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Abstract

Batch processes play an important role in the production of low-volume, high-value products such as polymers, pharmaceuticals, and

biochemical products. Multiway principal component analysis (MPCA), a multivariate projection method, has been widely used to monitor

batch processes. But in-control data of non-stationary processes in fact contain inherent non-Gaussian distributed data due to ramp changes,

step changes, and even weak levels of autocorrelation. Monitoring charts obtained by applying MPCA to such non-Gaussian data may

contain nonrandom patterns corresponding to the data characteristics. To obtain better monitoring performance in a batch process with non-

Gaussian data, on-line batch monitoring method with multiway independent component analysis (MICA) is developed in this paper. MICA is

based on a recently developed feature extraction method, called independent component analysis (ICA), whereas PCA looks for Gaussian

components, whereas ICA searches for non-Gaussian components. MICA projects the multivariate data into a low-dimensional space defined

by independent components (ICs). When the measured variables have non-Guassian distributions, MICA provides more meaningful

statistical analysis and on-line monitoring compared to MPCA because MICA assumes that the latent variables are not Gaussian distributed.

The proposed method was applied to the on-line monitoring of a fed-batch penicillin production. The simulation results demonstrate the

power and advantages of MICA.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction within acceptable limits while following the recipe pre-
Batch processes play an important role in the production

of low-volume, high-value products such as polymers,

pharmaceuticals, and biological products. Most batch pro-

cesses have predetermined starting and stopping points, and

raw materials are introduced into the process in predefined

amounts following a specific sequence. The manufacturing

of a typical batch involves charging ingredients to the

vessel, processing them under controlled conditions, and

discharging the final product. A batch operation is consid-

ered successful if the values of the process variables remain
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scribed for the process, resulting in a uniform high-quality

product. Unfortunately, some of the typical characteristics of

batch processes complicate the on-line monitoring of such

processes (e.g., finite duration, nonlinear behavior, and

insufficient on-line sensors).

Small changes in the operating conditions during critical

periods may degrade the quality and yield of the final

product. Most batch processes exhibit batch-to-batch varia-

tions in the specified trajectory. These variations are of two

types: normal variations due to common causes, and special

variations due to unusual causes. However, product quality

variables, the key indicators of process performance, are

often examined off-line in a laboratory. The lack of on-line

monitoring in most industrial batch processes means that,

although operators may identify problems in product qual-

ity, they cannot recognize in advance the causes of the

problems or when they occur. Therefore, the development of
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effective methods for on-line monitoring and fault diagnosis

of batch processes would significantly improve product

quality because such methods would enable the detection

of faults during process operation, making it possible to

correct faults either prior to the completion of the batch or

before the production of subsequent batches. Such early

detection and correction of problems in batch processes

would reduce the number of rejected batches.

Several techniques based on multivariate statistical

analysis have been proposed for on-line monitoring and

fault detection in batch processes. Nomikos and MacGre-

gor [1,2] developed a new method known as multiway

principal component analysis (MPCA) by extending the

multivariate statistical process control (SPC) methods of

principal component analysis (PCA) to batch processes.

The key idea of their method is to compress the normal

batch data and extract information by projecting the data

onto a low-dimensional space that summarizes both the

variables and their time trajectories. Having established

the normal process behavior, the process of a given batch

is then monitored by comparing the time progression of

the projections in the reduced space with those of the

normal batch data. The same authors also developed

multiway partial least squares (MPLS) for monitoring

processes for which both the process data and the product

quality data are available [3]. Thus, MPCA and MPLS

can be used to monitor batch processes if a model has

been developed from nominal or good batch operation

data. Numerous studies have investigated the application

of MPCA to industrial batch monitoring [4–13]. Dong

and McAvoy [14] used nonlinear principal component

analysis (NLPCA) based on principal curves and neural

networks to monitor batch processes. Rännar et al. [15]

suggested an adaptive batch monitoring method using

hierarchical PCA to overcome the need of estimating

the missing data on trajectory deviation from the current

time until the end of the batch in PCA.

It is well known that many of the variables monitored

in process systems are not independent. The measured

process variables may be combinations of independent

variables that are not directly measurable (referred to as

latent variables in probabilistic theory). Independent com-

ponent analysis (ICA) can extract these underlying factors

or components from multivariate statistical data. It defines

a generative model for the observed multivariate data,

which are typically in the form of a large database of

samples. In this model, the data variables are assumed to

be linear or nonlinear mixtures of some unknown latent

variables, where the system governing the mixing of the

latent variables is also unknown. The latent variables,

which are called the independent components (ICs) of

the observed data, are assumed to be non-Gaussian and

mutually independent. ICA seeks to extract these ICs as

well as the mixing process [16–18].

What distinguishes ICA from PCA is that it looks for

components that are both statistically independent and non-
Gaussian. PCA is a dimensionality reduction technique in

terms of capturing the variance of the data which is capable

of extracting uncorrelated latent variables from correlated

data, while ICA is designed to separate the independent

components (ICs) that are independent and constitute the

observed variables. Furthermore, PCA can only impose

independence up to second-order statistics information

(mean and variance) while constraining the direction vec-

tors to be orthogonal, whereas ICA has no orthogonality

constraint and also involves higher-order statistics. In case

of ICA, the most interesting directions are those that show

the non-Gaussian distributions, whereas the directions of

PCA are looking for the Gaussian distribution. Thus, both

models have a different projection pursuit. ICA may reveal

more meaningful information in the non-Gaussian data than

PCA [18–20].

