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Abstract  The first step in the dynamic modelling of pesticides is a reliable hydrodynamic 
model. SWAT (Soil and Water Assessment Tool) calculates both the dynamic hydrological 
response and the associated diffuse pesticide supply towards surface waters. In this study, 
we focus on the hydrodynamic part. First, an intensive data collection for the Nil-catchment 
was performed. During model set-up, a reduction of the number of model parameters was 
obtained using an LH-OAT sensitivity analysis. Next, the selected parameters were optimised 
by a manual and an auto-calibration. The auto-calibration procedure is based on a multi-
objective function which incorporates the algorithms of the Shuffled Complex Evolution  
Method. Results of the manual and the auto-calibration are compared. 
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Introduction 
Dynamic models form suitable instruments for risk assessment of toxic components in 
natural river systems (Deksissa and Vanrolleghem, 2001). By using exposure models under 
time-varying conditions, risks can be determined more realistically as compared to a steady 
state or a static approach (Verdonck et al., 2002). Advantages consist in better predictions of 
impacts of accidental discharges, of effects of specific climatological or seasonal variations 
and of evolutions in water quality. A prominent example is the dynamic modelling of 
pesticides. 

The first step in the development of a dynamic exposure model is a reliable hydrodynamic 
model. The hydrodynamics of a river catchment will determine to a great extent the transport 
of solutes, suspended sediments and colloids in the water system. SWAT was found to be the 
most suitable tool for modelling non-point source pollution on catchment scale. By using the 
SWAT model, not only hydrodynamic predictions but also predictions of pesticide loads at 
different parts of the river at any time can be made. In this research, SWAT is used to model 
the hydrodynamic behaviour of a small river called the ‘Nil’.  
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Methods 

Catchment area 
We focus on the Nil, a small, hilly basin situated in the French speaking part of Belgium. It 
drains an area of 32 km², is 14 km long and has a retention time of about 1 day.  The area 
consists predominantly of loamy soils, 7% of the area is inhabited and the main crops grown 
are winter wheat (22% of the catchment area), corn (15%) and sugar beet (10%). 18% of the 
catchment consists of pasture. The Nil catchment was selected because it is a well 
documented basin, studied in detail in terms of pesticide application (Beernaerts et al., 2002). 

Model description 
SWAT2000- the Soil and Water Assessment Tool- is developed by the USDA to predict the 
impact of land management practices on water, sediment and amount of chemicals 
originating from agriculture, in large complex river basins with varying soils, land use and 
management conditions over a long period of time. It is a partly physically-based and partly 
distributed, continuous model with a daily calculation time step (Neitsch et al., 2002).  

In the present study, only hydrological processes are considered. The water quantity 
processes simulated by SWAT include precipitation, evapotranspiration, surface run-off, 
lateral subsurface flow, ground water flow and river flow. 

We used the AVSWAT version of the model, where the simulator is integrated in a GIS 
by an ArcView pre-processor (Di Luzio et al., 2002). It uses gridded DEM data, polygon 
coverage’s of soils and land use, and point coverage’s of weather stations as basic input to 
the model (Figure 1). 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Overlaying of different maps 
within the SWAT-model 

Within SWAT, a watershed is partitioned into a number of sub-basins (Figure 2), based 
on the threshold area which defines the minimum drainage area required to form the origin of 
a stream. Within the sub-basins, hydrologic response units (HRU’s) are defined, which are 
lumped land areas consisting of unique combinations of land cover, soil and management 
(Neitsch et al., 2002).  

Figure 2 Sub-basin delineation in the Nil-
catchment, automated by means of a DEM 
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Input data 
For the Nil-catchment, weather data from 1998 to 2002 were obtained from the Belgian 
Royal Meteorological Institute for the stations of Chastre and Ernage. These data include 
daily precipitation and daily maximum and minimum temperatures.  

