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Abstract. This article describes the application of on-line nonlinear monitoring of a 

sequencing batch reactor (SBR). Three-way batch data of SBR are unfolded batch-

wisely, and then a nonlinear multivariate monitoring method is used to capture the 

nonlinear characteristics of normal batches. The approach is successfully applied to an 

80L SBR for biological wastewater treatment, where the SBR poses an interesting 

challenge in view of process monitoring since it is characterized by nonstationary, 

batchwise, multistage, and nonlinear dynamics. In on-line batch monitoring, the 

developed nonlinear process monitoring method can effectively capture the nonlinear 

relationship among process variables of a biological process in a SBR. The results of 

this pilot-scale SBR monitoring system using simple on-line measurements clearly 

demonstrated that the nonlinear monitoring technique showed lower false alarm rate and 

physically meaningful, that is, robust monitoring results. 
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1. Introduction 
 

The increase in environmental restrictions in recent times has led to an increase in 

efforts aimed at achieving a better effluent quality of wastewater treatment plants. 

Achieving this goal requires advanced monitoring of the plant performance. Wastewater 



treatment plants are slow when they have to recover from a ‘bad’ state to a ‘normal’ 

state. The early detection and isolation of faults in the biological process is therefore 

very effective since it allows corrective action to be taken well before the situation 

becomes dangerous. Some process changes are not very obvious and may gradually 

grow until they become a serious operational problem. Process monitoring and fault 

detection of the biological processes are very important tasks in process engineering 

since they aim to ensure the success of the planned operations and to improve the 

productivity of processes.  

In recent industrial process plants, many variables are measured in various operating 

units and are recorded in abundance. However, such data sets are highly correlated and 

are subject to considerable noise. In the absence of an appropriate processing method, 

only limited information can be extracted, which causes insufficient understanding of 

the process by the operator and may lead to unstable operation. If properly treated, this 

data can provide a wealth of information leading to keep the plant operators understand 

the status of the process and assist them to make appropriate actions to remove 

abnormalities from the process (Rosen and Lennox, 2001; Yoo et al., 2003). 

Sequencing batch reactor (SBR) processes have demonstrated their efficiency and 

flexibility in the treatment of wastewaters with high concentrations of nutrients 

(nitrogen, phosphorous), and toxic compounds from domestic and industrial sources. A 

SBR has a unique cyclic batch operation, usually with five well-defined phases: fill, 

react, settle, draw and idle. Most of the advantages of SBR processes may be attributed 

to their single-tank designs and the flexibility that allows them to meet many different 

treatment objectives, and which is derived from the possibility of adjusting the duration 

of the different phases. Real-time control of the SBR process can contribute to this. A 

possible control strategy is based on the identification of the endpoint of a biological 

reaction. Switching to the next phase shortly after the detection of the reaction endpoint 

provides an optimum solution for both the process performance and the economics of 

the plant. In fact, if the duration of a phase is too short, the removal of the pollutants is 

not complete and the quality of the effluent will not meet the limits imposed by law. On 

the other hand, cycles which are longer than necessary decrease the capacity of the plant 

(volume of wastewater treated per day) or increase its operating costs; an aerobic phase 

which is too long would also mean wasting energy for aeration (Wilderer et al., 2001). 



However, the SBR process includes dynamic behaviour that is highly nonlinear, 

highly complex, carried out by a diverse microbial community, unpredictable and is 

further compromised by the fact that the effluent concentration is difficult to measure 

online and may only be available through offline laboratory analysis. Also, the SBR 

process is subject to significant disturbances like hydraulic changes, variability of 

influent composition, change in microbiological activity and equipment failures. Small 

changes in concentrations or flows can affect the kinetics of nonlinear biological 

reactions, which leads to batch-to-batch variability in effluent quality and 

microorganism growth. Moreover, compared to continuous wastewater treatment 

processes, SBR operation data have the added dimension of batch number, in addition to 

the measured variables and sample times (batches×variables×time), that is, a three-way 

matrix. Batch processes generally exhibit some batch-to-batch variation in the 

trajectories of the process variables. Normal variation is due to typical variations in the 

operation whereas special variations are due to exceptional phenomena. However, 

treatment performance, the key indicator of process performance, is often only 

examined off-line in a laboratory (Lee and Vanrolleghem, 2003; Yoo et al., 2004a). 

