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Abstract A new conceptual dynamic integrated model is presented which can be used to describe both

conventional pollutants and organic contaminant fate in rivers. The model is designed to assess the short-

term fate of organic contaminants in two compartments (bulk water and benthic sediment), taking into

account the effect of nutrient dynamics. The biodegradation submodel was refined using a microcosm

(artificial river) study and Linear Alkylbenzene Sulphonate (LAS) as an example. Based on data generated

during the microcosm study, the model was calibrated and validated in both steady state (continuous

constant load) and dynamic (pulse load) conditions. The results show that the simulated data set agrees

well with the measured data set. Furthermore, thorough investigation of the model output sensitivity to the

model inputs was made, and the results show that the fate of LAS is sensitive to the following model input

variables: ammonia nitrogen, dissolved oxygen, microbial biomass and readily biodegradable soluble COD,

and the model parameters mainly related to the biodegradation submodel. The model provides good

understanding of the interaction between conventional pollutants and organic contaminants fate in rivers.

Keywords Artificial river; integrated modelling; river water quality; sensitivity analysis

Introduction

The consequence of conventional pollutants, nutrient enrichment and contamination by

toxic organic compounds are the main water quality problems in surface waters, and

hence they have been subject to extensive research and modelling. Despite the fact that

these two water quality problems interact in various ways, linking these two problems is

not a common practice. However, knowledge of interaction between conventional pollu-

tants and organic contaminants is required for various purposes. Among them two are

particularly important: (1) it assists the water quality manager to make decisions on the

method of handling the contaminated sediments (e.g. dredging, capping, etc.), and (2) it

helps to evaluate and predict the bioavailability, fate and effect of contaminants in the

aquatic environment (Gunnarsson et al., 1996).

Nutrient enrichment can influence the in-stream fate and toxicity of organic contami-

nants in various ways. In comparison to oligotrophic systems, high biomass production in

an eutrophic system can result in a lower contaminant level in each individual organism.

The higher concentrations of dissolved and particulate organic carbon can result in low

contaminant concentrations of the truly dissolved fraction (e.g. Gunnarsson et al., 1996).

Chemical sorbed to Particulate Organic Carbon (POC) can also be removed from the

bulk water by sedimentation (e.g. Millard et al., 1993). In oligotrophic systems on the

other hand, the limiting inorganic substrates/nutrients, e.g. nitrogen and phosphorus

sources, can limit microbial growth, and thereby influence the biodegradation of organic

contaminants (e.g. Greer et al., 2003). A recent experimental study also confirmed that

the concentration dynamics of basic water quality variables such as dissolved oxygen,

ammonia nitrogen and readily biodegradable Chemical Oxygen Demand (COD) can

influence the fate of organic contaminants (Linear Alkylbenzene Sulphonate (LAS)) in an

artificial river (Deksissa and Vanrolleghem, 2003a). To take into account these
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interactions in the river water quality model, an attempt was made to develop a new

dynamic integrated model (Deksissa and Vanrolleghem, 2003b) that needs to be validated

and refined.

The goal of this study is therefore to refine/validate the integrated river water quality

model on the basis of a microcosm study. The biodegradation submodel was refined such

that it includes bulk water and benthic sediment/biofilm degradation, Dissolved Oxygen

(DO) and other nutrient limitations. The performance of the model was evaluated by

comparing a simulated data set with a measured data set. On the basis of a sensitivity

analysis, the relative importance of the model parameters and input variables was also

examined.

Material and methods

Experimentation set-up

Figure 1 shows the river set-up and its schematic representation. The river was con-

structed as a cascade of 5 U-shaped gutters each 2m long. The total river length and

volume are 10m and 36.84 L respectively. Two air diffusers were placed in each gutter

to provide oxygen and to counteract sedimentation. The design Total Hydraulic Resi-

dence Time (HRT) was chosen such that it corresponds to the half-life of the chemical of

concern, in this case LAS that has a half-life of approximately 3 h as calculated from the

reported first order degradation rate constant in small natural streams (Shröder, 1996; Fox

et al., 2000). For the chosen river size, the average flow rate was set to 0.2 L min21 in all

LAS degradation experiments so as to achieve the average hydraulic residence time of

3 h. Two types of organic contaminant load were applied: steady state (continuous con-

stant load) and dynamic (pulse load) conditions.

