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Abstract−We applied a nonlinear fuzzy partial least squares (FPLS) algorithm for modeling a biological wastewa-
ter treatment plant. FPLS embeds the Takagi-Sugeno-Kang (TSK) fuzzy model into the regression framework of the
partial least squares (PLS) method, in which FPLS utilizes a TSK fuzzy model for nonlinear characteristics of the PLS
inner regression. Using this approach, the interpretability of the TSK fuzzy model overcomes some of the handicaps
of previous nonlinear PLS (NLPLS) algorithms. As a result, the FPLS model gives a more favorable modeling environ-
ment in which the knowledge of experts can be easily applied. Results from applications show that FPLS has the ability
to model the nonlinear process and multiple operating conditions and is able to identify various operating regions in
a simulation benchmark of biological process as well as in a full-scale wastewater treatment process. The result shows
that it has the ability to model the nonlinear process and handle multiple operating conditions and is able to predict
the key components of nonlinear biological processes.
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INTRODUCTION

Due to increasing environmental constraints and the necessity of
reliable wastewater treatment, efficient modeling and monitoring
methods are becoming more and more important. Reliable model-
ing and monitoring techniques of biological wastewater treatment
plants (WWTP) are necessary to maintain the system performance
as close as possible to optimal conditions. An adequate model en-
hances the understanding of the biological processes and it can be
a basis for better process design, control, and operation. Also, pro-
cess monitoring and early fault detection methods are efficient to
execute corrective actions well before a dangerous situation occurs
in biological processes.

The underlying point is that improving process monitoring and
control necessarily means ensuring better knowledge of the pro-
cess: which variables characterize the process, what are their inter-
nal interactions and what degree of confidence can be attributed to
the measurements? All these questions are concerned with the char-
acterization of a process, which involves several fundamental stages:
the description of the process, the listing of the variables character-
izing the process, the establishment of models between the vari-
ables, the identification of parameters which intervene in these mod-
els, the simplification of models to make them compatible with real-
time use and the validation of models. It is generally recognized
that, depending on the complexity of the process, two approaches

can be adopted to tackle this modeling problem. The first is based
on the description of the physical phenomena which enables a mech-
anistic or first principles model. The second uses only statistical
processing of data to obtain ‘black-box’ type models, which do not
take into account the nature and intensity of the physical interac-
tions between the variables. The ‘best choice’ often seems to be a
trade-off between these two viewpoints, leading to a ‘grey-box’ mod-
el which uses simplified hypotheses on the fundamental equations
of physics, for example, in the form of matter balances and energy
balances, statistics and data processing tools [Ragot et al., 2001;
Yoo et al., 2001].

To date, the most successful model and the industrial standard in
biological WWTP has been the deterministic mechanistic model,
Activated Sludge Model no. 1 or ASM1 [Henze et al., 1987]. It has
proven to be an effective model for carbonaceous and nitrogenous
substrate removal processes in WWTPs. However, because the ASM
model is high-dimensional and contains a large number of kinetic
and stoichiometric parameters, which should be determined by using
information on specific plant data and process operation, it is not
omnipotent in every situation of model application. As a result, the
general application of such a complex model to, for instance, pro-
cess control and the development of operational strategies has been
limited [Yoo et al., 2001, 2002].

Today, empirical data-based modeling is a widely used alterna-
tive to mechanistic modeling since it requires less specific knowl-
edge of the process being studied compared to a first principles mod-
el. Empirical modeling techniques require data (measurements) which
are collected on those variables believed to be representative of the
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process behavior and of the properties of the product or system out-
put. Statistical regression techniques and neural networks are now
routinely used in the process industries for building empirical mod-
els. Statistical regression techniques, based upon least squares meth-
odology, have been used extensively for developing linear empiri-
cal models for prediction from historical data. However, it is well
known that when dealing with highly correlated multivariate prob-
lems, the traditional least-squares approach can lead to singular solu-
tions or imprecise parameter estimation. Limitations due to mea-
surement noise, correlated variables, unknown variable and noise
distribution, and data set dimensionality can be overcome by apply-
ing multivariate statistical projection based regression techniques
such as principal component regression (PCR) and projection to
latent structure (PLS). These two techniques provide a solution to
both the dimensionality and the correlation problems and can also
perform filtering of measurement noise. Projection-based techniques
can handle highly correlated, noise-corrupted data sets since they
are based upon the assumption of dependency (correlation) between
the variables and, consequently, provide the capability to estimate
the main underlying structure in terms of a number of latent vari-
ables which are linear combination of the original variables [Wold
et al., 1989; Baffi et al., 1999].