In this paper, we propose on-line batch monitoring using

multiway independent component analysis (MICA) in order

to obtain better monitoring performance in the batch pro-

cess with non-Gaussian data. This article is organized as

follows. MPCA is introduced in Section 2. In Section 3, the

on-line batch monitoring method of MICA is described.

The simulation results in a fed-batch penicillin production

are given in Section 5. Finally, we present our conclusions

in Section 6.
2. MPCA

MPCA is used for the analysis and monitoring of batch

process data. Batch data are typically reported in terms of

batch numbers, variables and times. Data are arranged into a

three-dimensional matrix X (I� J�K), where I is the

number of batches, J is the number of variables and K is

the number of times each batch is sampled. This matrix can

be decomposed using various three-way techniques, one of

which is MPCA. MPCA is equivalent to performing ordi-

nary PCA on a large two-dimensional matrix X constructed

by unfolding the three-way data in the manner shown

schematically in Fig. 1 [1].

MPCA decomposes the three-way array X into a sum-

mation of the product of a score tr and a loading matrix Pr

plus a residual array E that is minimized in the least squares

sense as follows:

X ¼
XR
r¼1

tr � Pr þ E ¼
XR
r¼1

trp
T
r þ E ¼ X̂þ E ð1Þ

where � denotes the Kronecker product (X= t�P is X
(i,j,k) = t(i)P(j,k)), R denotes the number of principal compo-

nents retained, tr expresses the relationship among batches,

pr is related to variables and their time variation, E is the

residual matrix. The first expression in Eq. (1) gives the 3-D

decomposition while the second expression displays the

more common 2-D decomposition.



Fig. 1. Multiway unfolding of a three-way batch data set.
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The three-way array X can be unfolded in three ways,

which give rise to the following two-dimensional matrices

[6,14]:

� Batches� variables at each time (time-wise unfolding)
� Variables� time for each batch (batch-wise unfolding)
� Batches� times for each variable (variable-wise

unfolding)

Time-wise unfolding is useful for analyzing the variabil-

ity among samples, and batch-wise unfolding facilitates the

analysis of the variability among batches by summarizing

the information related to the measured variables and their

variations over time [1]. Variable-wise unfolding can be

used to obtain information about the variability among the

batch variables [21,22]. To facilitate comparison with the

MPCA method, we use the batch-wise unfolding scheme of

the MICA method in this paper. Fig. 1 shows a schematic of

the batch-wise unfolding method.

For on-line batch monitoring using MPCA, we know

only the values from the start of batch to the current time;

however, for on-line monitoring the incomplete set of real

batch process should be augmented with predicted data to

create a data set spanning the entire batch. Nomikos and

MacGregor [2] suggested three different ways for variable

trajectory estimation, i.e. to complete the remaining of the

batches: (1) zero deviation, (2) current deviation, (3) PCA

projection method. The choice of the most suitable approach

depends on the characteristics of the batch process, but the

second or the third filling method suggested by Nomikos

and MacGregor [2] is mainly used.

The statistics used for monitoring multivariable batch

processes are D-statistic and Q-statistic. The D-statistic,

which is similar to the Hotelling’s T 2 statistic, is a Maha-

lanobis distance between new data and the center of the
normal operating condition data in a reduced dimension.

The pattern of the residuals is monitored using the Q-

statistic, which is a summation of the squared prediction

error (SPE). The D-statistic monitors systematic varia-

tions in the principle component (PC) subspace, while the

Q-statistic represents variations not explained by the

retained PCs. That is, faults in the process that violate the

normal correlation of variables are detected in the PC

subspace by the D-statistic, whereas faults that violate the

PCA models are detected in the residual space by the Q-

statistic. At the end of a batch, D- and Q-statistics for batch i

are calculated as follows:

Di ¼ tTi S�1
t tif

RðI2 � 1Þ
IðI � RÞ FR;I�R ð2Þ

Qi ¼ eie
T
i ¼

XKJ
c¼1

Eði; cÞ2 ð3Þ

where ei is the i-th row of E, I is the number of batches in

the reference set, ti is a vector of R scores, St is the (R�R)

covariance matrix of the t-scores calculated during the

model development, which is diagonal due to the orthogo-

nality of the t score values, R is the number of principal

components retained in the model, and FR,I�R is the F-

distribution value with R and I-R degrees of freedom. The

statistical limits on the D- and Q-statistics are computed by

assuming that the data have a multivariate normal distribu-

tion. Weighting the distance by the inverse of the covariance

matrix St accounts for differences in variation and the

presence of correlations. Variables that have a larger normal

variation are weighted less in D-statistic [23].

To calculate the D-statistic for on-line batch monitoring,

the expression in Eq. (2) is implemented for each observa-

tion at time instant k of batch i.