A DEM created by local government authorities and a 1999 land use map (Landsat) were 
added to the SWAT model.  

A detailed soil map was created by digitizing the required parts of the maps 117E, 130E 
and 130W; all at scale 1:25.000 (IRSIA, 1961). The basic soil properties (percentage of sand, 
clay and silt; the texture class, the percentage of carbon and the horizon thickness) were 
obtained from the analytical database AARDEWERK (Van Orshoven et al., 1993). In order 
to calculate the hydraulic conductivity (Ksat), pedotransfer functions from the HYPRES data 
base were used (Wösten et al., 1998). The available water capacity (AWC) was estimated 
from water contents at pF 4.2 and 2.5 using the RETC-program (van Genuchten et al., 1991). 

For the simulation, the Nil was divided into 27 sub-basins and reaches. The sub-basins are 
further divided into 227 HRU’s, as defined by land use and soil type. 

Sensitivity analysis and calibration 
A complex hydrologic model is generally characterised by a multitude of parameters. Due to 
spatial variability, measurement error, incompleteness in description of both the elements 
and processes present in the system, etc., the values of many of these parameters will not be 
exactly known. Therefore, to achieve a good fit between simulated and measured data, 
models need to be conditioned to match reality by optimising their internal parameters.  

The model calibration procedure can be either manual or automated. A manual calibration 
depends on the knowledge, experience and patience of the modeller and can be very time-
consuming.Therefore, it is advisable to be supported by statistical techniques such as 
sensitivity analysis and auto-calibration. A parameter sensitivity analysis provides insights 
on which parameters contribute most to the output variance due to input variability. Based on 
this information, a calibration can be performed for a limited number of sensitive parameters.  

The LH-OAT sensitivity analysis 
The LH-OAT method combines the OATdesign and Latin Hypercube sampling by taking the 
Latin Hypercube samples as initial points for an OAT-design (Figure 3) (van Griensven et 
al., 2004). 

Latin-Hypercube sampling (McKay, 1988) is a sophisticated way to perform random 
sampling such as Monte-Carlo sampling which results in a robust analysis requiring not too 
many runs. It subdivides the distribution of each parameter into N ranges, each with a 
probability of occurrence equal to 1/N. Random values of the parameters are generated, such 
that each range is sampled only once. For each of the N random combinations of the 
parameters the model is then run. 

In the OAT (One-factor-At-a-Time) design (Morris, 1991), only one input parameter is 
modified between two successive runs of the model. Therefore, the changes in the output in 
each model run can be unambiguously attributed to the input changed in such a simulation.  
Considering n parameters, the experiment involves performing n+1 model runs to obtain one 
partial effect for each parameter. As the influence of a parameter may depend on the values 
chosen for the remaining parameters, the experiment has to be repeated for several sets of 
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input parameters. The final effect will then be calculated as the average of a set of partial 
effects.  

As a result, the LH-OAT sensitivity analysis method is a robust and efficient method: for 
m intervals in the LH-method, a total of m×(n+1) runs is required. The LH-OAT provides 
ranking of parameter sensitivity (van Griensven et al., 2004). 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 3 Illustration of LH-OAT sampling of values for a two parameters model where X 
represent the Monte-Carlo points and • the OAT points (van Griensven et al., 2004). 

Auto-calibration 
 
The auto-calibration operates by the minimisation of an objective function with the ParaSol 
program. ParaSol (Parameter Solutions) (van Griensven and Meixner, 2004) is a modified 
version of the Shuffled complex evolution algorithm (Duan et al., 1992) that allows multi-
objective optimisation.  

