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Introduction

• BIOMATH mission statement:

“The development and application 
of mathematical methods for the 

analysis, understanding and optimization 
of bioprocess-related systems”
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Introduction

• BIOMATH project workpackages in IcoN:

– Integrated and validated mathematical model for 
autotrophic nitrogen removal process in general 
and Anammox in particular

– Control strategy development 
for optimal “exploitation” of Anammox
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• Get an Anammox suited effluent (50/50 NH4
+/NO2

-): 
try to outcompete the nitrite oxidisers
– High temperature (30-35°C) in chemostat : SHARON

=> Nitrite oxidizers are washed out  for suitable dilution rate

(pH=7)

Introduction
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Lab-scale SHARON reactor
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Start-up of lab scale SHARON reactor
Objective: use results of the reactor 

for modelling and control

Data logging 
and control 
with Labview

pH and DO 
measurement

pH control

Temperature 
control

Synthetic 
influent

Effluent vesselSHARON reactor (2L) 
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Basic experimental results
• Ingrowth of nitrite oxidizers when influent conc. low

– influent concentration from 1000 to 500 mg NH+
4-N/L: 

nitrate build up after 1 month 

• possible reason: 
reduced inhibition 
of ammonium or nitrite

Influent concentration change

HRT: 1.54  to 1.2 

HRT2 to 1

• decrease HRT 
=> nitrate conc. decreases

BIOMATH23-01-2004 / slide 11

Basic experimental results
• Influence of influent bicarbonate:ammonium ratio

– results for influent 2000 mgNH4
+/L :

bicarbonate:ammonium ratio
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influent bicarbonate:ammonium ↑ ⇒
conversion ↑ , effluent nitrite:ammonium ↑

Reason: bicarbonate creates a buffer against pH drops
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Oxygen influence

Oxygen affinity estimation: KO = 0.94 mgO2/l
(at 25 and 35°C and pH= 6.5, 7 and 7.5)
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T & pH influence

• OUR Monod curves for affinity constant estimation:
T= 35°C: T= 25°C: 

Depending on pH and temperature 
a different affinity constant (in mgTAN/l) is obtained!
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T & pH influence

• When expressed as mgNH3/L 
the SAME affinity is obtained: KNH3 = 0.75 mgNH3/L

At pH=7:

1% of TAN
is NH3

at pH=8: 10%
at pH=6: 0.1%
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T & pH influence

• OUR curves for NH3 inhibition constant estimation:
T= 35°C, pH = 8:

Only inhibition of NH3 at very high concentration 
but perhaps salinity effects
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T & pH influence

• Inhibition by nitrite again expressed as mgHNO2/l 
gives the SAME constant: Ki,HNO2 = 2.04 mgHNO2/l

At pH=7:

0.01% of TNO2
is HNO2

at pH=6: 0.1%
at pH=5: 1%
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T & pH influence 

Indirect effect due to effect of T & pH on

Actual substrate is NH3 (not NH4
+)

NH3     = f(TAN, T, pH)

Inhibition by HNO2 (not NO2
-) 

HNO2 = f (TNO2, T, pH)
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T & pH influence

– fit:

KpH = 8.21 b = 0.045 Tmin = 10.12 
pHopt = 7.23 c = 0.0459 Tmax = 56.06
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Conclusion lab-scale SHARON reactor

• Nitrite:ammonium ratio produced by SHARON
is influenced by
– influent bicarbonate:ammonium ratio
– influent ammonium load 

• NH3 and HNO2 are the actual substrates/inhibitors 
• T & pH have a large influence 

on the SHARON nitritation process

⇒ in practice, it will be necessary to monitor / control
the SHARON reactor to always obtain the
desired nitrite:ammonium ratio for Anammox
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• Why modelling?

• Modelling the SHARON process

• Modelling the Anammox process

Modelling autotrophic N-removal

BIOMATH23-01-2004 / slide 22

Why modelling?