DiðkÞ ¼ ðtTi ÞkS�1
t ðtiÞkf

RðI2 � 1Þ
IðI � RÞ FR;I�R ð4Þ

where (ti)k is calculated from the filled observation vector.

The SPE is a quadratic form of the errors at time interval k.

SPEiðkÞ ¼
XJ
j¼1

ðxijðkÞ � x̂ijðkÞÞ2 ¼
XJ
j¼1

ðeijðkÞÞ2

¼
XJk

c¼ðk�1ÞJþ1

eTc ec ð5Þ

where ec is the cth column of the matrix E =Xnew� tnewP
T.

The distribution of the SPE can be approximated by a

weighted v2 distribution. The confidence limit of SPE can

be obtained from the above approximate chi-squared

distribution with a significance level of a, SPEk,a=(mk/2mk)
v2
2m2

k /mk ,a, where mk and mk are the mean and variance of the

SPE obtained for the data set used for the model devel-

opment at time instant k and v2
2m2 /m ,a is the critical value
k k
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of the v2 variable with 2mk
2/mk degrees of freedom at

significance level a [23].
3. Batch monitoring with multiway ICA

3.1. Independent component analysis (ICA)

To introduce the ICA algorithm, it is assumed that d

measured variables, x(k)=[x1(k),. . .,xd(k)]
T, at sample k can

be expressed as linear combinations of m (V d) unknown

independent components s1, s2,. . .,sm.

xðkÞ ¼
Xm
j¼1

ajsjðkÞ ¼ AsðkÞ ð6Þ

The ICs and the measured variables have means of zero.

The relationship between them is given by

X ¼ AS þ E ð7Þ

where X=[x(1),x(2),. . .,x(n)]aRd� n is the data matrix, A=

[a1,. . .,am]aRd� m is the mixing matrix, S=[s(1),s(2),. . .,
s(n)]aRm � n is the independent component matrix, Ea
Rd � n is the residual matrix, and n is the number of

samples. Here, we assume that dzm (when d =m, the

residual matrix, E, becomes the zero matrix). The basic

problem of ICA is to estimate the original components S

or to estimate A from X without any knowledge of S or A.

Therefore, the objective of ICA is to calculate a separating

matrix W so that the components of the reconstructed data

matrix Ŝ, given as

Ŝ ¼ WX ð8Þ

become as independent of each other as possible. Using the

ICA algorithm, we can obtain the rows of Ŝ whose norm is 1

[18].

Below we assume that d equals m except where specified

otherwise. The initial step in ICA is whitening (also known

as sphering) which eliminates all the cross-correlations

among random variables. Consider a d-dimensional random

vector x(k) at sample k with covariance Rx =E(x(k)x
T(k)).

The eigen-decomposition of Rx is given by

Rx ¼ ULLUT : ð9Þ

The whitening transformation is expressed as

zðkÞ ¼ QxðkÞ ð10Þ

where Q =�� 1/2UT. One can easily verify that Rz=E(z(k)z
T

(k)) is the identity matrix under this transformation. After the

whitening transformation we have
zðkÞ ¼ QxðkÞ ¼ QAsðkÞ ¼ BsðkÞ ð11Þ
where B is an orthogonal matrix, as verified by the following

relation:

EfzðkÞzT ðkÞg ¼ BEfsðkÞsT ðkÞgBT ¼ BBT ¼ I: ð12Þ

We have therefore reduced the problem of finding an

arbitrary full-rank matrix A to the simpler problem of

finding an orthogonal matrix B. Then, from Eq. (11), we

can estimate s(k) as follows

ŝðkÞ ¼ BTzðkÞ ¼ BTQxðkÞ: ð13Þ

From Eqs. (8) and (13), the relation between W and B

can be expressed as

W ¼ BTQ: ð14Þ

To calculate B, each column vector bi is initialized and

then updated so that the i-th independent component

ŝi=(bi)
Tz may have considerable non-Gaussianity. There

are two classic measures of non-Gaussianity: kurtosis and

negentropy. Kurtosis is the fourth-order cumulant of a

random variable kurt(y) =E{y4}� 3{E{y2}}2. Non-Gaus-

sianity can be measured by the absolute value of the

kurtosis. These measures are zero for a Gaussian variable,

and larger than zero for most non-Gaussian random varia-

bles. However, kurtosis calculation is sensitive to outliers.

On the other hand, negentropy is based on the information-

theoretic quantity of (differential) entropy. Entropy is a

measure of the average uncertainty in a random variable

and the differential entropy H of random variable y with

density f(y) is defined as

HðyÞ ¼ �
Z

f ðyÞlogf ðyÞdy ð15Þ

A Gaussian variable has the largest entropy among all

random variables with equal variance [16]. In order to

obtain a measure of non-Gaussianity that is zero for a

Gaussian variable, the negentropy J is defined as follows

JðyÞ ¼ HðygaussÞ � HðyÞ ð16Þ

where ygauss is a Gaussian random variable with the same

variance as y. Negentropy is nonnegative and measures the

departure of y from Gaussianity [18]. However, estimating

negentropy using Eq. (16) would require an estimate of the

probability density function. To estimate negentropy effi-

ciently, Hyvärinen [16,17] suggested simpler approxima-

tions of negentropy as follows:

JðyÞc½EfGðyÞg � EfGðmÞg�2 ð17Þ

where y is assumed to be of zero mean and unit variance, m
is a Gaussian variable of zero mean and unit variance, and G
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is any non-quadratic function. By choosing G wisely, one

obtains good approximations of negentropy. Hyvärinen [17]

suggested a number of functions for G:

G1ðuÞ ¼
1

a1
logcoshða1uÞ ð18Þ

G2ðuÞ ¼ expð�a2u
2=2Þ ð19Þ

G3ðuÞ ¼ u4 ð20Þ

where 1V a1V 2 and a2c 1. Among these three functions,

G1 is a good general-purpose contrast function and was

therefore selected for use in the present study.

Based on the approximate forms for negentropy, Hyvär-

inen [16–18] introduced a very simple and efficient fixed-

point algorithm for ICA, calculated over sphered zero-mean

vectors z. This algorithm calculates one column of the

matrix B and allows the identification of one independent

component; the corresponding IC can then be found using

Eq. (13). The algorithm is repeated to calculate each

independent component. The algorithm is as follows,

1. Choose m, the number of ICs to estimate. Set counter

ip 1.

2. Take a random initial vector bi of unit norm.

3. Let bipE{zg(bTiz)}�E{gV(bTiz)}bi, where g is the first

derivative and gV is the second derivative of G, where G

takes the form of Eqs. (18), (19) or (20).

4. Perform the following orthogonalization: bipbi�Sj=1
i�1

(bi
Tbj)bj

5. Normalize bip
bi

NbiN
6. If bi has not converged, go back to Step 3.

7. If bi has converged, output the vector bi. Then, if iVm

set ip i + 1 and go back to Step 2.

Note that the final vector bi (i= 1,. . .,m) given by the

algorithm equals one of the columns of the (orthogonal)

mixing matrix B. After calculating B, we can obtain ŝ(k) and

demixing matrix W from Eqs. (13) and (14), respectively

[16,19].

3.2. Ordering and dimension reduction of ICA

In chemical and biological processes, the measured

variables are quantitative (e.g., temperature, pressure, and

flow rate) and qualitative (e.g., key component concentra-

tion). Dimension reduction in ICA is based on the idea that

these measured variables are the mixture of some indepen-

dent variables [1,19]. The performance and interpretation of

ICA monitoring depends on the correct choice of the

ordering and dimension of the ICA model. Unlike PCA,

there is no standard criterion for ordering of ICs, which

complicates the ordering procedure. A number of methods

for ordering ICs have been suggested. In the present study,
we used the simple approach of sorting the rows of the

demixing matrix, W, on the basis of their Euclidean norms

(L2), where the L2 norm of row wi of W is [24]:

arg
i

maxNwiN2 ð21Þ

That is, the ICs are sorted using an L2 norm in order to

show only those ICs that cause dominant changes in the

process.

Once the ICs have been ordered, it is necessary to select

the optimal number of ICs to be used for monitoring. This

step is crucial because selecting too many ICs will magnify

the noise and too small ICs will not be insufficient to catch

the dominant characteristics of process, leading to poor

monitoring performance. The data dimension can be re-

duced by selecting the first few rows of the orderedW based

upon the assumption that the rows with the largest Euclid-

ean norm have the greatest effect on the variation of S. This

approach is based on the idea that the dominant variation in

a process can be monitored by considering the cumulative

sums of only the first few dominant ICs. We used a

graphical technique to determine the number of ICs similar

to the SCREE test of PCA [19,25].

3.3. Multiway independent component analysis (MICA)

The monitoring method based on MICA is similar to that

based on MPCA. MICA is equivalent to performing ICA on

a large two-dimensional matrix X constructed by batchwise

unfolding the three-way data matrix X in the manner shown

in Fig. 1. MICA decomposes the three-way array X into a

summation of the product of independent vectors sr and

loading matrices Ar plus a residual array E so that the ICs s

become as independent of each other as possible:

X ¼
XR
r¼1

sr � Ar þ E ¼
XR
r¼1

sra
T
r þ E ¼ X̂ þ E ð22Þ

where � denotes the Kronecker product (X = s�A is X

(i,j,k) = s(i)A(j,k)) and R denotes the number of ICs

retained. The S and A matrices in Eq. (22) can be

equivalent to the score matrix and loading matrix by

analogy with MPCA, i.e. S can be regarded as the score

matrix T, and A can be treated as the loading matrix P. The

i-th elements of the independent vector s correspond to the

i-th batch and summarize the overall variations in this

batch with respect to the other batches over the entire

history of the batch. The mixing matrix, A, summarizes the

time variations of the measured variables about their

average trajectories; the elements of this matrix are the

weights, which give the independent vectors s for a batch

when applied to each variable at each time interval within

that batch. ‘‘In MICA, an unfolded and scaled data matrix,

X(JK�I ), representing multiple batch runs is decomposed,

X=Ur�r
1/2Zr, and (r x r) orthogonal rotation matrix, B, is
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computed to produce rotated scores, A=Ur�r
1/2B and load-

ings, S=(BTZr) giving X=Ur�r
1/2BBTZr, such that BBT=I.’’