Shuffled complex evolution algorithm (SCE-UA): The SCE-UA algorithm is a global search 
algorithm for the minimisation of a single function for up to 16 parameters (Duan et al., 
1992).  The SCE-UA combines several strategies and searches over the whole parameter 
space, hereby avoiding local optima. In a first step (zero-loop), SCE-UA selects an initial 
‘population’ by random sampling throughout the feasible parameter space for p parameters to 
be optimised (delineated by given parameter ranges). The population is portioned into 
several “complexes” that consist of 2p+1 points. Each complex evolves independently using 
the simplex algorithm. The complexes are periodically shuffled to form new complexes in 
order to share the gained information. It has been widely used in watershed model calibration 
and other areas of hydrology such as soil erosion, subsurface hydrology, remote sensing and 
land surface modelling (Duan, 2003; Duan et al., 1992) and was applied as well with success 
to SWAT (Eckhardt and Arnold, 2001; van Griensven and Bauwens, 2003).  

Objective function (OF): This objective function is similar to the Mean Square Error method 
(MSE) and aims at estimating the matching of a simulated series to a measured time series: 

 (1) 

 

with N the number of pairs of measured (xmeasured) and simulated (xsimulated) variables and h(.) 
stands for the option to apply a transformation function (such as lognormal or root function).  
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Multi-objective optimisation 

Several OF’s can be combined to a Global Optimisation Criterion (GOC) using (van 
Griensven and Meixner, 2004): 

                   

      (2) 

 

where Nm is the number of observation and OFm,min is the minimum value for the m-th OF.  

Results and discussion 

Sensitivity analysis 
The sensitivity analysis presented here only focuses on the parameters related to the 
hydrologic processes. The changing of the distributed parameters was performed in a lumped 
way by sampling a relative change (in percentage). The analysis was carried out, based on 
simulations for hydrology at the mouth of the river, for the period from 1998 until 2001. 
Results of the sensitivity analysis are shown in Table 1. This table represents the sensitivity 
rank of the 27 observed parameters, both for the performance for flow (OF), as for the total 
mass balance of the model output (MB). The former is using Eq.1 with no application of a 
transformation function for daily flow observations. The latter is assessed for the total 
amount of water that leaves the catchment at the outlet over the model period and is typically 
used for catchment management. 

Table 1 Parameters and parameter range used in sensitivity analysis + sensitivity ranking 
(with Gw. = groundwater, Evap. = evaporation, Geom. = Geomorphology)  (*relative percent 
change) 

Name min max Definition Process OF MB 
CN2 -50 50 SCS runoff curve number for moisture 

condition II * 
Runoff 1 1 

surlag 0 10 Surface runoff lag coefficient Runoff 2 19 
SMTMP 0 5 Snow melt base temperature (°C) Snow 3 13 
SMFMX 0 10 Maximum melt rate for snow 

(mm/°C/day) 
Snow 4 10 

rchrg_dp 0 1 Groundwater recharge to deep aquifer 
(fract) 

 5 2 

GWQMN 0 1000 Threshold depth of water in the shallow 
aquifer required for return flow to occur 
(mm) 

Soil 6 3 

sol_z -50 50 Soil depth * Soil 7 5 
GW_DELAY 0 100 Groundwater delay (days) Gw. 8 9 
SOL_AWC -50 50 Available water capacity of soil layer 

(mm/mm soil) 
Soil 9 6 

TIMP 0.01 1 Snow pack temperature lag factor Snow 10 16 
ESCO 0 1 Plant evaporation compensation factor Evap. 11 4 
SFTMP 0 5 Snowfall temperature (°C) Snow 12 11 
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SLSUBBSN -50 50 Average slope length (m/m) * Geom. 13 22 
GW_REVAP 0.02 0.2 Groundwater “revap” coefficient Gw. 14 8 
CH_K2 0 150 Effective hydraulic conductivity in main 

channel alluvium (mm/hr) 
Channel 15 20 

canmx 0 10 Maximum canopy index Runoff 16 12 
REVAPMN 0 500 Threshold depth of water in the shallow 

aquifer for “revap” to occur (mm) 
Gw. 17 7 

SLOPE -50 50 Average slope steepness (m/m) * Geom. 18 21 
SMFMN 0 10 Minimum melt rate for snow 

