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Introduction: a wastewater treatment plant 

effluentinfluent
Settler Settler

Sludge
digestor

Dewatering

SHARON 
Anammox
process

Sludge

B step
NH4

+-oxidation
A-step

COD oxidation
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SRTmin versus temperature (pH=7):

(NH4
+→NO2

-)

(NO2
-→NO3

-)

Introduction: the SHARON process

SHARON

• CSTR (chemostat)

• no biomass retention: 
SRT=HRT

• pH=7 ; T = 35°C

NH4
+

at 35°C: ammonium oxidizers grow faster 
than nitrite oxidizers

NO2
-

NO3
-

⇒ partial nitrification to nitrite is achieved

⇒ nitrite oxidizers are washed out 
by keeping retention time low
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Introduction: SHARON - Anammox

SHARON

100% NH4
+

⇒ Optimal NH4
+/NO2

- ≈ 1/1

Anammox

OH2NNONH 2224 +→+ −+

Simplified stoichiometry:

NH4
+                               N2

NO2
-

50%

50%
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Problem statement
Is NH4

+/NO2
- produced in SHARON reactor

• unique ?
• stable ?
for constant input variables :
• dilution rate : Q/V = u0 =1/HRT
• (total) influent ammonium concentration : TNHin=u1

• (total) influent nitrite concentration : TNO2in=u2

• (total) influent concentration of ammonium oxidizers: Xamm,in=u3

• (total) influent concentration of nitrite oxidizers: Xnit,in=u4

OR
constant inputs 

⇒ unique and stable equilibrium states?
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Mathematical model
Assume SHARON reactor controlled at constant pH
⇒ simplified reactor model:

u constant ⇒ xe unique and stable?
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Calculation of equilibrium states
The equilibrium states are obtained from

)(u)(0 e0e xMxu ρ⋅+⋅−=

Case u0 ≠ 0 :

⇒ principle of contraction mappings

)(
u
1

e
0

e xMux ρ⋅⋅+=

Case u0 = 0  (i.e. no flow) :
• xe1=0 ; xe2, xe3, xe4 arbitrary
• xe2 = xe3 = 0 ; xe1, xe4 arbitrary 
• xe3 = xe4 = 0 ; xe1, xe2 arbitrary 

⇒ number of equilibrium solutions: ∞3 + 2 ∞2
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Criterion for a unique equilibrium
Contraction mapping theorem :
every contraction mapping ϕ , defined in a complete metric space X,
has one and only one fixed point in X, i.e. for which x = ϕ(x)

Case u0 ≠ 0:

Define mapping ϕ in the complete metric space R4x1 

with the Euclidian norm as distance:

)()(
u
1

ee
0

e xxMux ϕ≡ρ⋅⋅+=

wxwx −=),(l

IF ϕ is a contraction mapping
i.e. there exists a K < 1 such that 

THEN ϕ possesses a unique fixed point xe = ϕ(xe) 
that is the unique equilibrium point for the SHARON model

14in,),(K))(),(( ×∀⋅≤ϕϕ Rwxwxwx ll
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Criterion for a unique equilibrium
Is ϕ a contraction mapping?
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Criterion for a unique equilibrium
Is ϕ a contraction mapping?
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Criterion for unique equilibrium:alternative
The SHARON reactor model in equilibrium can be 

rewritten in 2 state variables (instead of 4)
The equilibrium states are now obtained from

The reactor has a unique equilibrium 
if
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16 - Eveline Volcke – 23rd Benelux Meeting on Systems and Control - 17/03/2004

Criterion for a unique equilibrium
The SHARON reactor possesses a unique equilibrium 

for sufficiently high dilution rates:

1
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ŝŝu

−=

≡

⋅≥

or

best criterion!

17 - Eveline Volcke – 23rd Benelux Meeting on Systems and Control - 17/03/2004

Criterion for a unique equilibrium
u0,crit in terms of TNHin (Xamm,in= Xnit,in 0.01 mole/m3):

u1 = TNHin ↑
⇒ u0,crit ↑

In practice:
u0 = 0.5 – 1 day-1

<< u0,crit

2-dim criterion 
gives best results
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Calculation of unique equilibrium states
The unique fixed point xe = ϕ(xe) of a 

contraction mapping ϕ is obtained by 
the method of successive approximations:

xn+1= ϕ(xn)   n = 0,1,2,…

for an arbitrary starting value x0

Application to the SHARON process model:
• calculate xe for different values of u1 = TNHin

• choose x0=u (e.g.) 
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Calculation of the equilibrium states
In terms of TNHin (Xamm,in= Xnit,in 0.01 mole/m3):

almost no conversion (TNHe ≈ TNHin) 
⇒ equilibrium state : wash-out of the biomass

reactor doesn’t work!

e.g. for TNHin = 
70 mole/m3:

TNHe = 69.96 
TNO2e = 0.035
Xamm,e = 0.122
Xnit,e = 0.010

[mole/m3]
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LAS of the unique equilibrium
Linearization principle:
The SHARON reactor model

is locally asymptotically stable if the eigenvalues of the Jacobian matrix

all have a strictly negative real part (are in the open left phase plane)
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LAS of the unique equilibrium
Eigenvalues of the Jacobian matrix:
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fulfilled for all values of TNHin

⇒ unique (wash-out) equilibrium is 
locally asymptotically stable ! 
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Conclusions
• A simplified mathematical model for a SHARON reactor 

with constant pH was constructed

• A unique equilibrium point is only obtained
for high values of the dilution rate
corresponding with wash-out of the biomass
and almost no conversion

• A criterion for a unique equilibrium point was deducted and 
the equilibrium states were calculated 
using a contraction mapping theorem 

• The unique equilibrium point is locally asymptotically stable
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Future work

For realistic (low) values of the dilution rate u0 :

• calculate all equilibrium points

• show that the system converges to one of the equilibrium 
points, regardless the initial condition

• define attraction regions for each equilibrium point

using Liapunov’s theory
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Thank you for your attention!

Questions?

28 - Eveline Volcke – 23rd Benelux Meeting on Systems and Control - 17/03/2004

Verification of the calculated equilibrium
Simulation of the SHARON reactor in Simulink

TNHin = 70 mole/m3;  Xamm,in= Xnit,in 0.01 mole/m3;
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Verification of the calculated equilibrium

TNHe = 69.96 
TNO2e = 0.035
Xamm,e = 0.122
Xnit,e = 0.0100

The same equilibrium values are obtained!
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System dynamics
The characteristic equation 

can also be written as
0000
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ζ and ωn
determine the 
system dynamics

• non-oscillating  
transient behaviour