However, many chemical and biological processes display a non-
linear behavior, which cannot be reliably modeled by means of lin-
ear regression techniques. A number of methodologies have been
proposed to integrate non-linear features within the linear PLS frame-
work. In particular, when linear PLS is applied to non-linear prob-
lems, the minor latent variables cannot always be discarded since
they may not only describe noise or negligible variancecovariance
structures in the data, they may encapsulate significant information
about the non-linear nature of the problem. In fact, non-linear struc-
tures may be modeled by using a combination of higher-order and
lower-order latent variables calculated from linear PLS [Wold et
al., 1989; Qin and McAvoy, 1992; Baffi et al., 1999; Liu et al., 2000;
Bang et al., 2003].

Biological treatment plants have different behavior patterns de-
pending on the influent loads, temperature and the activity of mi-
croorganisms. The models used for the various operating conditions
must generally be different. The challenge is, however, to build a
single model framework for all conditions. One solution consists
of representing the process by a suite of several models, each one
being valid only in a specific operating domain. Another way of
representing the process model consists of using a single structure
resulting from the aggregation of several sub-models such as fuzzy
modeling. Weighting functions are used to reflect the domains of
influence of each model [Yen et al., 1998; Tay and Zhang, 1999].

In recent years, Bang et al. [2003] suggested a novel nonlinear
fuzzy partial least squares (FPLS) modeling method, which inte-
grated multiple fuzzy modeling capability for aggregation of sev-
eral sub-models within the linear PLS framework while retaining
the orthogonal properties of the linear methodology and keeping a
good visualization capability. In this paper, we applied a fuzzy par-
tial least squares (FPLS) for modeling of a biological process with
nonlinear features. The outline of this paper is as follows. First, we
briefly present PLS and TSK fuzzy modeling. Second, we intro-
duce a nonlinear FPLS modeling and prediction method. Third, the
FPLS method is applied to predict the important output variables

in a simulation benchmark of biological process and a full-scale
wastewater treatment process and the results are discussed. Finally,
the conclusion of this work is given.

METHODS

1. PLS Modeling Method
The PLS method is a multivariable linear regression algorithm

that can handle correlated inputs and limited data. The algorithm
reduces the dimension of the predictor variables (input matrix, X)
and response variables (output matrix, Y) by projecting them to the
directions (input weight w and output weight c) that maximize the
covariance between input and output variables. This projection de-
composes variables of high collinearity into one-dimensional vari-
ables (input score vector t and output score vector u). The decom-
position of X and Y by score vectors is formulated as follows:

(1)

(2)

where p and q are loading vectors, and E and F are residuals.
2. TSK Fuzzy Modeling

The fuzzy inference system proposed by Takagi, Sugeno and
Kang, known as the TSK model, provides a powerful tool for mod-
eling complex nonlinear systems [Yen et al., 1998]. Typically, a TSK
model consists of IF-THEN rules of the form

Ri: if x1 is Ai1 and … and xr is Air then yi

=bi0+bi1x1+…+birxr for i=1, 2, …, L (3)

where L is the number of rules, xi=[x1 x2 … xr]
T are input vari-

ables, yi are local output variables, Aij are the fuzzy sets that are char-
acterized by the membership function Aij(xj), and bi=[bi0 bi1 

… bir]
T

are real-valued parameters. The overall output of the model is com-
puted by

(4)

where τi is the firing strength of rule Ri, which is defined as

τi=Ai1(x1)×Ai2(x2)×…×Air(xr) (5)

Fig. 1 shows a schematic block diagram of the TSK fuzzy model.
In general, Gaussian-type membership functions are used to build

the model. They are defined by

(6)

where cir is the center of the ith Gaussian membership function of
the rth input variable xr and σi is the standard deviation of the mem-
bership function.