(mm/°C/day) 
Snow 19 18 

ALPHA_BF 0 1 Baseflow alpha factor (days) Gw. 20 15 
BIOMIX 0 1 Biological mixing efficiency Soil 21 14 
ch_n -20 20 Manning coefficient for channel Channel 22 24 
sol_k -50 50 Soil conductivity (mm/hr) * Soil 23 17 
sol_alb 0 1 Moist soil albedo  Soil 24 23 
epco -50 50 Plant evaporation compensation factor * Evap. 25 25 
TLAPS -50 50 Temperature laps rate (°C/km) * Geom. 26 27 
blai -50 50 Leaf area index for crop * Crop 27 26 

 
The results for model output (MB) somehow follow those for model performance (OF). In 

both cases the curve number (CN2) is the most important parameter, followed by the 
parameters rchrg_dp and GWQMN. The importance of the groundwater parameters is not 
surprising, due to the fact that drainage to deeper groundwater is high. Groundwater of the 
Nil-catchment passes towards the adjacent river the Train. This is explained in detail below.  

Calibration 
In the manual calibration, parameters influencing baseflow and surface flow are optimised. 
As the parameters SOL_AWC and sol_z are supposed to be determined precisely, no 
optimisation was performed for them. The parameters that are given priority in the auto-
optimisation, are indicated with a grey background in Table 1.  

The results of the manual calibration are given in Figure 4a and 4b. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Comparison of measured (         ) and manually calibrated (         ) flow data. 

An explanation for the low base flow values, can be found in the geological structure of 
the Nil-catchment. An important part of the groundwater of this catchment  is drained to the 

0.0

0.5

1.0

1.5

2.0

1/11/98 1/11/99 1/11/00 1/11/01

date

flo
w

 (m
³/s

)



                                        Hydrodynamic modelling with SWAT    217 

 
  

adjacent river the Train. This is caused by the Brusselian sands, which have a hydraulic 
conductivity between 10-3 and 10-5 m/s and lay above a less permeable socle. 

As shown in Figure 4, a good graphical fit was obtained for the measured and manually 
calibrated flows. Nevertheless, better calibration is possible if seasonally dependent 
parameters could be adjusted throughout the year. For example, different values for the 
ESCO parameter during winter and summer, would permit more realistic simulations of 
water evaporation during both seasons and thereby increase model efficiency.  

The results of the auto-calibration are represented in Figure 5. Since a first automated 
calibration did not give satisfying results for the baseflow, a second automated calibration 
was performed using a lognormal transformation in order to increase the weights of the 
baseflow in the OF. In this case, baseflow was well simulated, but peaks due to surface run-
off were missed. A square root transformation used in the OF seems to calibrate better peaks 
originating from surface run-off. As a solution, a multi-objective calibration was performed 
based on both mentioned transformations. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 Comparison of different auto-calibrations of flows: (a) the default values, (b) with a 
log transformation in the OF, (c) with a square root transformation in the OF and (D) by 
means of a multi-objective calibration of the two previous OF’s.  

For the case of the Nil-catchment, first auto-calibration results seem less satisfying as 
those achieved by manual calibration. By means of multi-objective calibration, a better fit 
was achieved. A good mathematical translation of the problem is very important and should 
further be investigated. 
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Conclusions 
First, an intensive data collection, the digitisation of soil maps and the calculation of related 
soil parameters was performed for the Nil catchment. All data was checked upon reliability. 

The methodology used to achieve a hydrodynamic model for the Nil-catchment for the 
purpose of modelling pesticide supply was presented. An LH-OAT sensitivity analysis 
allowed for the screening of the large set of input parameters. The selected subset of 
parameters was then used for model calibration. The manual calibration resulted in a good fit 
for flows. Better results would be possible if seasonally dependent parameters could be 
adjusted to the season. For the auto-calibration, two transformations in the OF were 
performed i.e. a logarithmic and a square root. None of them could simulate both baseflow 
and run-off at the same time. A multi-objective calibration as a combination of both 
mentioned OF’s resulted in a good fit for flows. A good mathematical translation of the 
problem is very important and should further be investigated. 

