

Preliminary study on the partitioning of pesticides in surface waters

Katrijn Holvoet^{1,2}, Piet Seuntjens² and Peter A. Vanrolleghem¹

¹Ghent University - BIOMATH, Department of Applied Mathematics, Biometrics and Process Control, Coupure Links 653, B-9000 Gent, BELGIUM ² Flemish Institute for Technological Research (Vito), Risk assessment group, Boeretang 200, B-2400 Mol, Belgium

Objectives

The aim of the study is twofold:

- initial study on the partitioning of pesticides between the different compartments of a water system
- the set up of a monitoring campaign during the whole pesticide application period, studying the fractions of pesticides in suspension, bound on suspended solids and sediment and present in pore water

Study area: the Nil-catchment

- location
 - small basin
 - area = 32 km^2
 - length = 14 km
 - well documented
 pesticide data collected
- land use

• pesticide application (Beernaerts et al., 2002)

Initial sampling

- <u>Sampling:</u> July 7, 2003: water and sediment samples ('Van Veen' grab) taken at the debouchement and halfway upstream
- Analysis:

water sample: determination of amount of suspended solids: gravimetrically after filtration over a glass fibre filter sludge sample: pore water and sediment separated through filtration under pressure content of herbicides in solution, on suspended solids, in pore water

- and on the sediment was measured by LC-MS
- Results: relative fraction of pesticides in each compartment calculated

assumptions: water: column thickness = 40 cm sediment :- thickness = 20 cm - dry bulk density = 0.53 kg/l - porosity = 80% suspended solids: downstream = 17 mg/l upstream = 8mg/l

Figure 1. Presentation of the calculated partitioning of pesticides over the different compartments in a water system

- high K_{oc}-values represent high tendency to interact with OM Thus, high tendency to react with sediment
- for all pesticides, pore water conc. > water column conc.
 → sediments can be an important source of pesticides
- increase of the fraction of pesticides in the sediment downstream
- 'Van Veen' grab samples result in analysing historic contamination
 → for dynamic modelling we are only interested in top-layer

2004 Monitoring campaign

- water samples at two locations (one upstream and one at the mouth): 50 ml taken every 15 min. and mixed over 8 hours: 15 MAR 15 JUN
- analysis of pesticides in suspension and bound on suspended solids: isoproturon, atrazine, lenacil, diuron, chloridazon, glyphosate + AMPA, simazine

- sediment samples taken every week with a multisampler

taking undisturbed samples
 freezing and slicing

- analysing pore water and sediment of top-layer

Conclusions

- a preliminary study was performed
- set up of a comprehensive monitoring campaign and additional experimental work will result in a better insight in the different reactions of pesticides with suspended solids, the sediment and the pore water

References

Beernaerts S., Debongie P, De Vleeschouwer C. and Pussemier L. 2002. Groenboek Belgaqua-Phytophar 2002, pp. 33-38.