The great advantage of the TSK fuzzy model is its representa-
tive power, which stems from its ability to describe complex non-
linear systems using a small number of rules. Moreover, the output
of the model has an explicit functional form (Eq. (4)), and the in-
dividual rules give insights into the local behavior of the model.
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The good interpretability of the fuzzy system may match the utility
of the PLS method in intuitive data analysis [Yen et al., 1998].
3. Nonlinear Fuzzy Partial Least Squares (FPLS) Modeling

As described previously, biological treatment plants have differ-
ent and nonlinear dynamics depending on, for instance, the influ-
ent loads, temperature and the activity of microorganisms, which
may call for multiple (nonlinear) models for the various operating
conditions. In this case, fuzzy modeling, which aggregates several
sub-models and integrates weighting functions that reflect the do-
mains of influence of each model, could be an alternative.

Bang et al. [2003] proposed a fuzzy partial least squares FPLS
modeling which applies the TSK fuzzy model to the PLS inner re-
gression. The FPLS method is basically a combination of the PLS
method and the TSK fuzzy model. The PLS outer projection is used
as a dimension reduction tool to remove collinearity, and the TSK
fuzzy inner model is used to capture the nonlinearity in the pro-
jected latent space. An advantage of using the TSK fuzzy model as
the inner regressor is its interpretability, which facilitates the design
of the FPLS model structure by allowing human experts to partici-
pate in the design process.
4. FPLS Algorithm

Fig. 2 shows a schematic of the basic FPLS method, which uses
the PLS outer transform to generate score variables from the data.
Score vectors (th and uh) of the same factor h are used to train the
inner TSK fuzzy model fh(·), which obeys the following relation

uh=fh(th)+eh (7)

where eh represents the regression error. The parameters of fh(·) should

be selected to minimize eh without over-fitting. To summarize, by
not updating the outer relation FPLS keeps the linear PLS property
that variables are projected into the directions maximizing the cova-
riance, and it captures nonlinearity through the nonlinear modeling
capacity of the TSK model [Bang et al., 2003].

The FPLS algorithm can be formulated as follows.
1. Scale X and Y to have zero-mean and unit-variance.

Let E0=X, F0=Y and h=1.

2. For each factor h, take uh from one of the columns of Fh−1.
3. PLS outer transform:

wh
T=uh

TEh−1/(uh
Tuh) (8)

wh=wh/||wh|| (9)

th=Eh−1wh (10)

ch
T=th

TFh−1/(th
Tth) (11)

ch=ch/||ch|| (12)

uh=Fh−1ch (13)

Iterate this step until it converges. This step is called the nonlin-
ear iterative partial least squares (NIPALS) algorithm. Although there
exists a faster and more stable algorithm using eigenvectors, we
use NIPALS to give readers a clearer picture of PLS outer projec-
tion.

4. Find the TSK fuzzy-type inner relation function, fh(·), which
predicts the output score uh with the input score th. fh(·), has the func-
tional form

(14)

where

(15)

(16)

Gi is the normalized firing strength and τi is a Gaussian-type firing
strength for the ith rule. First, the number of fuzzy rules, L, should
be estimated by the model designer at an integer value that mini-
mizes the regression error of fh(·) without creating an over-fitted
model. The designer may use information gained from the score
plot or some numerical criteria such as the sum of squared errors
(SSE) for cross validation. The designer can then decide the other
parameters, such as ci, σi and bi, using a numerical curve fitting func-
tion to minimize the SSE.

5. Calculate the X and Y Loadings

ph
T=th

TEh−1/(th
Tth) (17)

qh
T= h

TFh−1/( h
T

h) (18)

where h=fh(th)=[fh(th(1)), fh(th(2)), …, fh(th(N))]T for N samples.
6. Calculate the residuals for factor h.

Eh=Eh−1−thph
T (19)

Fh=Fh−1− hqh
T (20)

fh t( ) = Gi bi0 + bi1t( )
i = 1

L

∑
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τ i

τL

i = 1 i∑
--------------

τ i t( ) = − 
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2σi
2
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Fig. 1. Block diagram of the TSK fuzzy model.

Fig. 2. Block diagram of the FPLS method.
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7. Let h=h+1, then return to step 2 until all m principal factors
are calculated. The number of factors m is decided by the designer.
The designer may use information gained from the score plot or
some numerical criteria such as SSE for cross validation.

