

Existence, uniqueness and stability of the equilibrium points of a SHARON bioreactor model

Eveline I.P. Volcke, Mia Loccufier, Peter A. Vanrolleghem and Erik J.L. Noldus

Benelux Meeting on Systems and Control Helvoirt, The Netherlands, 17 March 2004

Outline

- Introduction: the SHARON process
- Problem statement Mathematical model
- Criterion for a unique equilibrium point
- Calculation of the unique equilibrium states
- Local asymptotic stability of the unique equilibrium

Ĩ

• Conclusions – Future work

Outline

- Introduction: the SHARON process
- Problem statement Mathematical model
- Criterion for a unique equilibrium point
- Calculation of the unique equilibrium states
- Local asymptotic stability of the unique equilibrium
- Conclusions Future work

Outline

- Introduction: the SHARON process
- Problem statement Mathematical model
- Criterion for a unique equilibrium point
- Calculation of the unique equilibrium states
- Local asymptotic stability of the unique equilibrium
- Conclusions Future work

Problem statement

Is NH₄⁺/NO₂⁻ produced in SHARON reactor

- unique ?
- stable ?

for constant input variables :

- dilution rate : Q/V = u₀ = 1/HRT
- (total) influent ammonium concentration : TNH_{in}=u1
- (total) influent nitrite concentration : TNO2_{in}=u₂
- (total) influent concentration of ammonium oxidizers: $X_{amm,in}$ =u₃
- (total) influent concentration of nitrite oxidizers: $X_{nit,in} = u_4$

OR

TIT

constant inputs

 \Rightarrow unique and stable equilibrium states?

TIT

Ĩ

Outline

- Introduction: the SHARON process
- · Problem statement Mathematical model
- · Criterion for a unique equilibrium point
- · Calculation of the unique equilibrium states
- · Local asymptotic stability of the unique equilibrium
- Conclusions Future work

- Introduction: the SHARON process
- Problem statement Mathematical model
- · Criterion for a unique equilibrium point
- Calculation of the unique equilibrium states
- · Local asymptotic stability of the unique equilibrium
- Conclusions Future work

TIT

Calculation of unique equilibrium states

The unique fixed point $x_e = \phi(x_e)$ of a contraction mapping ϕ is obtained by the method of successive approximations:

 $x_{n+1} = \phi(x_n)$ n = 0, 1, 2, ...

for an arbitrary starting value x₀

Application to the SHARON process model:

- calculate x_e for different values of $u_1 = TNH_{in}$
- choose x₀=u (e.g.)

Outline

- Introduction: the SHARON process
- Problem statement Mathematical model
- Criterion for a unique equilibrium point
- · Calculation of the unique equilibrium states
- Local asymptotic stability of the unique equilibrium
- Conclusions Future work

TIT

LAS of the unique equilibrium

Linearization principle:	
The SHARON reactor model	
$\dot{\mathbf{x}}(t) = (\mathbf{u} - \mathbf{x}(t)) \cdot \mathbf{u}_0 + \mathbf{M} \cdot \rho(\mathbf{x}(t))$	
$=\mathbf{f}(\mathbf{x})$	
is locally asymptotically stable if the eigenvalues of the Jacobian matrix	
$\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}}\Big _{\mathbf{x}=\mathbf{x}_{c}} = \begin{bmatrix} \frac{\partial f_{1}}{\partial \mathbf{x}_{1}} & \cdots & \frac{\partial f_{1}}{\partial \mathbf{x}_{4}} \\ \vdots & & \vdots \\ \frac{\partial f_{4}}{\partial \mathbf{x}_{1}} & & \cdots & \frac{\partial f_{4}}{\partial \mathbf{x}_{4}} \end{bmatrix}$	=x,]
all have a strictly negative real part (are in the open left phase plane)	
22 - Eveline Volcke – 23 rd Beneliux Meeting on Systems and Control - 17/03/2004	

Outline

- Introduction: the SHARON process
- Problem statement Mathematical model
- Criterion for a unique equilibrium point
- Calculation of the unique equilibrium states
- Local asymptotic stability of the unique equilibrium
- Conclusions Future work

Conclusions

- A simplified mathematical model for a SHARON reactor with constant pH was constructed
- A criterion for a unique equilibrium point was deducted and the equilibrium states were calculated using a contraction mapping theorem
- A unique equilibrium point is only obtained for high values of the dilution rate corresponding with wash-out of the biomass and almost no conversion
- The unique equilibrium point is locally asymptotically stable

TIT

Future work

For realistic (low) values of the dilution rate u_0 :

- calculate all equilibrium points
- show that the system converges to one of the equilibrium points, regardless the initial condition
- define attraction regions for each equilibrium point

using Liapunov's theory

Simulation of the SHARON reactor in Simulink υÛ 0 u SHconstpHmdires

Verification of the calculated equilibrium

TNH_{in} = 70 mole/m³; X_{amm.in}= X_{nit.in} 0.01 mole/m³;

Ĩ