In MICA, two types of statistics are deduced from the

process model in normal operation: the D-statistic for the

systematic part of the process variation and the Q-statistic

for the residual part of the process variation. The D-statistic

for batch i, also known as the I2 statistic, is the sum of the

squared independent scores and is defined as follows:

I2ðiÞ ¼ ŝdðiÞTŝdðiÞ ð23Þ

where ŝd(i) is the i-th column vector of ŝd. The i-th element

of the IC matrix represents the i-th batch and summarizes

the overall variation in this batch with respect to the other

batches in the historical database over its entire duration.

The Q-statistic for a batch i, also known as the SPE

statistic, is defined as follows:

SPEðiÞ ¼ eðiÞTeðiÞ ¼ ðxðiÞ � x̂ðiÞÞT ðxðiÞ � x̂ðiÞÞ ð24Þ

where x̂ can be calculated as follows:

x̂ðiÞ ¼ Q�1Bd ŝðiÞ ¼ Q�1BdWdxðiÞ ð25Þ

Here, the I2 value is used to detect faults associated with

abnormal variations within an MICA model subspace,

whereas the SPE value is used to detect new events that

are not taken into account in an MICA model subspace.

In MPCA monitoring, the confidence limit is based on a

specified distribution shown in Eqs. (4) and (5) based upon

the assumption that the latent variables follow a Gaussian

distribution. In MICA monitoring, however, the indepen-

dent components do not conform to a specific distribution;

hence, the confidence limits of the I2 and SPE statistics

cannot be determined directly from a particular approximate

distribution. An alternative approach to defining the nomi-

nal operating regions is to use data-driven techniques such

as non-parametric empirical density estimates using kernel

density estimation (KDE) [12,26].

A univariate kernel estimator with kernel K is defined by:

f̂ ðxÞ ¼ 1

nh

Xn
i¼1

K

�
x� xi

h

�
ð26Þ

where x is the data point under consideration, xi is an

observation value from the data set, h is the window width

(also known as the smoothing parameter), n is the number of

observations, and K is the kernel function. On the other hand,

the disadvantages of kernel density estimation need a rela-

tively large data set and are the necessity of the tuning (the

selection of smoothing parameter). The problem of choosing

how much to smooth is of crucial importance in density

estimation. Many measures have been proposed for the

estimation of h, the window width or smoothing parameter.

If h is too large we oversmooth, erasing detail. If h is too

small we undersmooth, and fail to filter out spurious detail.

In this paper, the confidence limits of the two statistics, I2 and

SPE were obtained by kernel density estimation, where the
Gaussian kernel and the least squares cross-validation

(LSCV) methods for selecting h were used [27].

3.4. Off-line and on-line batch monitoring of the MICA

model

Following are the detailed procedure of off-line and on-

line monitoring method using the MICA model to supervise

the batch process.

3.4.1. (A) Develop the normal operating condition (NOC)

model

1. Acquire an operating data set during normal batch

operation.

2. Unfold X (I� J�K) to X(I� JK) using batch-wise

unfolding scheme.

3. Normalize the data X(I� JK) using the mean and

standard deviation of each variable at each time in the

batch cycle over all batches.

4. Transpose the scaled X(I� JK). The transposed matrix is

designated Xnormal(JK� I).

5. Apply the whitening procedure to acquire the uncorre-

lated whitened matrix

Znormal ¼ QXnormal ð27Þ

where Znormal=[z(1),z(2),. . .,z(I)]aRr� I, Here, we can

extract r columns of U in Eq. (9), r is the rank of the

covariance matrix of Xnormal.

6. Carry out the ICA procedure to obtain the following

matrices W, B, and Ŝnormal so that Ŝ(n) =BTz(n) has great

non-Gaussianity.

Ŝnormal ¼ WXnormal ¼ BTZnormal ð28Þ

where A=(QTQ)� 1QTB and W=BTQ.

7. Apply the ordering and dimension reduction of ICA.

Thus, the dimension of the unfolded data matrix is

reduced by selecting a few rows of W based upon the

assumption that the rows with the largest sum of squares

coefficient have the greatest effect on the variation of Ŝ.

The m rows of W which are separated into deterministic

part of W (Wd), and the excluded part of W, (We). The

resulting matrices have the following forms:

Ŝnormal ¼
Ŝd

Ŝe

2
4

3
5 ¼

WdXnormal

WeXnormal

2
4

3
5 ð29Þ

A ¼
Ad

Ae

2
4

3
5 ð30Þ

W ¼
Wd

We

2
4

3
5 ð31Þ
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8. Finally, the MICA model is constructed. For each batch

of X(I� JK), xV(1� JK) is projected into the reduced

space of the MICA model. For all I batches, the ICs and

residuals are calculated from Ŝd and SPE.

9. Calculate the I2 statistic:

I2ðiÞ ¼ ŝdðiÞTŝdðiÞ ð23Þ

where 1V iV I.

