new nonlinear PCA technique for tackling the non-

linear problem, called kernel PCA (KPCA), has been in
development in recent years (SchJolkopf et al., 1998; Mika
et al., 1999; Romdhani et al., 1999). KPCA can e6ciently
compute PCs in high-dimensional feature spaces by means
of integral operators and nonlinear kernel functions. The
basic idea of KPCA is to 8rst map the input space into a fea-
ture space via nonlinear mapping and then to compute the
PCs in that feature space. For any given algorithm that can
be expressed solely in terms of dot products (i.e., without
explicit use of the variables themselves), this kernel method
enables the construction of di<erent nonlinear versions
of the original algorithm (Christianini and Shawe-Taylor,
2000). Compared to other nonlinear methods, the main
advantage of KPCA is that it does not involve nonlinear
optimization (SchJolkopf et al., 1998); it essentially requires
only linear algebra, making it as simple as standard PCA.
KPCA requires only the solution of an eigenvalue problem,
and due to its ability to use di<erent kernels, it can handle
a wide range of nonlinearities. In addition, KPCA does not
require that the number of components to be extracted be
speci8ed prior to modeling. Due to these merits, KPCA has
shown better performance than linear PCA in feature ex-
traction and classi8cation in nonlinear systems (SchJolkopf
et al., 1998, 1999). However, the original KPCA method
of SchJolkopf et al. (1998) provides only nonlinear PCs and
does not provide any method for reconstructing the data
in the feature space. Thus, the direct application of KPCA
to process monitoring is problematic because the monitor-
ing chart of the squared prediction error (SPE) cannot be
generated.

In this paper, we propose a new nonlinear process mon-
itoring technique based on KPCA. A simple calculation of
the SPE in the feature space is also suggested. The moni-
toring charts of T 2 and SPE are constructed in the feature
space. The paper is organized as follows. The concept of
KPCA is introduced in Section 2. In Section 3, the KPCA-
based on-line monitoring strategy is presented. The
superiority of process monitoring using KPCA is il-
lustrated in Section 4 through two examples of a
simple multivariate process and the wastewater simula-
tion benchmark. Finally, we present our conclusions in
Section 5.

2. KPCA

The key idea of KPCA is both intuitive and generic.
In general, PCA can only be e<ectively performed on a
set of observations that vary linearly. When the varia-
tions are nonlinear, the data can always be mapped into
a higher-dimensional space in which they vary linearly.
That is, according to Cover’s theorem, the nonlinear data
structure in the input space is more likely to be lin-
ear after high-dimensional nonlinear mapping (Haykin,
1999). This higher-dimensional linear space is referred
to as the feature space (F). KPCA 8nds a computation-
ally tractable solution through a simple kernel function
that intrinsically constructs a nonlinear mapping from the
input space to the feature space. As a result, KPCA per-
forms a nonlinear PCA in the input space (Romdhani
et al., 1999).
If a PCA is aimed at decoupling nonlinear correlations

among a given set of data (with zero mean), xk ∈Rm, k =
1; : : : ; N through diagonalizing their covariance matrix, the
covariance can be expressed in a linear feature space F
instead of the nonlinear input space, i.e.,

CF =
1
N

N∑
j=1


(xj)
(xj)T; (1)

where it is assumed that
∑N

k=1 
(xk) = 0, and 
(·) is a
nonlinear mapping function that projects the input vectors
from the input space to F . Note that the dimensionality of
the feature space can be arbitrarily large or possibly in8nite
(SchJolkopf et al., 1998). To diagonalize the covariance ma-
trix, one has to solve the eigenvalue problem in the feature
space

�v = CFv; (2)

where eigenvalues �¿ 0 and v∈F \ {0}. The v along
with the largest � obtained by Eq. (2) become the
8rst PC in F , and the v along with the smallest �
become the last PC. Here, CFv can be expressed as
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follows:

CFv=


 1

N

N∑
j=1


(xj)
(xj)T


 v

=
1
N

N∑
j=1

〈
(xj); v〉
(xj); (3)

where 〈x; y〉 denotes the dot product between x and y. This
implies that all solutions v with � �= 0 must lie in the span
of 
(x1); : : : ; 
(xN ). Hence �v = CFv is equivalent to