Even though operators are aware that there are some problems in treatment performance, 

they cannot quickly find out or predict what the causes are and when the problems will 

occur because most batch processes are run without any effective form of real-time on-

line monitoring. Therefore, multivariate analysis and process monitoring of SBRs are 

crucial to detect faults that can be corrected prior to completion of the batch or can be 

corrected in subsequent batches because it may take several days, weeks or even months 

for the biological process to recover from abnormal operation. 

Multiway principal component analysis (MPCA) and multiway independent 

component analysis (MICA) have been shown to be powerful monitoring tools in many 

industrial batch processes (Nomikos and MacGregor, 1994; Yoo et al., 2004a,b). 

However, they have the shortcoming that the measurement variables of the batch 

process should be linear. Biological wastewater treatment is a complex, nonlinear and 

multivariate process, where many hydrodynamic and biological reactions occur 

simultaneously. A new nonlinear batch monitoring technique, called multiway kernel 

principal component analysis (MKPCA) has been emerging to tackle the nonlinear 

problem in recent years (Lee et al., 2004). In this work, multiway kernel principal 



component analysis (MKPCA), which extends kernel principal component analysis 

(KPCA) to batch processes, is used to overcome this drawback to obtain better batch 

monitoring performance of the pilot-scale SBR. Kernel PCA can efficiently compute 

principal components in high dimensional feature spaces by the use of integral operators 

and nonlinear kernel functions. Three-way batch data of the normal batch process are 

unfolded batch-wisely, and then the nonlinear multivariate feature extraction method is 

used to capture the nonlinear characteristics within the SBR process.  

 

2. MATERIALS AND METHODS 
 

2.1 KERNEL PRINCIPAL COMPONENT ANALYSIS (KPCA) 

 

Kernel principal component analysis (KPCA) is an emerging technique to address 

the nonlinear problems not dealt with by PCA. As shown in Figure 1, conceptually, 

KPCA first performs a nonlinear mapping Φ(⋅) from an input vector x to a high 

dimensional feature space F and then a linear PCA is performed in this feature space, 

which extracts the principal components tk in a lower p dimensional KPCA space. Given 

any algorithm which can be expressed solely in terms of dot products, i.e. without 

explicit usage of the variables themselves, this kernel method enables us to construct 

different nonlinear versions of it. Compared to other nonlinear methods, the main 

advantage of KPCA is that no nonlinear optimization is involved. Based on these merits, 

KPCA has shown better performance than linear PCA in feature extraction and 

classification including nonlinearity (Schölkopf et al., 1998). 

 

Figure 1. Conceptual diagram of KPCA. 



 To derive KPCA, we first map the data m
k R∈x , Nk ,,1K=  into a feature space 

F  where N  is the number of samples and compute the covariance matrix 
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where )(⋅Φ  is a nonlinear mapping function and it is assumed that )( kxΦ for 

Nk ,,1K=  is mean centered and variance scaled. Then, the principal components are 

computed by solving the eigenvalue problem 
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where 0≥λ  denotes eigenvalues and v denotes the eigenvector of the covariance 

matrix CF and yx,  means dot product between x  and y . For 0≠λ , solution v 
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Using the kernel trick, [ ] )(),( jiijij K xxK ΦΦ== , the eigenvalue problem can be 

expressed in a simplified form as, 

Kαα =λN   (4) 

where T
N ],,[ 1 αα K=α  and NNR ×∈K  is a gram matrix which is composed of Kij. A 

justification of this procedure is given in Schölkopf et al. (1998). Then, performing PCA 

in the feature space F  is equal to resolving the eigenvalue problem of Eq. (4). This 

yields eigenvectors Nααα ,,, 21 K  with eigenvalues Nλλλ ≥≥≥ K21 . 

Dimensionality can be reduced by retaining only the first p eigenvectors. The projection, 

i.e., score vector, of the kth observation in the training data, is calculated by projecting 

)(xΦ  onto the eigenvectors kv  in F where pk ,,1K= . 
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To solve the eigenvalue problem of Eq. (4) and to project from the input space to the 

KPCA space using Eq. (5), one can avoid the need for performing the nonlinear 

mappings and computing both the dot products in the feature space through introducing 

a kernel function, that is, )(),(),( yxyx ΦΦ=k . Representative kernel functions which 

satisfy Mercer’s theorem are the polynomial, sigmoid, and Gaussian kernels. 