10. Calculate the Q-statistic for a batch i, also known as the

SPE statistic, defined as follows:

SPEðiÞ ¼ eðiÞTeðiÞ ¼ ðxðiÞ � x̂ðiÞÞT ðxðiÞ � x̂ðiÞÞ ð33Þ

with Eq. (25)

11. Obtain the control limits of the I2 and SPE statistics for

off-line batch analysis using kernel density estimation.

12. Obtain the control limits of the SPE at each time for on-

line monitoring. For batch i and time k, we have only

xnormal(kJ� 1). For a vector filled with the future

observation, xpred(JK� 1)

SPEði; kÞ ¼
XkJ

j¼ðk�1ÞJþ1

ðxpredj � x̂predjÞ2 ð34Þ

where x̂pred =AdWdxpred and xpredj is the j-th element of

xpredj.

3.4.2. (B) On-line monitoring

1. For new batch data up to time k, Xtest(k� J), unfold it to

xtest(kJ� 1). Apply the same scaling used in the

modeling and fill-in the missing values to create

xpred_test(JK� 1)using one of the three approaches

suggested by Nomikos and MacGregor [2]. The vector

filled with future observations, xpred_test(JK� 1), is

created by the selected filling method.

2. For the scaled and filled matrix, xpred_test(JK� 1),

calculate the ICs of stestd

ŝtestdðkÞ ¼ Wdxpred�test ð35Þ

3. Calculate Itestd
2(k) and SPE(k)

I 2
testdðkÞ ¼ stestdðkÞT stestdðkÞ ð36Þ

SPEðkÞ ¼
XkJ

j¼ðk�1ÞJþ1

ðxpredj � x̂predjÞ2 ð37Þ

where x̂pred =AdWdxpred and xpredj is the j-th element of

xpredj.
Once a fault is detected by the statistical monitoring

method, the key to fault isolation using the MICA model is

the use of contribution plots. By interrogating the underly-

ing process model at the point where an event has been

detected, contribution plots may reveal the group of process

variables that most influence the model or the residuals. We

suggest the following equations for calculating the variable

contribution plot for Inewd
2 (k) and SPE(k).

(a) Variable contribution for Itestd
2(k)

xcdðkÞ ¼
Ad ŝtestdðkÞ

NAd ŝtestdðkÞN
NŝtestdðkÞN ð38Þ

(b) Variable contribution for SPE(k)

xcspeðkÞ ¼ xðkÞ � x̂ðkÞ ð39Þ

Generally, the aberrant variables will have the largest

residuals. The residual at sample k, SPE(k), is defined as the

sum of the squares of e(k). Thus, the vector e(k) contains

information on the individual prediction errors of each

process variable at sample k. By plotting e(k) as a bar graph,

the contributions to SPE(k) can be viewed. The relative sizes

of the bars indicate the contributions of the variables to the

prediction error, or the lack of fit of a sample to the model.
4. Case study

The proposed monitoring method was applied to fault

detection and diagnosis in a benchmark simulation of fed-

batch penicillin production.

4.1. Fed-batch penicillin fermentation

The production of secondary metabolites such as peni-

cillin has been much studied in both academia and industry.

In industry, commercial quantities of secondary metabolites

such as antibiotics are produced using filamentous micro-

organisms. It is well established that the formation of the

target product (e.g., an antibiotic) is usually not associated

with cell growth. Hence, it is common practice to first grow

the microorganisms in a batch culture and then to promote

the synthesis of the antibiotic by means of a fed-batch

operation with glucose. The penicillin process has a non-

linear dynamics and a multistage characteristics. In typical

penicillin fermentation, most of the necessary cell mass is

generated during the initial preculture stage. The penicillin

starts to be produced at the exponential growth phase and

continues to be produced until cell growth reaches the

stationary phase. Cell growth must continue at a certain

minimum rate to maintain high penicillin productivity. It is

for this reason that glucose is fed continuously into the



Fig. 2. Flow diagram of the penicillin fermentation process [28].

Table 1

Variables used in the monitoring of the penicillin simulation benchmark
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system during fermentation instead of being added all at

once at the beginning [28].

The Monitoring and Control Group of the Illinois Insti-

tute of Technology has developed a simulator (PenSim v2.0)

that is capable of simulating the concentrations of biomass,

CO2, hydrogen ion, penicillin, carbon source, and oxygen,

as well as heat generation, during the production of pe-

nicillin under various operating conditions (http://www.

chee.iit.edu/~cinar). These simulations are run under

closed-loop control of pH and temperature while glucose

addition is performed open-loop. A flow diagram of the

penicillin fermentation process is illustrated in Fig. 2. In this

process, important variables such as biomass and penicillin

concentration are analyzed off-line by means of quality

analysis experiments, resulting in a lag in the batch analysis.