�〈
(xk); v〉= 〈
(xk);CFv〉; k = 1; : : : ; N (4)

and there exist coe6cients �i(i = 1; : : : ; N ) such that

v =
N∑

i=1

�i
(xi): (5)

Combining Eqs. (4) and (5), we obtain

�
N∑

i=1

�i〈
(xk); 
(xi)〉

=
1
N

N∑
i=1

�i

〈

(xk);

N∑
j=1


(xj)

〉
〈
(xj); 
(xi)〉 (6)

for all k = 1; : : : ; N . Note that the eigenvalue problem in
Eq. (6) only involves dot products of mapped shape vec-
tors in the feature space. In general, the mapping 
(·) may
not always be computationally tractable, although it exists.
However, it need not be explicitly computed; only dot prod-
ucts of two vectors in the feature space are needed.
Now, let us de8ne an N × N matrix K by [K]ij = Kij =

〈
(xi); 
(xj)〉. Then the left-hand side of Eq. (6) can be
expressed as

�
N∑

i=1

�i〈
(xk); 
(xi)〉= �
N∑

i=1

�iKki: (7)

Since k = 1; : : : ; N , Eq. (7) becomes �K�. The right-hand
side of Eq. (6) can be expressed as

1
N

N∑
i=1

�i

〈

(xk);

N∑
j=1


(xj)

〉
〈
(xj); 
(xi)〉

=
1
N

N∑
i=1

�i

N∑
j=1

KkjKji: (8)

Since k =1; : : : ; N , Eq. (8) becomes (1=N )K2�. Combining
Eqs. (7) and (8), we obtain

�NK� = K2�; (9)

where � = [�1; : : : ; �N ]T. To 8nd solutions of Eq. (9), we
solve the eigenvalue problem

N�� = K� (10)

for nonzero eigenvalues. A justi8cation of this procedure
is given in SchJolkopf et al. (1998). Now, performing
PCA in F is equivalent to resolving the eigen-problem of
Eq. (10). This yields eigenvectors �1; �2; : : : ; �N with
eigenvalues �1¿ �2¿ · · ·¿ �N . The dimensionality of the
problem can be reduced by retaining only the 8rst p eigen-
vectors. We normalize �1; �2; : : : ; �p by requiring that the
corresponding vectors in F be normalized, i.e.,

〈vk ; vk〉= 1 for all k = 1; : : : ; p: (11)

Using vk =
∑N

i=1 �k
i 
(xi), Eq. (11) leads to

1 =

〈
N∑

i=1

�k
i 
(xi);

N∑
j=1

�k
j
(xj);

〉

=
N∑

i=1

N∑
j=1

�k
i �

k
j 〈
(xi); 
(xj)〉

=
N∑

i=1

N∑
j=1

�k
i �

k
j Kij = 〈�k ;K�k〉= �k〈�k ; �k〉: (12)

The PCs t of a test vector x are then extracted by project-
ing 
(x) onto eigenvectors vk in F , where k = 1; : : : ; p.

tk = 〈vk ; 
(x)〉=
N∑

i=1

�k
i 〈
(xi); 
(x)〉: (13)

To solve the eigenvalue problem of Eq. (10) and to project
from the input space into the KPCA space using Eq. (13),
one can avoid performing the nonlinear mappings and com-
puting both the dot products in the feature space by intro-
ducing a kernel function of form k(x; y) = 〈
(x); 
(y)〉
(SchJolkopf et al., 1998; Romdhani et al., 1999).
There exist a number of kernel functions. According

to Mercer’s theorem of functional analysis, there exists a
mapping into a space where a kernel function acts as a
dot product if the kernel function is a continuous kernel
of a positive integral operator. Hence, the requirement on
the kernel function is that it satis8es Mercer’s theorem
(Christianini and Shawe-Taylor, 2000). Representative
kernel functions are as follows:
Polynomial kernel:

k(x; y) = 〈x; y〉d; (14)

Sigmoid kernel:

k(x; y) = tanh(�0〈x; y〉+ �1); (15)