 

2.2. OFF-LINE BATCH MONITORING USING MULTIWAY NONLINEAR 

PROCESS MONITORING 

 

Batch processes are, by nature, leading to a 3-way matrix ( )( KJI ××X ) of data. In 

a typical batch run, Jj ,,2,1 K=  variables are measured at Kk ,,2,1 K=  time 

intervals throughout the batch. There exists similar data on several ( Ii ,,2,1 K= ) 

similar process batch runs. MPCA needs to unfold this matrix in order to obtain a two-

way matrix, and then perform PCA. Figure 2 shows the unfolding method for MPCA. 

By subtracting the mean of each column of the unfolded matrix ( )( JKI ×X ), the mean 

trajectory of each variable is removed, so that the major nonlinear behaviour of the 

process can be eliminated (Nomikos and MacGregor, 1994 and 1995). Once the matrix 

is mean centered and variance scaled and PCA is performed, the results from PCA are 

the loading vectors and the calculated scores for each batch. The loading vectors have a 

weight for each variable at each time, representing the history of the process. In this 

paper, we used KPCA instead of PCA to extract the nonlinear structure of the unfolded 

matrix (Lee et al., 2003; Yoo et al., 2004c). 
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Figure 2. Unfolding method of MPCA for a three-way batch. 

 

Batch monitoring based on MKPCA 

 The batch monitoring scheme based on MKPCA is as follows: 

1) Acquire normal operating data )( KJI ××X  and unfold it batch-wisely )( JKI ×X . 

2) The data )( JKI ×X  are normalized using the mean and standard deviation of each 

variable at each time in the batch cycle over all batches. 

3) Given a set of JK-dimensional scaled normal operating data JK
k R∈x , Ik ,,1K= , 

compute the kernel matrix IIR ×∈K  by [ ] )(),( jiijij K xxK ΦΦ==  )],([ jik xx= . 
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6) Solve the eigenvalue problem αKα sclI ~=λ and normalize kα  such that 

k
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1, =αα . 

7) For normal operating data x  at each batch, extract a nonlinear component via 
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where )(~ xsclΦ  is the mean centered and variance scaled feature vector of )(xΦ . 

8) Calculate the monitoring statistics (T2 and SPE) at each batch and determine control 

limits of T2 and SPE charts. 

 A measure of the variation summarized within the MKPCA model is given by the 

Hotelling’s T2 statistic. T2 is the sum of the normalized squared scores, and is defined as 
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where kt  is obtained from Eq. (5), p is the number of PCs and 1−Λ  is the diagonal 

matrix of the inverse of the variances associated with the retained principal components. 

The confidence limit for T2 is obtained using the F-distribution.  
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where I is the number of batches in the model, p is the number of principal components, 

and α  is the significance level. The measure of goodness of fit of a sample to the PCA 

model is the squared prediction error (SPE), also known as the Q statistic. In this paper, 

we used the simple calculation of SPE in the feature space F  suggested by Lee et al. 

(2004): 

2
)(ˆ)( xx pSPE Φ−Φ=

 (11) 

where ∑
=

=Φ
p

k
kkp t

1

)(ˆ vx  is the reconstructed feature vector with p principal 

components in the feature space. The confidence limit for the SPE can be computed 

from its approximate 2χ distribution  
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where m and v are the estimated mean and variance respectively of the SPE from the 

reference batches (Nomikos and MacGregor, 1994). 