This means that primary quality variables are sampled after

the batch is completed. On-line process monitoring provides

a way to detect deviations in product quality during the

process, making it possible to correct problems before they

negatively impact the quality of the batch product.
No. Variables

1 Aeration rate (l/h)

2 Agitator power (W)

3 Glucose feed temperature (K)

4 Dissolved oxygen concentration (% saturation)

5 Culture volume (l)

6 Carbon dioxide concentration (mmol/l)

7 pH

8 Temperature (K)

9 Generated heat (kcal)

10 Cooling water flow rate (l/h)
5. Results and discussion

5.1. Off-line analysis of MPCA and MICA

In the present study, a total of 60 batches were simulated

to create the normal reference batches. Variations typical of

penicillin fermentation were introduced into these simula-

tions, the results of which were used to develop the MPCA
and MICA models. The 10 variables of the penicillin

process taken into consideration in the present work are

listed in Table 1. The duration of each batch was 400 h:

about 45 h for the preculture stage and about 355 h for the

fed-batch stage. The sampling interval was 1 h. Small

variations were added to the simulation input data to mimic

process variations in the normal operating conditions. In

addition, measurement noise was added to each of the 10

monitored variables. Fig. 3 shows typical batch profiles of

the 9 variables during penicillin fermentation.

A total of 60 batches thought to be normal were gener-

ated from the simulator. The reference data set was arranged

as a three-way X (I� J�K), where I corresponds to 60

batches, J corresponds to 10 process variables, and K

corresponds to 400 time points. The MPCA and MICA

models for the NOC models were constructed with the

reference batch data X. In order to test if these batches are

 http:\\www.chee.iit.edu\~cinar 


Fig. 3. Typical batch profiles of 9 variables during penicillin fermentation.

Fig. 4. Off-line analysis of (a)MPCA and (b)MICA for 60 reference batches.
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statistically normal, off-line analysis is performed. Fig. 4

illustrates the results of off-line analysis based on MPCA

and MICA for the 60 reference batches, where the dotted

lines correspond to 95% and 99% confidence limits which

define the normal operation region. Four principal compo-

nents of the MPCA model were determined by the cross-

validation method [1], which explained about 59.3% of the

total variability in the data. The remaining 41.7% of the

variability was derived mainly from the measurement noise

and random variation inherent in the normal batch opera-

tion. To order the ICA components, we used a Euclidean

norm criterion to sort the rows of the demixing matrix. To

ensure comparisons of equivalent models, four ICs were

selected for the MICA model. Fig. 4 show the T2 statistic

and the SPE values of all the batches in the MPCA and

MICA models, respectively. As shown in Fig. 4, some

batches are above the 95% confidence limit at each model

and the others are below 99% confidence limit. They can be

used in the development of the reference model for on-line

monitoring since all 60 batches lie within the specification

limits, here 99% confidence limit. This difference between

the MPCA and MICA mainly originates from the extracted

feature components; both methods extract hidden informa-

tion from a multidimensional data set, but PCA looks for

Gaussian components, whereas ICA searches for non-

Gaussian components.

Fig. 5 shows that normal probability plot and density

estimates of the first score (t1) do not conform to a Gaussian

distribution but rather to a ‘supergaussian distribution’ in

which random variables take relatively more often values

that are very close zero or very large. When MPCA is

applied to this non-Gaussian data, the score values more



Fig. 5. Normal density plot and density estimate of the first score (t1)

obtained from MPCA.

Fig. 6. On-line monitoring charts for (a) MPCA and (b) MICA in case of

normal batch.

Table 2

Three simulation scenarios in penicillin fermentation

Test batch Scenarios Fault patterns

1 Normal batch Normal batch

2 Step fault Glucose feed rate is suddenly step-decreased

by 15% at 50 h and maintained at that lower

rate to the end of batch operation (400 h)

3 Ramp fault Glucose feed rate is linearly decreased from

0.04 to 0.03 l/h from 60 h to the end of batch

operation (400 h)
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frequently take on values that are very close to zero or very

large. Thus, the monitoring charts of MPCA that are based

on the assumption that the data are Gaussian distributed may

deteriorate the reliability of the multivariate monitoring

system.

5.2. On-line batch monitoring using MPCA and MICA

The MPCA and MICA models for on-line monitoring

were developed from 60 reference batches. Three cases of

the penicillin fermentation process in Table 2 were tested

with MPCA and MICA: (1) normal operation, (2) a step

decrease in the glucose feed rate, and (3) a linearly decrease

in the glucose feed rate. Because the glucose feed rate is

omitted from the monitored variables, the two faults relating

the glucose feed rate become internal disturbances. If there

was an equipment failure such as a leaky pump, the

controller would still think it is pumping at the pre-

programmed rate, thus the change in the glucose feed rate

would not be directly observed, rather it would be indirectly

observed through changes in other ‘‘measured’’ variables.

We used the filling method 2 in which all future measure-

ments are filled-in with their current deviation from the
average batch because the current deviation most accurately

matches the actual process measurement in the fed-batch

process when the biomass was in its pre-culture [10]. Then

the models of MPCA and MICA were tested against a new

batch with a 99% control limit. The on-line monitoring

charts were used to monitor the normal and abnormal

batches at every time point k.

Fig. 6 show the monitoring results of the MPCA and

MICA methods for the normal batch, respectively. In



Fig. 7. On-line monitoring charts for (a) MPCA and (b) MICA in case of

the first fault batch with a step decrease (99% confidence limits).