The parameters of the fuzzy-type inner relation function fh(·) (i.e.,
the values of ci, σi and bi) can be decided by various heuristic rules.
In this work, the ci, σi and bi values are determined by using the
fuzzy c-means (FCM) algorithm [Jang et al., 1997], the nearest neigh-
bor heuristic rule suggested by Moody and Darken [1989] and a
global learning procedure (see the appendix for the mathematical
formulations of these methods). Then a numerical nonlinear least
squares curve fitting function is applied for the optimization of the
parameters with respect to minimizing the SSE. However, if the op-
timized model shows signs of over-fitting, such as very steep changes
in its trend, the designer can change and fix some parameters and
then optimize the other parameters to make a smoother and more
reliable model within the criteria of his or her expertise.

As is shown in the algorithm, the designer’s decisions are em-
phasized in the calibration of an FPLS model. This aspect of FPLS
represents an improvement over other PLS algorithms. Generally,
structural parameters such as L and m are selected by using a cross
validation method to avoid the problem of over-fitting. Cross vali-
dation is often a must for high dimensional models, because the
model shape cannot be well presented in visible form. Although
the fuzzy modeling process gives particular weight to the applica-
tion of the expert’s knowledge in the modeling process, it is also
hindered by the problem of high dimensionality. Regardless of the
type of modeling, designers should check the validity of their model.
The FPLS method aids designers in model validation by providing
a simple modeling interface for visual checking, in addition to the
typical cross validation method. The visual check comprises checks
of the error correlation, high leverage data treatment, local mini-
mum, over-fitting and lower fitting. Checking using visualization is
possible because of the robust data reduction and the two-dimen-
sional presentation properties of PLS. Other PLS methods such as
quadratic PLS (QPLS) and neural net PLS (NNPLS) also have these
properties, but they lack the interpretability and high nonlinear re-
gression capacity of the TSK inner relation function. The fuzzy rules
of the TSK function provide insights into the model that allow us
to make simple linear predictions of its behavior even in the extrap-
olation range and to interactively change its parameters. These capa-
bilities make FPLS a promising modeling and monitoring method.
5. Prediction Method with FPLS Model

The FPLS model trained on a calibration data set can be used to
predict the test data, Let us denote the outer projection vectors of
the m factors by matrix form, i.e., P, Q and W. Then, for a new input
data set X the output data set Y can be predicted by using the fol-
lowing steps.

1. Scale X by the mean and variance of X0.
2. Calculate the input score matrix

T=XW(P
T
W)−1 (21)

where T=[t1, t2, …, tm]
3. Predict output score vectors using the TSK inner model defined

in Eq. (14), with ch, σh and bh for each factor h.

(22)

4. Predict the scaled Y

(23)

where for i=1, 2, …, m.
5. Rescale by the mean and variance of Y0

Using the PLS outer relation and the TSK fuzzy-type inner mod-
el, the FPLS method is capable of robustly describing any com-
plex nonlinear system and provides informative biplots. Because
FPLS uses the outer relation of PLS, the analytical meaning of the
outer projection vectors remains valid. Hence, various PLS moni-
toring methods are still applicable to FPLS. Moreover, the inter-
pretation based on fuzzy rules gives a new way of monitoring non-
linear systems. For an example, each sample of a system modeled
by FPLS can be classified according to the fuzzy rule that has the
largest firing strength value.

RESULTS AND DISCUSSION

The FPLS algorithm was applied to two data sets: a simulation
data set of a benchmark plant and a real data set from a full-scale
biological wastewater treatment plant. Fuzzy model parameters of
FPLS were built by using three heuristics rules, where the parame-
ters of FPLS, that is, ci, σi and bi, are determined by using FCM,
the Moody and Darken rule and a global learning procedure, respec-
tively (see the appendix). To compare with other linear and nonlin-
ear PLS, prediction performances of FPLS are compared with lin-
ear PLS (LPLS) and quadratic PLS (QPLS).
1. Simulation Benchmark

Eight variables were used to build the X-block in the simulation
benchmark [Spanjers et al., 1998; Yoo et al., 2001, 2002]: the in-
fluent ammonia concentration (SNH,in), the influent flow rate (Qin),
the nitrate concentration in the second aerator (SNO,2), the total sus-
pended solid concentration in aerator 4 (TSS4), the DO concentra-
tion in aerated tanks 3 and 4 (SO,3 and SO,4), the oxygen transfer coef-
ficient in aerated tank 5 (KLa5), and the internal recirculation rate
(Qint). The quality variables are the effluent ammonia (SNH,e) and
nitrate (SNO,e). We used data from 14 days of normal (dry weather)
operation for the development of the model., The first seven days
were used for training the model and the remaining seven days were
used for validation.