 

2.3. ON-LINE BATCH MONITORING USING MULTIWAY KPCA 

 

When a batch has been monitored, we only know the values from the beginning to 

the current time. For on-line monitoring, however, test data should be completed until 

the end of the batch. Several methods for variable trajectory estimation have been 

proposed to complete the trajectories to the end of the batch. Nomikos and MacGregor 

(1994 and 1995) suggest three different ways of dealing with this problem, i.e. to 

complete the remaining of the batches: (1) zero deviations, (2) current deviations (3) 



PCA projection method. Although the selection is dependent on the characteristics of 

the batch process, the second or the third method suggested by Nomikos and 

MacGregor (1994 and 1995) is mainly used. For on-line monitoring, the distribution of 

the 2
kT is approximated by Eq. (10) and that of the SPEk can be approximated by a 

weighted 2χ  distribution of kk vmkkk mvSPE /2
2 2)2/(~ χ , where km  and kv  are the 

mean and variance of the kSPE  obtained for the data set used for model development 

at time instant k  (Nomikos and MacGregor, 1995). 

 

2.3.1. On-line Monitoring 

 The on-line monitoring procedure is as follows: 

1) For new batch data until time k , )( Jkt ×X , unfold it to )1( JkT
t ×x . Scale it with the 

mean and the variance obtained from step 2) of the modeling procedure. 

2) Anticipate the future observations by the filling method which fills in all future 

measurements with the current deviation from the average batch.  

3) Given JK-dimensional scaled test data JK
t R∈x , we compute the kernel vector 

I
t R ×∈ 1k  by [ ] )],([ jttjt k xxk =  where jx  is the scaled normal operating data used 

in step 3) of the modeling procedures: JK
j R∈x , Ij ,,1K= . 

4) The test kernel vector tk  is mean centered as follows;  
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 where K  and I1  are obtained from step 4) of the modeling procedure. 

5) The mean centered kernel vector tk~  is variance scaled 
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6) For the test data tx , extract a nonlinear component via 
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7) Calculate the monitoring statistics (T2 and SPE ) of the test data  

8) Monitor whether 2T  or SPE  exceeds its confidence limit calculated in the 



modeling procedure. 

 

2.4. SBR PROCESS 

 

 The data used in this research were collected from a pilot-scale SBR system shown 
in Figure 3. A fill-and-draw sequencing batch reactor (SBR) with a 80-liter working 
volume is operated in a 6h cycle mode and each cycle consists of fill/anaerobic (1h), 
aerobic (2h 30 min), anoxic (1h), re-aerobic (30min) and settling/draw (1h) phases. The 
hydraulic retention time (HRT) and the solid retention time (SRT) are maintained at 12 
hrs and 10 days, respectively. The control of the duration/sequence of phases and on/off 
status of peristaltic pumps, mixer and air supply are automatically achieved by a 
Labview data acquisition and control (DAC) system. Six electrodes for pH, oxidation-
reduction potential (ORP), dissolved oxygen (DO), temperature, conductivity and 
weight are connected to the system to check the status of the SBR, where a set of on-
line measurements is obtained every one minute. Thus, no advanced nutrient or 
expensive measurement devices were installed in order to run an on-line monitoring 
algorithm of the SBR process (Lee and Vanrolleghem, 2003; Yoo et al., 2004a). The 
status of the SBR reactor is displayed on the computer and the sensor signals are stored. 
In this research, we considered 150 batches in the historical data set of the SBR. The 
batch monitoring algorithms were applied to the three-way data array X with 
dimensions 150×6×300. 

Figure 3. Schematic diagram of the pilot-scale sequencing batch reactor. 

 

3. Results and Discussions 
 

3.1 OFF-LINE BATCH MONITORING OF SBR 
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Figure 4 shows the Hotelling’s T2 and SPE charts of the MPCA and the MKPCA 

method for all 150 batches with six on-line measurements. To make a fair comparison, 

we used the same number of principal components for both the MPCA and the MKPCA. 

Sixteen principal components (PCs) in the MPCA model of six on-line measurements 

were retained, explaining 96.6% of the variation of the input space. MKPCA selected 

the Gaussian kernel, ( )δ2exp),( yxyx −−=k  with 2σδ rm= , where r is a constant 

determined by the process to be monitored which is 10 in this research, m is the 

dimension of the input space, and 2σ  is the variance of the data (Mika et al., 1999). 

Sixteen PCs in the MKPCA model were retained by the broken-stick rule (Nomikos and 

MacGregor, 1994) with 92.87% of the variation in the feature space explained. 

Figure 4 shows the T2 and the SPE charts of the MPCA and the MKPCA model. 