Radial basis kernel:

k(x; y) = exp
(
− ‖x− y‖2

c

)
; (16)

where d, �0, �1 and c are speci8ed a priori by the user.
The polynomial kernel and radial basis kernel always satisfy
Mercer’s theorem, whereas the sigmoid kernel satis8es it
only for certain values of �0 and �1 (Haykin, 1999). These
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Fig. 1. Motivational example of KPCA (left column: linear PCA, right column: KPCA).

kernel functions provide a low-dimensional KPCA subspace
that represents the distributions of the mapping of the train-
ing vectors in the feature space. A speci8c choice of kernel
function implicitly determines the mapping 
 and the fea-
ture space F .
Before applying KPCA, mean centering in the high-

dimensional space should be performed. This can be done
by substituting the kernel matrix K with

K̃ = K − 1NK − K1N + 1NK1N ; (17)

where

1N =
1
N



1 · · · 1

...
. . .

...

1 · · · 1


∈RN×N :

For further details, see the paper of SchJolkopf et al. (1998).

2.1. Motivational example of KPCA

To obtain some insight into how KPCA behaves in the
input space, we consider the following example (SchJolkopf
et al., 1998). A two-dimensional data set with 150 samples
is generated in the following way: x-values have a uniform
distribution in [ − 1; 1], and y-values are generated using
yi = 1:2x2i + �, where � ∼ N (0; 0:04). In this case, a radial
basis kernel k(x; y)= exp(−‖x− y‖2=2) is used for KPCA.
Fig. 1 shows the results obtained when linear PCA (left col-
umn) and KPCA (right column) are applied to this data set.
As shown in Fig. 1, linear PCA results in only two nonzero

eigenvalues, because the dimensionality of the input space
is two. The 8rst PC explains 64.55% of the data variance
and the second PC captures the remaining variance. In con-
trast, KPCA permits the extraction of further components.
Here only three components of KPCA are considered. The
contour lines shown in each part of the 8gure (except for the
zero eigenvalue in the case of linear PCA) represent constant
principal values; that is, all points on a particular contour
have the same principal value. In the case of linear PCA, the
contour lines are orthogonal to the eigenvectors. Hence, in
Fig. 1, the 8rst and second eigenvectors correspond to the
directions of the x- and y-axis, respectively. Because linear
PCA produces straight contour lines, it cannot capture the
nonlinear structure in the data. In contrast, the 8rst PC of
KPCA varies monotonically along the parabola that under-
lies the data (right column of Fig. 1). Consequently, KPCA
produces contour lines of constant feature values which cap-
ture the nonlinear structure in the data better than linear
PCA, although the eigenvectors cannot be drawn because
they are in a higher-dimensional feature space (SchJolkopf
et al., 1998).

3. On-line monitoring strategy of KPCA

The simple motivational example in the previous sec-
tion demonstrated the ability of KPCA to capture nonlinear
structure in data that is missed by linear PCA. We now
present a new monitoring method that exploits the merits
of KPCA. The KPCA-based monitoring method is similar
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Fig. 2. Conceptual diagram of KPCA.

to that using PCA in that Hotelling’s T 2 statistic and the
Q-statistic in the feature space can be interpreted in the
same way.
A measure of the variation within the KPCA model is

given by Hotelling’s T 2 statistic. T 2 is the sum of the nor-
malized squared scores, and is de8ned as

T 2 = [t1; : : : ; tp]�−1[t1; : : : ; tp]T; (18)

where tk is obtained from Eq. (13) and  −1 is the diagonal
matrix of the inverse of the eigenvalues associated with the
retained PCs. The con8dence limit for T 2 is obtained using
the F-distribution:

T 2
p;N;� ∼

p(N − 1)
N − p

Fp;N−p;�; (19)

where N is the number of samples in the model and p is the
number of PCs.
The measure of goodness of 8t of a sample to the PCA

model is the squared prediction error (SPE), also known as
the Q statistic. However, the KPCA method of SchJolkopf
et al. (1998) provides only nonlinear PCs and does not
provide any method for reconstructing the data in the fea-
ture space. Hence, construction of SPE monitoring charts is
problematic in the KPCA method. In this paper, we propose
a simple calculation of SPE in the feature space F . The
conceptual framework of the KPCA method is shown
schematically in Fig. 2 (Romdhani et al., 1999). First, KPCA
performs a nonlinear mapping
(·) from an input vector x to
a high-dimensional feature space F (step (a)). Then, a linear
PCA is performed in this feature space, which gives score
values tk in a lower p-dimensional KPCA space (step (b)).
In order to reconstruct a feature vector 
(x) from tk , tk is
projected into the feature space via vk , giving a reconstructed
feature vector 
̂p(x)=

∑p
k=1 tkvk (step (c)). Then the SPE

in the feature space is de8ned as SPE = ‖
(x)− 
̂p(x)‖2.
Here, 
(x) is identical to 
̂n(x) =

∑n
k=1 tkvk if p = n,

where n is the number of nonzero eigenvalues gen-
erated from Eq. (10) among the total N eigenvalues
(step (d)). Hence, the SPE proposed here is obtained

using the equations:

SPE = ‖
(x)− 
̂p(x)‖2 = ‖
̂n(x)− 
̂p(x)‖2

= 
̂n(x)T
̂n(x)− 2
̂n(x)T
̂p(x) + 
̂p(x)T
̂p(x)

=
n∑

j=1

tjvTj

n∑
k=1

tkvk − 2
n∑

j=1

tjvTj

p∑
k=1

tkvk

+
p∑

j=1

tjvTj

p∑
k=1

tkvk

=
n∑

j=1

t2j − 2
p∑

j=1

t2j +
p∑

j=1

t2j =
n∑

j=1

t2j −
p∑

j=1

t2j ; (20)

where vTj vk = 1 when j = k, vTj vk = 0 otherwise.
The con8dence limit for the SPE can be computed from

its approximate distribution

SPE� ∼ g�2h: (21)

The control limits for the SPE are based on Box’s equation
and are obtained by 8tting a weighted �2-distribution to the
reference distribution generated from normal operating con-
dition data (Nomikos and MacGregor, 1995). In Eq. (21), g
is a weighting parameter included to account for the magni-
tude of SPE and h accounts for the degrees of freedom. If a
and b are the estimated mean and variance of the SPE, then
g and h can be approximated by g=b=2a and h=2a2=b. Note
that the method of matching moments may go wrong when
the number of observations is small and there are outliers in
the data; hence, the reference normal data should be care-
fully selected and many reference observations should be
used. Furthermore, the use of a �2-distribution implicitly as-
sumes the errors follow a Gaussian distribution, which may
not always be true in practice. However, because g and h are
obtained directly from the moments of the sampling distri-
bution of the normal operating condition data, the use of a
weighted �2-distribution works well even in cases for which
the errors do not follow a Gaussian distribution (Sprang
et al., 2002).

3.1. Outline of on-line KPCA monitoring

3.1.1. Developing the normal operating condition (NOC)
model
(1) Acquire normal operating data and normalize the data

using the mean and standard deviation of each variable.
(2) Given a set of m-dimensional scaled normal operating

data xk ∈Rm, k = 1; : : : ; N , compute the kernel matrix
K∈RN×N by [K]ij=Kij=〈
(xi); 
(xj)〉 =[k(xi ; xj)].

(3) Carry out centering in the feature space for
∑N

k=1

̃(xk) = 0,

K̃ = K − 1NK − K1N + 1NK1N ; (22)
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where,

1N =
1
N



1 · · · 1

...
. . .

...

1 · · · 1


∈RN×N :

(4) Solve the eigenvalue problem N��=K̃� and normalize
�k such that 〈�k ; �k〉= 1=�k .

(5) For normal operating data x, extract a nonlinear com-
ponent via

tk = 〈vk ; 
̃(x)〉=
N∑

i=1

�k
i 〈
̃(xi); 
̃(x)〉

=
N∑

i=1

�k
i k̃(xi ; x): (23)

(6) Calculate the monitoring statistics (T 2 and SPE) of the
normal operating data.