A comparison of the results of three PLS models is represented
in Table 1, where four LVs are selected for each PLS model. Table 1
lists the percent variances captured of training data (%) and mean
squared error (MSE) of the validation data set, which shows the
regression performance of all the PLS models. Explained variances

ûh = fh th( )

Ŷ = ÛQ
T

Û = û1, û2, …, ûm[ ]
Ŷ

Table 1. Percent variance captured (%) and MSE of several PLS
models in benchmark

LV
LPLS QPLS FPLS

X Y X Y X Y

1 64.49 40.60 64.49 43.03 64.49 43.68
2 88.96 60.06 88.96 67.85 88.97 71.61
3 91.40 71.04 91.28 77.12 91.45 78.51
4 96.85 72.25 97.04 78.66 97.10 80.00

MSE 0.60 0.46 0.44
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Fig. 3. Scatter plots (upper plot) and firing strength plot (lower plot) of four latent variables in FPLS model (benchmark) (a) first LV
(b) second LV (c) third LV (d) fourth LV.

Fig. 4. Comparisons of LPLS and FPLS for the predicted and real value of effluent ammonium SNHe (a) Time series plot of LPLS (b)
Time series plot of FPLS (c) Scatter plot of LPLS (d) Scatter plot of FPLS.
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of X-block using LPLS, QPLS and FPLS model do not show any
particular difference. The values of Y-variance captured by the non-
linear models are larger than linear method. The mean squared error
(MSE) of the validation data set indicates that best prediction per-
formance is achieved by the FPLS method.

Fig. 3 shows the score plots (upper plot) and firing strength plot
of four latent variables (lower plot) in the FPLS model. In the score
plots, the small circle represents the center ci of a membership function
shown in the lower plot and the dashed line crossing the circle is its
fuzzy rule. In the lower plot, the solid lines represent the firing strength
τi and the dashed lines represent the normalized firing strength. These
plots clearly show the nonlinear nature of the benchmark plant. LPLS
gives no direct way to cope with this nonlinearity; however, FPLS
can give a direct and interactive way of treating such nonlinearities.
To decide the number of fuzzy rules, we applied various numbers
of fuzzy rules and heuristic rules to each LV. Then, we found that
‘2-2-1-1’ fuzzy rules for each LV and determining the center of the
fuzzy rule of the first LV by FCM yielded the best regression per-
formance on training and validation data sets. The score plots of
the third and fourth LVs displayed almost no nonlinearity; hence,
we used only one fuzzy rule for each of these LVs. Compared with
other nonlinear PLS methods, the FPLS model gives a visual and
interactive design capability which can treat such nonlinearities and
avoid the over-fitting problem. Figs. 4 and 5 show the prediction
results of effluent ammonia and nitrate, SNH,e and SNO,e, in the valida-
tion data set for LPLS and FPLS method. Time series plots and scat-
ter plots illustrate the prediction improvements that are achievable

through the fuzzy regression approach. The scatter plots certify the
modeling capability of FPLS.

These results are not surprising since the FPLS model is designed
to capture the main variability of the training data set, and the val-
idation data set is generated with the similar statistical properties to
the training data. However, the above results are valid on only the
normal data set. In other situations, such as other disturbances cases,
other models may be better than the FPLS model. The situation and
the aim of the models must determine the best model structure.
2. Full-scale WWTP

Process data were collected from a biological WWTP treating
coke wastewater from an iron and steel producing plant in Korea,
so-called biological effluent treatment (BET). Fig. 6 shows the lay-
out of the studied full-scale plant. This treatment plant uses an ac-

Fig. 5. Comparisons of LPLS and FPLS for the predicted and real value of effluent nitrate, SNOe (a) Time series plot of LPLS, (b) Time
series plot of FPLS (c) Scatter plot of LPLS (d) Scatter plot of FPLS.