Compared to MPCA, MKPCA points to a lower number of abnormal batches in the 

SBR. The T2 charts of MPCA and the MKPCA model show very similar monitoring 

results. There are three batches (batches 3, 9, 33) which are different between SPE 

charts of the MPCA and the MKPCA model. In the SPE chart, MPCA assigned five 

batches as abnormal, i.e. being significantly different from the other batches, i.e., 

batches 4, 9, 33, 89, 131, whereas MKPCA assigned three batches as abnormal, i.e., 

batches 89, 112, 131. When we checked the historical database, batches 89 and 131 

were normal and batches 4, 9, 33, 112 were normal. This effect results from the fact that 

MKPCA can effectively capture the nonlinear relationship among batches. This result 

shows that the monitoring result from the SPE charts of MPCA may suffer from an 

oversensitivity to normal batches when MPCA is applied to a nonlinear process such as 

SBR. 
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Figure 4. The Hotelling’s T2 and SPE charts of 150 batches of (a) the MPCA and (b) the 

MKPCA method with the six on-line measurements. The dotted lines correspond to the 

95 and 99% confidence limits. 

 

There is a significant difference between the magnitude of SPE of the MPCA and 

the MKPCA model. MPCA is not able to capture the nonlinear dynamics of the SBR, 

which increases the modeling error of the MPCA. Compared to the MKPCA model, a 

lot of batches of the MPCA model are in the vicinity of the 95 % confidence limit of the 

SPE values. This may come from the nonlinear biological kinetics leading to batch-to-

batch variability in effluent quality and microorganism growth. On the other hand, 

MKPCA substantially extracts nonlinear principal components and therefore allows 

spreading the information regarding the data structure more widely giving a better 

opportunity to discard some of the eigendirections where the nonlinear part of the data 

resides. Thus, the MKPCA model has much lower SPE values than the MPCA model 

and MKPCA provides the nice capability of feature extraction and denoising, yielding a 

robust monitoring system. This observation is the confirmation of the nonlinear batch 

monitoring.  
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Figure 5. QQ plot for the second score (t2) of (a) MPCA (b) MKPCA. 

 

We can assess the impact of the nonlinearity through the use of QQ plots or 

normality probability plot. To check the nonlinearity of the SBR due to the periodic 

influent variations and nonlinear biological reactions, we checked the QQ plot of the 

principal component (t2) of the MPCA and the MKPCA model which are composed of 



only the normal batches. Figure 5 shows the QQ plot of the second score (t2) of the 

MPCA and the MKPCA model. From this figure, we can deduce that the SBR process 

has severe nonlinear dynamic relations and the extracted principal scores of MPCA have 

a large deviation from linearity. It means that MPCA has lower modeling ability which 

may lead to higher false alarm rate of a monitoring result of MPCA. On the other hand, 

MKPCA can extract the nonlinear principal components, that is, capture the nonlinearity 

in SBR data. 

 

3.2 ON-LINE MONITORING OF SBR 

 

Based on the off-line analysis, 49 batches are modeled for the on-line monitoring of 

MPCA and MKPCA. For fair comparisons, eight principal components were used for 

both modeling. To fill in the future values in newX , we used filling method which fills in 

all future measurements with the current deviation from the average batch. A SBR 

process itself evolves over time as the microorganisms adapt to changing operating 

conditions like surrounding temperature and varying process loads. This often results in 

false alarms and significantly compromises the reliability of the monitoring system 

(Rosen and Lennox, 2002; Lee and Vanrolleghem, 2003). To overcome the problem of 

changing process conditions, an adaptive mean updating approach with exponential 

weighted moving average was used to remove non-stationary mean. This has 

contributed to ensuring consistent, long-term performance of the monitoring system. In 

this approach, a previous batch which lies within the 95% confidence limit is used to 

update the batch mean trajectory. Then the MPCA and MKPCA models are tested 

against a new batch using a 99% control limit. New on-line data of a batch of SBR are 

monitored for every time point k with the monitoring charts based on the MPCA and 

MKPCA model. 