(7) Determine the control limits of the T 2 and SPE charts.

3.1.2. On-line monitoring
(1) Obtain new data for each sample and scale it with the

mean and variance obtained at step 1 of the modeling
procedure.

(2) Given the m-dimensional scaled test data xt ∈Rm, com-
pute the kernel vector kt ∈R1×N by [kt]j = [kt(xt ; xj)]
where xj is the normal operating data xj ∈Rm,
j = 1; : : : ; N .

(3) Mean center the test kernel vector kt as follows:

k̃ t = kt − 1tK − kt1N + 1tK1N ; (24)

where K and 1N are obtained from step 2 of the mod-
eling procedure and 1t = 1=N [1; : : : ; 1]∈R1×N .

(4) For the test data xt , extract a nonlinear component via

tk = 〈vk ; 
̃(xt)〉=
N∑

i=1

�k
i 〈
̃(xi); 
̃(xt)〉

=
N∑

i=1

�k
i k̃ t(xi ; xt): (25)

(5) Calculate the monitoring statistics (T 2 and SPE) of the
test data.

(6) Monitor whether T 2 or SPE exceeds its control limit
calculated in the modeling procedure.

4. Simulation results

In this section, the monitoring results of PCA and KPCA
are compared for two case studies. The proposed monitor-
ing method was applied to fault detection in both a sim-
ple example and the simulation benchmark of the biological
wastewater treatment process (WWTP). In this paper, a ra-
dial basis kernel function, k(x; y) = exp(−‖x − y‖2=c), is

selected as the kernel function with c = rm!2, where r is a
constant that is determined by consideration of the process
to be monitored, m is the dimension of the input space, and
!2 is the variance of the data (Mika et al., 1999). After test-
ing the monitoring performance for various values of c, we
found that c=10m!2 is appropriate for monitoring processes
with various faults. Although the value of c is dependent
upon the system under study, we found that the radial ba-
sis kernel is the best for monitoring the nonlinear processes
used as examples in the present work.
When designing the PCA model, we must determine the

number of PCs. This number should be determined by con-
sidering both the curse of dimensionality and loss of data
information. Several techniques exist for determining the
number of PCs, none of which has emerged as the dominant
technique (Chiang et al., 2001). These techniques include
SCREE tests on the residual percent variance, the average
eigenvalue approach, parallel analysis, cross-validation of
prediction residual sum of squares (PRESS), Akaike Infor-
mation Criterion (AIC), and the variance of the reconstruc-
tion error criterion (Valle et al., 1999). For linear PCA,
we used a cross-validation method (Wold, 1978) based on
PRESS to determine the number of PCs. For KPCA, we
employed the cut-o< method using the average eigenvalue
to determine the number of PCs due to its simplicity and
robustness. The cross-validation method may also be used
for KPCA. Note that the magnitude of each eigenvalue
reSects the variance of the corresponding PC. The average
eigenvalue approach has proved quite popular as a criterion
for choosing the number of PCs. This criterion accepts all
eigenvalues with values above the average eigenvalue and
rejects those below the average (Valle et al., 1999). The
justi8cation for this approach is that PCs contributing less
than the average variable are insigni8cant. In general, the
number of PCs selected for KPCA is larger than that for
linear PCA because KPCA extracts the major PCs from the
in8nite high-dimensional feature space whereas linear PCA
extracts the major PCs from the 8nite input-dimensional
space. According to SchJolkopf et al. (1999), KPCA has the
potential to utilize more PCs to code structure rather than
noise; hence, KPCA outperforms linear PCA in denoising
if a su6ciently large number of PCs is used. In KPCA
monitoring, the use of numerous PCs may cause type I
error to increase. However, if the number of PCs in KPCA
is chosen by an appropriate method, the level of type I
error is acceptable for monitoring, as seen in the following
examples.