Solving Problems for complex systems

Optimised
System

System
under study

Experimenting

Virtual 
Reality
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the System
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Process model in Matlab-Simulink includes:
Mass balances for liquid phase and gas phase

– biological conversion only in liquid phase
– interphase transport of O2, CO2 and N2

Modelling the SHARON process 
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Process model in Matlab-Simulink includes:
• Inhibition effects

– inhibition of ammonia oxidizers by HNO2

– inhibition of nitrite oxidizers by NH3 and HNO2

• pH effects during nitrification of high loaded N-streams
– different equilibrium forms are considered (e.g. NH3 - NH4

+)
– every time step pH is calculated (Newton-Raphson algorithm)

• pH dependency of the biomass growth rate  
– explicitly by pH dependency of max. specific growth rate
– implicitly through concentrations of NH3 and HNO2 = f(pH, T)

• no grazing of protozoa
• no decay

Modelling the SHARON process 
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Modelling the SHARON process

0.65<SRT<1.6 for stable partial nitrification
i.e. influent flow variations hardly effect TNO2/TAN ratio

TAN in = 70 mole m-3

TICin = 70 mole m-3

pHin =7.8
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Modelling the SHARON process

TICin ↑ ⇒ HCO3
-
in ↑

⇒ more protons can be neutralized  ⇒ TNO2/TNH ↑

TNH in = 70 mole m-3

TICin = 0-140 mole m-3

pHin =7.8
SRT=0.67 d
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Modelling the SHARON process

Influence of influent pH

Influent pH ↑ ⇒ HCO3
-
in/TICin ↑

⇒ more protons can be neutralized  ⇒ TNO2/TNH ↑

TNH in = 70 mole m-3

TICin = 70 mole m-3

pHin = 7 - 8.5
SRT= 0.67d
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Modelling the Anammox process

USC

SBR
system

BIOMATH

WEST
model
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Modelling the Anammox process

• Inoculated with sludge 
from 3 municipal WWTP in A Coruña (Spain)

• T = 35°C
• pH = 7.8 - 8
• Different phases in the Sequencing Batch Reactor: 

Phase Duration [h] Flow rate [ml/h]
Fill 5.5 72.8

Reaction 0 0
Settle 0.33 0
Draw 0.17 2400
Idle 0 0

BIOMATH23-01-2004 / slide 30

Modelling the Anammox process

Fed with synthetic wastewater (NH4
+, NO2

-, NO3
-):
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Modelling the Anammox process

Predicted biomass conc.
Note: colour change 

from brown to red
on day 100

XI

XAN

NO3
-NH4

+
NO2

-

NH4
+, NO2

- and NO3
- concentrations
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Control of the SHARON process

• Objective: Make sure Anammox works optimally
i.e. provide it with the optimal NH4:NO2 ratio

• Too high => NH4 is not removed (too little NO2)
=> discharge of nitrogen

• Too low => NO2 is not removed (too little NH4)
=> discharge of nitrogen
=> Anammox inhibition (> 20 mg NO2-N/L)

=> even slower removal
=> accumulation of NO2

=> complete inhibition
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Control of the SHARON process
• Realistic influent file over 100 days (Sluisjesdijk, NL)

Typical ammonium and bicarbonate loads:

influent flow rate: 0 → 921 m3/day (mean 446)
TIC:TAN ratio: 0.4 → 3.6 (mean 1.1)
influent pH: 8 → 8.2 (mean 8.1)
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Control of the SHARON process
No control, constant air flow rate ΦG,in = 5000m3/h 

TNO2

pH

O2

TAN

Too much
TAN

NO2 inhibition
of Anammox
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Control of the SHARON process
• No control, constant air flow rate ΦG,in = 5000m3/h 

- Low air flow rate => low O2 => limit NO2 production
=> avoid nitrite inhibition in Anammox reactor

- During periods with low influent ammonium loads (e.g. day 25)
=> oxygen supply is no longer limiting
=> too much nitrite is produced and 
=> Anammox reaction is strongly inhibited

⇒ highly recommended to strictly control
NO2:NH4 ratio produced by the SHARON reactor
to avoid inhibitory nitrite concentrations
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Control of the SHARON process
• Cascade pH control

NO2:NH4 ratio produced in SHARON is measured and
compared to desired NO2:NH4 ratio 

⇒ change in pH required (desired value: 6 < pHsp < 8.5)
⇒ pH controlled to pHsp by pH controller through acid/base addition

SHARON

to AnammoxSHARON influent 

CC

pH controller
pHsp

pH sensor

acid/base 
addition

CC
TNO2:TNH
controller

(TNO2:TNH)sp

TNO2 and TNH
sensors ⇒
(TNO2:TNH)m
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Control of the SHARON process
• Cascade pH control (TNO2:TNH)sp = 1.2:1, ΦG,in = 5000m3/h 