Fig. 8. On-line monitoring charts for (a) MPCA and (b) MICA in case of

the second fault batch with a ramp decrease (99% confidence limits).
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MICA model, this batch stays below the confidence limits

for each case indicating that this batch behaves normally

throughout the batch run. The SPE values of MICA are

highest during the preculture stage of the batch ( < 70).

Furthermore, the SPE chart shows a maximum at the

changeover between the preculture and fed-batch stages.

In all batch runs, a batch culture has been followed by a

fed-batch operation after the depletion of carbon source.

The system switches itself to the fed-batch mode of

operation when the level of glucose concentration reaches

the threshold value chosen as 0.3 g/l [28]. In the simu-

lations, the initial conditions of startup have different

values for each batch. Different initial conditions cause

large variations in the process variables at the start of the

fed-batch phase. Then the process is using a setpoint

trajectory until the end of the fed-batch. Therefore, vari-

ability is large in the early stage of batches, whereas

variability in the late stage of batches is low. For this

reason, the SPE control limits of the MPCA and MICA

models have wide confidence intervals at the beginning of
a batch and narrow confidence intervals at the end of a

batch. This means that these data-based modeling methods

can reflect the biological phenomena and relationships that

occur during the penicillin fermentation. On the other

hand, we observed a small deviation in the SPE chart of

MPCA at 160, 170 and 360 h. Moreover, many samples

lie in the vicinity of the 99% control limit after the

preculture stage, making it difficult for the operator to

decide the current status of the batch. Obviously, this

deteriorates the reliability of the monitoring system. For

this kind of multi-phase process, the multiple models

approach in MPCA, which separates the total data into

two or more stages, may give superior monitoring results

and insights [23]. However, as shown above, single MICA

model can adequately describe the two-phase character-

istics of penicillin fermentation.

We now consider the process in which the glucose feed

rate is suddenly decreased by 15% at 50 h and then

maintained at that lower rate until the end of fermentation.

Glucose is the main carbon source of the fed-batch fermen-



Fig. 9. Contribution plots of the MICA model for the second abnormal

batch with a ramp decrease at 380 h.
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tation, and thus a decrease in the glucose feed rate will lead

to a reduction in penicillin production. The monitoring

results of the MPCA and MICA models for this abnormal

process are shown in Fig. 7. This type of fault of the step

decrease in the glucose feed rate is difficult to detect in the

T2 and SPE charts of MPCA. The SPE chart of MPCA

deviates slightly at 90 h and then increases slightly and

continuously until the end of fermentation. In contrast, the

SPE chart of MICA successfully detects this type of fault;

this chart shows a sharp rise at about 70 h and then increases

continuously to the end of fermentation. Compared with

MPCA, MICA shows relatively correct and more rapid fault

detection ability. The SPE value of MICA exceeds its

control limit for the first time at around 180 h, which was

delayed 130 h after the event had occurred. Furthermore, the

I2 values of MICA suddenly increased at 70 h, which

corresponds to the characteristics of the fault type.

We now consider the fault in which a ramp decrease is

imposed on the batch, specifically, the glucose feed rate is

linearly decreased from 0.04 to 0.03 l/h from 60 h to the end

of batch operation (400 h) due to the leaky pump. A

decrease in its feed results in reduction in penicillin pro-

duction since glucose is the main carbon source to be fed

during the fed-batch fermentation [28]. As shown in Fig. 8,

the SPE chart of MPCA definitely detects the disturbance at

260 h, which was delayed 200 h after the commencement of

the disturbance. From this figure, we know that MPCA

monitoring can detect this small external disturbance with a

significant delay. It shows that MICA detects the ramp type

fault earlier than MPCA. The SPE chart of MICA detects

the fault at 100 h, which is 160 h earlier than the detection

time of MPCA. Both T2 values of MPCA and the I2 values

of MICA increase linearly from 70 h to the end of batch

operation (400 h), which corresponds to the characteristics

of the fault.

Because these monitoring charts only detect non-con-

forming batches, contribution plots can be used to diagnose

the event so as to assign a cause. The contribution plots

indicate which variables are predominantly responsible for
the deviations from the normal batch behavior. Fig. 9 shows

the contribution plots for the I2 and SPE charts of MICA at

380 h. The deviation of SPE come from the dissolved

oxygen concentration (variable 4), the carbon dioxide con-

centration (variable 6) and the generated heat (variable 9),

respectively. Thus, it can be inferred that the deviation of the

glucose feed rate (internal disturbance) affects other varia-

bles, especially the dissolved oxygen concentration and the

generated heat. The decrease of the glucose feed rate

reduces the microorganism reaction rate, leading to dis-

solved oxygen concentration and decrease of the generated

heat.
6. Conclusions

A new approach to monitoring the progress of batch

processes has been described. The key idea of the proposed

method is to exploit the ability of MICA to extract statistical

independent features from three-way batch data with a non-

Gaussian distribution by projecting the data onto a low-

dimensional space that summarizes both the variables and

their time trajectories. Given that ICA is more meaningful

property than PCA for extracting features from data sets

containing non-Gaussian components, the use of ICA can

improve the monitoring performance. The simulation study

of a fed-batch fermentation showed the power and advan-

tages of MICA.
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