4.1. A simple example

Consider the following system with three variables but
only one factor, originally suggested by Dong and McAvoy
(1996):

x1 = t + e1; (26)
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Fig. 3. Scaled data distribution of normal operating condition data (o) and disturbance 1 (•) (simple example).
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Fig. 4. (a) PCA monitoring charts, and (b) KPCA monitoring charts with disturbance 1 (simple example).

x2 = t2 − 3t + e2; (27)

x3 =−t3 + 3t2 + e3; (28)

where e1, e2, and e3 are independent noise variables
N (0; 0:01), and t ∈ [0:01; 2]. Normal data comprising 100
samples were generated according to these equations. These
data were scaled to zero mean and unit variance. For this
system, one PC was selected by cross-validation to model
the linear PCA and three PCs were chosen to model KPCA
by the average eigenvalue approach. Two sets of test data
comprising 300 samples each were also generated. The
following two disturbances were applied separately during
generation of the test data sets:

Disturbance 1: A step change of x2 by −0:4 was intro-
duced starting from sample 101.
Disturbance 2: x1 was linearly increased from sample

101 to 270 by adding 0:01(k − 100) to the x1 value of each
sample in this range, where k is the sample number.
The scaled data distribution of the normal operating con-

dition data and the test data with disturbance 1 are plotted
in Fig. 3. This 8gure clearly shows that this system is non-
linear and that it is di6cult to identify the disturbance from
normal operating data.
The T 2 and SPE charts for PCA monitoring of the pro-

cess with disturbance 1 are shown in Fig. 4(a). The 99%
con8dence limits are also shown in this 8gure. It is evident
from these charts that PCA does not detect disturbance 1; it
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Fig. 5. (a) PCA monitoring charts, and (b) KPCA monitoring charts with disturbance 2 (simple example).

Fig. 6. Score plot (PC2 and PC3) of KPCA for the samples 101–280 with disturbance 2 (simple example).

only captures the dominant randomness. However, applying
KPCA to the same process data gives the results presented
in Fig. 4(b). KPCA shows relatively correct disturbance de-
tection in comparison to PCA. In the SPE chart of Fig. 4(b),
only one sample among the 8rst 100 normal operating data
exceeds the control limit, indicating that a g�2h distribution
provides a good approximation for the 99% control limit
of the SPE chart. Overall, the level of type I errors is ac-
ceptable in both the T 2 and SPE charts of KPCA. The T 2

and SPE charts for PCA monitoring of the process with dis-
turbance 2 are shown in Fig. 5(a). The SPE chart detects
disturbance 2 from about sample 160 onwards whereas the

T 2 chart does not detect any abnormalities. In addition, the
SPE value rapidly decreases to normal operating condition
levels after the disturbance is stopped at sample 270. In
contrast to the PCA results, both the T 2 and SPE KPCA
monitoring charts detect disturbance 2 (Fig. 5(b)). More-
over, the KPCA charts detect the disturbance earlier than
does the SPE chart of PCA monitoring. Speci8cally, in the
KPCA monitoring, abnormalities are detected from about
sample 160 in the T 2 chart and from about sample 130 in
the SPE chart, indicating that the KPCA method detects the
disturbance 30 samples earlier than the PCA approach. In
addition, both the T 2 and SPE values rapidly decrease to
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Fig. 7. Process layout for the simulation benchmark.

normal operating condition levels after the disturbance is
stopped at sample 270. Fig. 6 shows a plot of the scores for
PCs 2 and 3 calculated using KPCA for samples 101–280.
This plot shows that the 8rst deviation from normal oper-
ation appears at about sample 160 and propagates outside
the normal operating region, reaching a maximum devia-
tion at about sample 260. Then, the test data return to the
normal operating region after about sample 271. This result
shows that the extracted PCs of KPCA capture the nonlinear
relationship in the process variables and push the fault data
outside the normal operating region more e6ciently than
linear PCA.