Figure 6 shows the on-line monitoring results of MPCA and MKPCA with the 99% 

confidence limits in a particular, normal batch (batch number 30). The batch is 

monitored for every time instant k in terms of its T2 and SPE charts. Both MPCA and 

MKPCA show that the T2 charts for this batch are within the control limits for the whole 

duration of the batch run. However, the SPE chart of MPCA in Figure 6(a) exceeds the 



confidence limit one time, around the 60th sampling time, that is, the MPCA invokes a 

false alarm. It results from the nonlinear phenomenon occurring during the phase 

change (from anaerobic to aerobic). On the other hand, the SPE chart of MPCA in 

Figure 6(b) does not show any violation for its confidence limit during the whole 

duration of the batch run. Therefore, this batch in MKPCA is assigned as being “in 

control” or “normal”. It illustrates that the selected nonlinear principal components in 

MKPCA can extract the dynamic characteristics of the SBR operation, i.e. the change 

from the anaerobic to aerobic phase. 
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Figure 6. On-line monitoring charts for (a) MPCA and (b) MKPCA in case of a normal 

batch (batch number 30). The dotted lines correspond to the 99% confidence limits. 

 

Figure 7 represents the on-line monitoring results of the MPCA and MKPCA model 

for an abnormal batch (batch number 60). Both methods dectected this batch as an 

abnormal one from off-line analysis (Figure 5). Both the MPCA and MICA methods 

show similar detection times for this batch. The T2 and SPE charts of MPCA in Figure 

7(a) show that this abnormal batch has a large deviation from the 61th time instant until 

the end of the batch operation, that is, the monitoring result of MPCA calls that the fault 

continues until the end of the batch. Indeed, the DO concentration in batch number 60 

was increased too early (in the anaerobic phase) but returned to the normal 

concentration during the aerobic phase, see Figure 8. A nonlinearity of the SBR system 

might cause this lasting false fault detection. On the other hand, the SPE charts of 

MKPCA in Figure 7(b) detects this abnormal batch behaviour around the 80th time 

instant but returns below the control limits around the 150th batch instant. It means that 

MKPCA can detect this fault during the aerobic phase and return within the control 



limits after the fault is released. 

This false alarm of MPCA comes from a bad modeling result. On the other hand, 

MKPCA can detect a fault only during aeration phase which is a physically meaningful 

and robust monitoring result. Hence, it results in less false alarms. This result shows that 

the extracted 8 PCs of MKPCA capture the underlying (nonlinear) factors from the SBR 

and push an abnormal batch outside the normal operating region and again pull it into 

the normal operating region. Typically, the false alarm rate of the MPCA is higher as a 

normal batch might be judged as a non-conforming one. Therefore, this deteriorates the 

reliability of the monitoring system. The above clearly showed that the nonlinear 

monitoring technique can capture the nonlinear dynamics of the SBR better than linear 

MPCA. 
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Figure 7. On-line monitoring charts for (a) MPCA and (b) MKPCA in case of an 

abnormal batch (batch number 60). The dotted lines correspond to the 99% confidence 

limits. 

Figure 8 shows an univariate plot of the on-line DO measurements of the normal 

batches and the abnormal batch 60 which was over-aerated at the start of the aeration 

phase. In most industrial productions where batch processes are used, the occurrence of 

a fault means that the batch is immediately rejected (e.g. in the pharmaceutical and food 

industry). However, this is not the case in wastewater treatment since there is no (or 

little) control of the influent flow and poorly treated water is better than non-treated 

water. Thus, when a fault is detected, the batch run will carry on and operators will use 

the information on the fault to correct the following batch (Yoo et al., 2004a). 
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Figure 8. Univariate plot of on-line DO measurement of 49 normal batches and the 

abnormal batch 60. 

 

 

4. Conclusions 
 

 Biological wastewater treatment such as performed in SBRs is a complex, nonlinear 

and multivariate process, where many hydrodynamic and biological reactions occur 

simultaneously. Linear MPCA has the shortcoming that the measurement variables of 

the batch process should be linear. The developed nonlinear monitoring method was 

successfully applied to an 80L SBR. In off-line and on-line batch monitoring, it can 

effectively capture the nonlinear relationship among process variables. The results of 

the pilot-scale SBR monitoring study clearly showed that the nonlinear monitoring 

technique generates less false alarms, physically meaningful and robust monitoring 

results in comparison to linear MPCA.  
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