Fig. 6. Plant layout of cokes wastewater treatment plant (BET).
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tivated sludge process with five aeration basins (each of size 900 m3)
and a secondary clarifier (1,200 m3). The treatment plant has two
influent streams: wastewater arrives either directly from a coke mak-
ing plant (called BET3) or as pretreated wastewater from an up-
stream WWTP at another coke making plant (called BET2). The

coke-oven plant wastewater is produced during the conversion of
coal to coke. This type of wastewater is extremely difficult to treat
because it is highly polluted and most of the chemical oxygen de-
mand (COD) contains large quantities of toxic, inhibitory compounds
and coal-derived wastewaters that contain, e.g., phenolics, thiocy-
anate, cyanides, poly-hydrocarbons and ammonium.

Table 2 describes the process variables of X and Y blocks. Twelve
process and manipulated variables, the X block, were used to mod-

Table 2. Process input and output variables in full-scale WWTP

No Variable Description

X1 Q2 Influent flow rate from BET2
X2 Q3 Influent flow rate from BET2
X3 CN2 Cyanide influent from BET2
X4 CN3 Cyanide influent from BET3
X5 COD2 COD influent from BET2
X6 COD3 COD influent from BET3
X7 MLSSat MLSS concentration at final aeration basin
X8 MLSSr MLSS concentration in the returned sludge
X9 DOat DO concentration at final aeration basin
X10 Tinf Influent temperature
X11 Taerator Temperature in the final aeration tank
X12 pHat pH in the final aeration tank
Y1 SVIr SVI in the returned sludge
Y2 CNred The reduction of cyanide concentration in the effluent
Y3 CODred The reduction of COD in the effluent

Table 3. Percent variance captured (%) and MSE of several
PLS models in BET

LV
LPLS QPLS FPLS

X Y X Y X Y

1 17.75 31.76 17.75 31.92 17.75 31.76
2 33.32 47.85 33.32 48.29 33.32 48.79
3 44.01 58.32 43.96 58.70 44.01 59.27
4 52.96 60.61 52.89 60.83 53.00 61.55
5 59.61 62.20 59.55 62.90 60.37 63.00
6 64.64 63.43 65.10 63.90 65.57 64.21

MSE of
validation data

1.13 1.12 1.11

MSE of
test data

1.67 1.68 1.71

Fig. 7. Scatter plots (upper plot) and firing strength plot (lower plot) of four latent variables in FPLS model in full-scale WWTP (a) first
LV (b) second LV (c) third LV (d) fourth LV.
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el three process output variables, the Y block. The Y block con-
sists of the sludge volume index (SVI), the reduction of cyanide
(∆CN), and the reduction of COD (∆COD). The process data con-
sisted of daily mean values from 1 January, 1998 to 9 November,
2000 with a total number of 1034 observations. The first 720 ob-
servations were used for the calibration of the PLS models. Odd
sample numbers were used as the training set and even sample num-
bers were used as the validation set. The remaining 314 observa-
tions were used as a test data set.

The comparison results of three PLS models are represented in
Table 3. Six LVs are selected for each PLS model since the Y-var-
iance captured by the smaller factors was less than 1%. The MSE
of the cross validation data set was calculated with the six LV. Fig.
7 shows the scatter plot and firing strength of the FPLS model with
six LVs (the fifth and sixth LV are not shown), which shows the

inferred relation between input and output latent variables. Unex-
pectedly, the data from BET showed no obvious nonlinearity. How-
ever, we did find some nonlinear characteristics at the second LV,
which leads us to use three fuzzy rules for this factor. The first and
later factors showed almost no nonlinearity and, hence, one fuzzy
rule was used for each of these LVs.