4.2. Wastewater treatment process (WWTP)

The KPCA monitoring approach proposed here was also
tested for its ability to detect small internal disturbances
in simulated data obtained from a ‘benchmark simula-
tion’ of the WWTP (Spanjers et al., 1998). The activated
sludge model no. 1 (ASM1) and a 10-layer settler model
were used to simulate the biological reactions and the set-
tling process, respectively. Fig. 7 shows a Sow diagram
of the modeled WWTP system. The plant is designed to
treat an average Sow of 20; 000 m3=day with an average
biodegradable chemical oxygen demand (COD) concentra-
tion of 300 mg=l. The plant consists of a 8ve-compartment
bioreactor (6000 m3) and a secondary settler (6000 m3).
The 8rst two compartments of the bioreactor are not
aerated whereas the others are aerated. Ideal mixing is
assumed to occur in all of the compartments, whereas
the secondary settler is modelled with a one-dimensional
series of 10 layers. For more information on this bench-
mark, refer to the website of the COST working group
(http://www.ensic.u-nancy.fr/COSTWWTP).
InSuent data and operation parameters developed by the

working group on the benchmarking of wastewater treatment
plants, COST 624, were used in the simulation (Spanjers
et al., 1998). The training model was based on a normal op-
eration period of 1 week of dry weather and a 2-week data
set was used for validation. The sampling time was 15 min;
hence each 24-h period consisted of 96 samples. The data
used were the inSuent 8le and outputs with noise suggested
by the benchmark. Among the many physical and biological

Table 1
Variables used in the monitoring of the benchmark model

No. Symbol Meaning

1 SNH; in InSuent ammonium concentration
2 Qin InSuent Sow rate
3 TSS4 Total suspended solid (reactor 4)
4 SO;3 Dissolved oxygen concentration (reactor 3)
5 SO;4 Dissolved oxygen concentration (reactor 4)
6 KLa5 Oxygen transfer coe6cient (reactor 5)
7 SNO;2 Nitrate concentration (reactor 2)

variables in the benchmark, seven variables were selected
to build the monitoring system (see Table 1). Among the
selected variables, SNH; in and SNO;2 are particularly impor-
tant because they can be used to monitor the advanced
biological nitrogen removal process, which is central to the
benchmark simulation. The other variables (Qin, TSS5, SO;3,
SO;4 and KLa5) were chosen for on-line monitoring because
they are routinely collected at the majority of wastewater
treatment plants and provide information on the process
status of the WWTP.
Two types of disturbance were tested using the proposed

method: external disturbances and internal disturbances
(Yoo et al., 2002). External disturbances are de8ned as
those imposed upon the process from the outside, and are
detectable when monitoring the inSuent characteristics.
Internal disturbances are caused by changes within the
process that a<ect the process behavior. For the external
disturbance, two short-storm events were simulated, while
a deterioration of nitri8cation was simulated as an internal
disturbance. In the case of the storm events, both KPCA
and linear PCA detected the disturbance well (data not
shown). Below we concentrate on the internal disturbance
to illustrate the superiority of KPCA over PCA. In the
WWTP, deterioration of the nitri8cation rate can strongly
a<ect the performance of the activated sludge; hence, its
early detection is of importance. Although methods exist
to measure the nitri8cation rate (e.g., by respirometry),
none of these methods is straightforward (Vanrolleghem
and Gillot, 2001). However, PCA or KPCA can be used to
monitor the process because drifts in nitri8cation rate a<ect
other process measurements. The internal disturbance was
imposed by decreasing the nitri8cation rate in the biolog-
ical reactor through a decrease in the speci8c growth rate
of the autotrophs (%A). Two types of disturbance were con-
sidered: a step decrease and a linear decrease. In the step
decrease case, at sample 288 the autotrophic growth rate
was decreased rapidly from 0.5 to 0:44 day−1. In the linear
decrease case, from sample 288 the autotrophic growth rate
was linearly decreased from 0.5 to 0.4 over 2 days (192
samples), after which the value of 0.4 was maintained until
the end of the test data.
First, linear PCA was applied to the case of the step de-

crease of %A. The PCA model was able to capture most of
the variability of the X-block using three PCs selected from

http://www.ensic.u-nancy.fr/COSTWWTP
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Fig. 8. (a) PCA monitoring charts, and (b) KPCA monitoring charts for the case of a step decrease in the nitri8cation rate (benchmark example).
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Fig. 9. (a) PCA monitoring charts, and (b) KPCA monitoring for the case of a linear decrease in the nitri8cation rate (benchmark example).

