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Introduction: the SHARON process

SRT,;, versus temperature (pH=7):

NH " -OXI0iZers
(NH,*>NO,)

o, NOg-coddizers
\‘:EJ (NO,—NO;)

SHARON

temperature [*C]

* CSTR (chemostat
( ) at 35°C: ammonium oxidizers grow faster

* no biomass retention: than nitrite oxidizers
SRT=HRT = nitrite oxidizers are washed out
by keeping retention time low
—7 . T = QKo
*pH=7 ;T =35°C = partial nitrification to nitrite is achieved
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Introduction:; a wastewater treatment plant
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SHARON
Anammox
process

Studge E

Introduction;: SHARON - Anammox

50% NO,”

SHARON Anammox

Simplified stoichiometry:

NH,” +NO,” N, +2H,0

= Optimal NH,*/NO, ~ 1/1




x(t) =
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Mathematical model

Assume SHARON reactor controlled at constant pH

X(t) = (U—=x(1))-u, + M-p(x(1))

x,(0)7 [ TNH(t) u, 1 [ TNH, -a -b
X,(t) | | TNO2(t u,| | TNO2, ¢ -d
20| ® Uo=9 uolle ] Mo
X3 () || Ko (1) \4 Us || Xammin
X,() Xt (1) Uy Xiitin 0
X C.
PP N BN
{pm} Thx orx,
PZ(X) a,- Xz . X . d2 . €, X,

b,+x, ¢,+%x, d,+Xx, e,+X;

u constant = X, unique and stable?

Calculation of equilibrium states
The equilibrium states are obtained from
O:(U—Xe)'U0+M'p(Xe)

Case uy =0 (i.e. no flow) :
* X170 X4 arbitrary
* Xep o1» Xoq arbitrary
* Xe3= Xes = 0} Xoq, Xgp a@rbitrary
= number of equilibrium solutions: «® + 2 02

Case uy#0:

= principle of contraction mappings

Problem statement

Is NH,*/NO," produced in SHARON reactor
e unique ?

 stable ?

for constant input variables :

+ dilution rate : Q/V = uy=1/HRT

+ (total) influent ammonium concentration : TNH;,
* (total) influent nitrite concentration : TNO2; =u,

+ (total) influent concentration of ammonium oxidizers: X, in=Us
* (total) influent concentration of nitrite oxidizers: X ;;=U,

OR

constant inputs
= unique and stable equilibrium states?

=U,
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Criterion for a unique equilibrium

Contraction mapping theorem :
every contraction mapping @, defined in a complete metric space X,
has one and only one fixed point in X, i.e. for which x = g(x)

Case ug # 0:

1

X, =U+—-M-p(X.) = (x,)
UO

Define mapping ¢ in the complete metric space R**

with the Euclidian norm as distance: [{CSMEINEIW]

IF @is a contraction mapping
i.e. there exists a K < 1 such that

((o(x), p(W)) < K-£(x,w)  Vx,win
THEN ¢ possesses a unique fixed point X, = @(X,)
that is the unique equilibrium point for the SHARON model



Criterion for a unique equilibrium

Is ¢ a contraction mapping?

fZ[(p(x),(p<w>]=u—lz[p<x)—p(wﬁmwl[p(x)—p(w)]

s%[mx)—p(w)ﬂp(x)—p(w)]

S T

0 T

<20 [x-w] ITI[x—w]
0

S O Opy

Ny, Xy rin Xy l,s, _{
op, op,
OX,4

35

X=%z3 4lx=gy

Criterion for unigue equilibrium:alternative

The SHARON reactor model in equilibrium can be
rewritten in 2 state variables (instead of 4)

The equilibrium states are now obtained from

1~ « .
ye:W+u—-M-p(ye)zw(ye)
0

L

Criterion for a unique equilibrium

Ug crit IN terms of TNH;, (Xammin= Xnitin 0-01 mole/m?):

u, =TNH,, T

in

=Uu
= 4 dim crilerion

100 % 2-dim criterion
gives best results

680 80
o THH

In practice:

= 2 dim crilerion

60 80
o= THH_

Criterion for a unique equilibrium

Is ¢ a contraction mapping?

fz[cp<x),<p(w)]s%-[X-W]TJTJ[X_W]

Criterion for a unique equilibrium

The SHARON reactor possesses a unique equilibrium

for sufficiently high dilution rates:
TNH_=70, Xamm_=0.01 ; Xnit_=0.01
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best criterion!
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dilution rate 1D [day-1]
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Calculation of unique equilibrium states

The unique fixed point X, = ¢(X,) of a
contraction mapping ¢ is obtained by

the method of successive approximations:
Xne1= Q(Xy) n=0,1,2,...

for an arbitrary starting value x,

Application to the SHARON process model:
* calculate x, for different values of u; = TNH;,
» choose x,=u (e.g.)
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LAS of the unique equilibrium

Eigenvalues of the Jacobian matrix:
§=-U, (29
§2+(2- Uy —0—8) -5+ (Uy — o) (Uy —8) —B-y

-sum=(2-u,—0—38)>0
product = (U, — ) (U, —8)—B-y>0 |’
fulfilled for all values of TNH;,

= unique (wash-out) equilibrium is
locally asymptotically stable !

Calculation of the equilibrium states

In terms of TNH,, (Xammin= Xpitin 0-01 mole/md):

g

g

almost no conversion (TNH, ~ TNH,)
= equilibrium state : wash-out of the biomass
reactor doesn’t work!

= THH_ [mole m~]
1e L]
]

o

=
=
]

for TNH,,=

[male m™)

TNH, = 69.96
TNO2, = 0.035
Xamm.e = 0122
X

nite = 0.010
[mole/m3]

e 0

LAS of the unique equilibrium

Linearization principle:
The SHARON reactor model

X(t) = (u=x(t))-uy +M-p(x(t))
=f(x)

is locally asymptotically stable if the eigenvalues of the Jacobian matrix

all have a strictly negative real part (are in the open left phase plane)
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Conclusions

A simplified mathematical model for a SHARON reactor
with constant pH was constructed

A criterion for a unique equilibrium point was deducted and
the equilibrium states were calculated
using a contraction mapping theorem

A unique equilibrium point is only obtained
for high values of the dilution rate
corresponding with wash-out of the biomass
and almost no conversion

The unique equilibrium point is locally asymptotically stable

Verification of the calculated equilibrium

TNH, = 69.96

— TNOZ [mole m™]
05 1
tima [days]

nite

X oy [mole m™] X, Imole m™]

05 ] 05 1
lime: [diays] time [days]

The same equilibrium values are obtained!

Future work

For realistic (low) values of the dilution rate uj:
calculate all equilibrium points

show that the system converges to one of the equilibrium
points, regardless the initial condition

define attraction regions for each equilibrium point

using Liapunov’s theory

Verification of the calculated equilibrium
Simulation of the SHARON reactor in Simulink

SHeonstpHmdres

To Workspace

TNH;, = 70 mole/m3; X, X itin 0-01 mole/m3;

amm,in— “nit,in

System dynamics

The characteristic equation
§2+(2-Uy —0o—8) -5+ (U, —0) (U, —8) —B-y =—U,

can also be written as

¢ and o,
determine the

system dynamics

* non-oscillating
transient behaviour