References 
Abdeslam A. (1998) Simulation numérique des écoulements souterraines et des relations nappes-

rivières dans le bassin versant du Train (Belgique). Ph.D. thesis, Dept. Agric. Eng., Univ. of 
Leuven, Louvain-la-Neuve, Belgium. 

Beernaerts S., Debongie P., De Vleeschouwer C. and Pussemier L. (2002) Het pilootproject voor het 
Nil bekken. Groenboek Belgaqua-Phytophar 2002, Belgium. 

Deksissa T. and Vanrolleghem P.A. (2001) Dynamic exposure assessment and modelling. In: Med. 
Fac. Landbouww. Univ. Gent, 66/4, 239-244. 

Di Luzio M, R. Srinivasan, and J. G. Arnold (2002). Integration of Watershed Tools and SWAT Model 
into BASINS. Journal of American Water Resource Association 38(4), 1127-1141.  

Duan Q., Gupta V.K. and Sorooshian S. (1992) Effective and efficient global minimalization for 
conceptual rainfall-runoff models. Water Resour. Res. 34, 751-763. 

Duan, Q., Sorooshian S., Gupta H. V., Rousseau A. N., and Turcotte R. (2003) Advances in Calibration 
of Watershed Models, AGU, Washington, DC. 

Eckhardt K. And Arnold J.G. (2001) Automatic calibration of a distributed catchment model. Journal 
of Hydrology 251, 103-109. 

McKay M.D. (1988) Sensitivity and Uncertainty Analysis Using a Statistical Sample of Input Values. 
In: Uncertainty Analysis, Y. Ronen (ed.), CRC press, Inc. Boca Raton, Florida, pp. 145-186. 

Morris M.D. (1991) Fractional sampling plants for preliminary computational experiments. 
Tecnometrics 33(2). 

Neitsch S.L., Arnold J.G., Kiniry J.R., Williams J.R. and King K.W. (2002) SWAT manual, USDA, 
Agricultural Research Service and Blackland Research Center, Texas A&M Univeristy, USA. 

van Genuchten M.Th., Leij F.J. and Yates S.R. (1991) The RETC-code for quantifying hydraulic 
functions of unsaturated soils. Version 1.0., EPA report 600/2-91/065, US Salinity Laboratory, 
ARS, Riverside, California. 

van Griensven A. and Bauwens W. (2003). Multi-objective auto-calibration for semi-distributed water 
quality models, Water Resour. Res., 39(10), 1348-1357. 

van Griensven A., Meixner T., Grunwald S., Bishop T., Luzio M. And Srinivasan R. (2004). A global 
sensitivity analysis method for the parameters of multi-variable watershed models. Submitted to 
Journ. Hydrol.  

van Griensven A. and Meixner T. (2004). A global and efficient multi-objective auto-calibration and 
uncertainty method for water quality catchment models. Water Resources Research, submitted. 

Van Orshoven J., Vandenbroucke D. (1993) Handleiding bij AARDEWERK, databestand van 
bodemprofielgegevens, Report 18A, Katholieke Universiteit Leuven, Belgium. 

Verdonck F.A.M., Deksissa T., Matamoros D. and Vanrolleghem P.A. (2002) Dealing with variability 
in chemical exposure modelling in rivers. In: Proceedings Seminar on Exposure and Effects 
Modelling in Environmental Toxicology. Antwerp, Belgium,  4-8 February. 

Wösten J.H.M., Lilly A., Nemes A. and Le Bas C. (1999) Development and use of a database of 
hydraulic properties of European soils. Geoderma 90, 169-185. 