cross-validation. As shown in Fig. 8(a), the T 2 and SPE
charts of the PCA method show periodic and nonstationary
features originating from Suctuations in the inSuent load,
which is characterized by strong diurnal changes in the Sow
rate and composition of the feed waste stream. However, it
is clear from the T 2 and SPE charts that the PCA method
with three PCs fails to detect the internal disturbance be-
cause the periodic and nonlinear features of the wastewater
treatment plant dominate. In contrast to the PCA result, the
SPE chart of the KPCA monitoring with nine PCs selected
using the average eigenvalue approach (Fig. 8(b)) success-
fully detects the internal disturbance from sample 288 on-
wards, which represents almost 100% detection without a
delay. In contrast, the T 2 chart detects the disturbance only
at some samples.
Fig. 9(a) shows the monitoring results of linear PCA for

the case of a linear decrease of %A. The T 2 chart of the PCA
shows little evidence of the change, whereas the SPE chart

shows a distinct change from about sample 390 (i.e., a delay
of about 102 samples). Furthermore, even after sample 390,
the SPE chart still falls below the 99% control limit at some
samples even though the fault is still present. The KPCA
monitoring charts for the same disturbance are shown in
Fig. 9(b). The SPE chart of the KPCA detects the dis-
turbance at about sample 318, approximately 72 samples
earlier than linear PCA. Furthermore, after the disturbance
is detected, the SPE values falls below the 99% control
limit at very few samples. The T 2 chart of KPCA also
indicates the presence of abnormalities, although it is less
reliable than the SPE chart. Overall, the scores extracted
from KPCA e6ciently distinguish between the faulty and
normal operating data.
The above two simulation examples demonstrate that

KPCA can e<ectively capture the nonlinear relationship
in process variables and that it gives better monitoring
performance than PCA.
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5. Conclusions

This paper proposes a new approach to process moni-
toring that uses KPCA to achieve multivariate statistical
process control. KPCA can e6ciently compute PCs in
high-dimensional feature spaces by means of integral opera-
tors and nonlinear kernel functions. Compared to other non-
linear methods, KPCA has the following main advantages:
(1) no nonlinear optimization is involved; (2) the calcula-
tions in KPCA are as simple as in standard PCA, and (3)
the number of PCs need not be speci8ed prior to modeling.
In this paper, a simple calculation of the SPE in the feature
space F is also suggested. The proposed monitoring method
was applied to fault detection in both a simple multivariate
process and the simulation benchmark of the biological
WWTP. These examples demonstrated that the proposed
approach can e<ectively capture nonlinear relationships in
process variables and that, when used for process monitor-
ing, it shows better performance than linear PCA.
The present work highlights the promise of the KPCA ap-

proach for process monitoring; however, KPCA has some
problems that must be considered. The size of kernel ma-
trix K becomes problematic when the number of samples
becomes large. This can be solved by using a sparse approx-
imation of the matrix K, which still describes the leading
eigenvectors su6ciently well (Smola and SchJolkopf, 2000;
MJuller et al., 2001). The selection of the kernel function is
crucial to the proposed method since the degree to which the
nonlinear characteristic of a system is captured depends on
this function; however, the general question of how to select
the ideal kernel for a given monitoring process remains an
open problem. In this paper, the radial basis kernel function
(k(x; y)=exp(−‖x−y‖2=c)) was considered. If this kernel
function is to be used for process monitoring, the method for
8nding the optimal value of c should be clari8ed in future
work. Furthermore, selection of the optimal number of PCs
in the kernel space is also important. In comparison to linear
PCA, nonlinear PCA based on neural networks has the dis-
advantage that it is di6cult to compute the contributions of
the original process variables because physically meaningful
loading vectors cannot be found in the networks. KPCA also
has the drawback that it is di6cult to identify the potential
source(s) of process faults in nonlinear situations because
it is di6cult or even impossible to 8nd an inverse mapping
function from the feature space to the original space. In the
present work, we considered the performance of the KPCA
monitoring method only from the viewpoint of fault detec-
tion. In future research, we will examine fault identi8cation
in KPCA monitoring, with one potential solution being the
identi8cation method proposed by Dunia et al. (1996).
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