The value of X and Y-variance captured by the FPLS model is
larger than that of LPLS and QPLS methods, and the mean squared
error (MSE) of the validation set is smallest for FPLS. However,
contrary to our expectation, the MSE for the test data set shows that
LPLS and QPLS have better prediction performance than FPLS.
During the test data set, WWTP received a large influent load and
experienced a significant change in the operating condition. These
process transitions altered the sludge, which changed the process
dynamics in BET. Because the FPLS model is designed to capture

Fig. 8. Time series plots of predicted and actual output in full-scale WWTP (a) SVI with LPLS, (b) SVI with FPLS, (c) ∆CN with LPLS,
(d) ∆CN with FPLS (e) ∆COD with LPLS (f) ∆COD with FPLS.
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the nonlinear behavior and statistical properties of the training data
set, the FPLS model showed poorer prediction result in these dis-
turbances cases. Figs. 8 and 9 show the time series and scatter plots
of real and predicted values with LPLS and FPLS model during the
validation periods. The prediction performances of COD and CN
reduction are satisfactory. But, the prediction of SVI of secondary
settler is less good compared to those of the other process quality
variables. LPLS and FPLS show a similar prediction performance.

Since it is difficult to make a fair comparison between models
whose algorithm has its own characteristics, we will not present a
detailed comparison between models, but below we will outline the
difference between FPLS and the other nonlinear PLS (NLPLS)
methods in two aspects. First, inner relation models of FPLS usu-

ally take on a gentler curvature than those of NLPLS, as they are
locally weighted averages of linear fuzzy rules and model design-
ers would not favor highly nonlinear shapes of inner relation mod-
els whose variables are the results of linear computations. In con-
trast, other NLPLS models can take on any nonlinear shape to min-
imize the SSE, providing this shape is permitted by cross validation.
If an FPLS model were built only according to the cross-validation
result, with no input from the experts, it could have greater curva-
ture. Hence, it ultimately depends on the experts’ decision whether
to use a conservative model or a sum of square error (SSE) min-
imizing model [Bang et al., 2003].

Second, the number of regression parameters estimated for each
nonlinear PLS inner model depends on a few structural parameters,

Fig. 9. Scatter plots of predicted and actual output in full-scale WWTP (a) SVI with LPLS, (b) SVI with FPLS, (c) ∆CN with LPLS, (d)
∆CN with FPLS (e) ∆COD with LPLS (f) ∆COD with FPLS.
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such as the order of a polynomial for QPLS, the order of polyno-
mials and the number of knots for the spline PLS (SPLS), the num-
ber of neurons for neural net PLS (NNPLS) and the number of rules
for FPLS. They also vary depending on the nonlinearity of the mod-
eled system. If the value of the structural parameters is increased,
the regression SSE of the model will decrease and the model will
take on a more nonlinear shape. Because these structural parame-
ters have different physical meanings, their values cannot be com-
pared with those of another NLPLS. However, if the values are the
same, FPLS generally uses more parameters than other NLPLS meth-
ods. For example, if the values of the structural parameter are L for
both NNPLS and FPLS, an inner model of NNPLS needs 2L+1
regression parameters for the input and output weights of the neu-
rons plus a bias term, whereas that of FPLS needs 4L parameters
for c, σ and b. However, this does not mean that FPLS is a more
complex model to interpret. Because FPLS analyzes the system using
sub models represented by fuzzy rules, the 2L parameters used for
b help in the preparation of sub models and the 2L parameters used
for c and σ help to interpret the relationship between the input data
and the sub models. Therefore, although FPLS uses more regres-
sion parameters than other NLPLS methods for the same structural
parameter, its superiority as an informative model will rate it highly
among the elemental NLPLS methods [Bang et al., 2003; Yoo et
al., 2003].

CONCLUSION

The FPLS model was applied to two nonlinear biological pro-
cesses and the experimental results show the application of the al-
gorithm. The FPLS model not only possesses nonlinear modeling
ability, but also the robustness and interpretability of the PLS and
fuzzy methods. Moreover, because the TSK fuzzy model is a com-
bination of linear sub-models, it causes the FPLS model to provide
more stable estimations of output on extrapolation. The case study
clearly showed that it gave good modeling performance and higher
interpretability than any other nonlinear PLS modeling method.
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APPENDICES - IDENTIFICATION
OF THE PARAMETERS OF FPLS MODEL

1. The Center of a TSK Fuzzy Model (ci) using FCM
The center of a TSK fuzzy model ci in each rule can be decided

on the basis of the clusters of CFCM algorithm, which is previ-
ously described.