TNO2

pH

Acid/base addition

TAN
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Control of the SHARON process
• Cascade pH control (TNO2:TNH)sp = 1.2:1, ΦG,in = 5000m3/h 

- Better effluent quality than scenario without control 
but with same constant air flow rate

- However: adding large amounts of acid/base

- Too expensive solution
- Only feasible when permit depends on it !
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Control of the SHARON process
• Cascade O2 control

NO2:NH4 ratio produced in SHARON process is measured and
compared to desired NO2:NH4 ratio 

⇒ change in O2 required (desired value: 0 < O2
sp < 8 g/m3)

⇒ O2 controlled to value O2
sp by O2 controller through adjusting 

the air flow rate ( < 20000 m3/h)

SHARON

to AnammoxSHARON influent 

CC

O2 controller
O2

sp

O2 sensor

Adjusting
air flow 
rate

CC
TNO2:TNH
controller

(TNO2:TNH)sp

TNO2 and TNH
sensors ⇒
(TNO2:TNH)m
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Control of the SHARON process
• Cascade O2 control (TNO2:TNH)sp = 1.2:1 

TNO2

pH

Air flow rate

TAN
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Control of the SHARON process
• Cascade O2 control (TNO2:TNH)sp = 1.2:1

- NO2:NH4 ratio produced in SHARON reactor 

remains quite constant 
EVEN IF individual NO2 and NH4 concentrations still vary 

⇒ Anammox reactor performs very well:

nitrite concentration stays very low 
NO nitrite inhibition occurs
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Control of the SHARON process
• Performance evaluation through operating cost index (OCI)

includes most important operating cost factors [€/year] 

Cost factor (€/year) economic weight value unit .

Effluent fines (kg PU/d) γ1 50 €/EQ/year

Aeration energy (kWh/d) γ2 25 €/AE/year

Acid addition (96% H2SO4) αacid 62.3 €/m3

Base addition (50% NaOH) αbase 93.4 €/m3

.                                                               .

basebaseacidacid21 AEEQOCI Φ⋅α+Φ⋅α+⋅γ+⋅γ=
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Control of the SHARON process
• Performance evaluation through operating cost index (OCI)

• cascade pH control is not worth implementing
• cascade O2 control warrants investment costs for

– ammonium and nitrite sensors and
– equipment for adjusting air flow rate

cost factor
(€/year)

effluent fines
aeration costs

chemical addition
OCI  [€/year]

savings [€/year]

no control
ΦG,in = 5000 m3/h.

cascade pH
control

cascade O2
control

207000 179000 30160
25520 25530 65090

0 117100 0
232480 321600 95250

0 -89120 137200
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Control of the SHARON process

• Conclusions
– Control of NO2:NH4 ratio is crucial to avoid Anammox 

nitrite toxicity and increase overall conversion efficiency

– Control of NO2:NH4 via pH control via acid/base addition 
only slightly improves SHARON-Anammox performance 
but is not economically feasible

– Control of NO2:NH4 via O2 control through air flow rate 
adjustment provides excellent overall performance and
good return on investment

– Results are sensitive to nitrite inhibition coefficient Ki,HNO2
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Conclusions
• Successful start-up/operation of the SHARON reactor

– NH3 is actual substrate and HNO2 is actual inhibitor
– Influent TIC:TAN, SRT, Temperature, oxygen & pH effects

• Validated integrated model of autotrophic N-removal
– SHARON model in Matlab-Simulink (O2, T & pH)
– Anammox model in WEST (Matlab-Simulink ongoing) 

• Control of the SHARON reactor is necessary 
– to avoid nitrite inhibition of Anammox and
– to improve overall conversion efficiency

• Cascade O2 control provides excellent conversion 
efficiency and good return on investment
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Perspectives

• Scenario-analysis with an Anammox biofilm model
• Further validation of the SHARON Matlab model

– Steady state sensitivity analysis for model parameters
– Validation with lab-scale / full-scale SHARON data

• Evaluation of control strategies 
on the integrated SHARON-Anammox process
– in one simulation environment (Matlab-Simulink)
– in lab Sharon/Anammox system at BIOMATH
– in Sluisjesdijk ?

• Further testing of the nitrate biosensor