(A1)

where ui, j is the membership function of each rule i. This clustering
method essentially deals with the task of splitting a set of patterns
into a number of clusters with respect to a suitable similarity mea-
sure. It is able to identify regions where the system can be locally
approximated by the TSK model. So, it is applied to obtain a rule-
based model focusing on compactness and transparency. As a result,
each fuzzy rule built at this point can become a representative re-
gression model of its cluster.
2. The Width of a TSK Fuzzy Model (σi) using Moody and
Darken’ Rule [1989]

The widths of a TSK fuzzy model, σi, are determined by using
the nearest neighbor heuristic suggested by Moody and Darken,
that is,

(A2)

where cl (l=1, 2, …, p) are the p (typically p=2) nearest neighbors
of the center ci. In this paper, we assume that all Gaussian member-
ship functions have the same width σ, which is obtained by aver-
aging σi in equation (A2) over all L centers.
3. The Linear Parameters of a TSK Fuzzy Model (bi) using
Global Learning Algorithm [Yen et al., 1998]

The parameters, bi, of the TSK fuzzy model can be determined
by using a global learning method. Global learning chooses the pa-
rameters of the fuzzy rules that minimize the objective function JG.

J=(y−Xb)T(y−Xb) (A3)

where

(A4)

b=[b10 b11 … b1r … bL0 bL1 … bLr] (A5)

y=[y(1) y(2) … y(N)]T (A6)

, wi is the normalized firing strength and N is the number of train-
ing datasets. If the parameters of the antecedent membership func-
tions are predetermined, the only unknown component in J is the
parameter vector b whose elements are the parameters in the linear
regression equations of the TSK model. We can use the well-known
least squares estimation (LSE) method to solve the parameter vec-
tor.

b=(XTX)−1XTy (A7)

Or we can use a computationally efficient method, such as singular
value decomposition (SVD), to solve the singularity problem in com-
putation of the inverse of XTX. Applying SVD to X yields

X=UΣVT (A8)

where U=[u1 u2 … uN]T∈ RN×N and V=[v1 v2 … v2L]T∈ R
2L×2L are

ci = 

ui j,
m tj

j = 1

N

∑

ui j,
m

j = 1

N

∑
--------------, i = 1, 2, …, L

σi = 
1
p
--- ci − cl( )2

l = 1

p

∑
1 2⁄

, i = 1, 2, …, L

X = 

w1 1( )w1 1( )x1 1( )w1 2( )x1 2( )…w1 1( )xr 1( )…

w1 2( )w1 2( )x1 2( )w1 2( )x1 2( )…w1 2( )xr 2( )…

..

.

w1 N( )w1 N( )x1 N( )w1 N( )x1 N( )…w1 N( )xr N( )…

wL 1( )wL 1( )x1 1( )…wL 1( )xr 1( )
wL 2( )wL 2( )x1 2( )…wL 2( )xr 2( )

wL N( )wL N( )x1 N( )…wL N( )xr N( )
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orthogonal matrices, and Σ=diag(σ1, σ2, …, σ2L)∈ RN×2L is a diago-
nal matrix with σ1≥σ2≥…≥σ2L≥L. Substituting (A8) into (A3) and
after simple manipulations, the minimum Euclidean norm solution
of the fuzzy rule parameters, b, is computed as

(A9)

where s is the number of nonzero singular values in Σ.

NOMENCLATURE

Aij : fuzzy sets that are characterized by the membership func-
tion Aij(xj)

E : residual matrices of the predictor variables
F : residual matrices of the response variables
fh(·) : inner function of TSK fuzzy model
L : the number of rules
m : number of latent variables
P : loading matrix
ph : loading vector
Ri : the ith fuzzy rule 

T : score matrix
th : score vector
xi : [x1 x2 … xr]

T input variables
X : input data matrix

Greek Letters
cir : the center of the ith Gaussian membership function of the

rth input variable xr

ti : the firing strength of rule Ri

σi : the width of the membership function

Abbreviations
FPLS : fuzzy partial least squares
PCA : principal component analysis
PLS : partial least squares
QPLS : quadratic partial least squares
TSK : Takagi-Sugeno-Kang
WWTP : wastewater treatment plant
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