Analytical methods

Samples were taken at distances of 0.5, 2, 4, 6, 8 and 10m and analysed for total (unfil-

tered) LAS concentration in the bulk water using a non-specific Azure A analytical

method (de Tonkelaar and Bergshoef, 1969) knowing that there is no other type of

Figure 1 River set-up (left) and schematic illustration of the artificial river set-up (right): S1 to S6 are

monitoring locations
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anionic surfactants except LAS in the river system. Samples of the same location were

analysed for the other water quality variables: Dissolved Oxygen (DO) with a standard

DO electrode; soluble Chemical Oxygen Demand (COD), NH4-N and NO3-N with Dr.

Lange analysis kits. Furthermore, the microbial biomass (both in suspension and in the

benthic sediment) was determined based on measuring the dry weight (24 h at 1058C) of

a known volume of water sample.

Model formulation

Integrated model. Details of the model description for the dynamic integrated model of

conventional pollutants (nutrient enrichment or eutrophication) and organic contaminant

fate in rivers are presented elsewhere (Deksissa and Vanrolleghem, 2003b). As the goal

of this study is to refine the biodegradation submodel of this model, only a short

summary of the model description is given below. The proposed integrated model has

two main submodels: a basic water quality (conventional pollutants) submodel and an

organic contaminant fate submodel. In the basic water quality submodel, a simplified

version of IWA River Water Quality Model No. 1, RWQM1 (Reichert et al., 2001) was

applied. The RWQM1 is a comprehensive basic river water quality model in which

microbial biomass, inorganic nutrients (N and P), dissolved and particulate organic

carbon are considered explicitly as state variables. The microbial growth and carbon

cycle are the link between the conventional pollution (eutrophication) and contamination

by toxic organic compounds. As RWQM1 contains such important linking processes, it is

very suitable to study such integrated river water quality problems in which conventional

pollutants and organic contaminants interact.

In the organic contaminant fate submodel, the process rates included in the model are

biodegradation (both by suspended and attached microbial biomass), sedimentation,

resuspension and mass transfer (diffusion) between benthic sediment and the overlying

water. Using a cascade of Completely Stirred Tank Reactors in Series (CSTRS), a general

mass balance in the bulk water of each tank is expressed as follows:

dðVCT Þ

dt
¼ QinCTin 2 QoutCT 2 kbiodegCTV 2 rsed·Aþ rresusp·Aþ rdiffu·A ð1Þ

where V is the bulk water volume [m3]; CTin and CT are the total unfiltered LAS concen-

tration in the inflow and outflow respectively [mg L21]; Qin and Qout are the inflow and

outflow rates [m3 d21]; kbiodeg is the overall pseudo first-order biodegradation coefficient

[d21]; rsed, rresusp and rdiffu are the rates of sedimentation, resuspension, and mass transfer

(diffusion) respectively [mg L21d21], which are respectively a function of the average

sedimentation velocity (used), resuspension velocity (uresusp) and mass transfer velocity

(KL) [m d21]; A is the surface area at the river bed [m22].

Similar equations were used to establish mass balances for nutrients, dissolved and

particulate organic carbon in both compartments (benthic sediment and bulk water). In all

compartments, both a truly dissolved and a sorbed phase of the organic contaminant can

be simulated (see details in Deksissa et al., 2003c). As the three phases of chemical parti-

tioning are included in the model, the model can predict the concentration of phases that

are sorbed to the Particulate Organic Carbon (POC) and to the Dissolved Organic Carbon

(DOC) in both bulk water and benthic sediment.

Refining the biodegradation submodel. The aerobic degradation of organic

contaminant (LAS) is determined not only by dissolved oxygen but also by other

substrates like inorganic nitrogen. Indeed, the aerobic microbial growth on the organic

contaminants requires a nitrogen source. The overall pseudo first order biodegradation
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coefficient (kbiodeg) that includes both bulk water and biofilm can be expressed

conceptually as follows:

kbiodeg ¼ kbulk þ kbiofilm ð2Þ

kbulk ¼ kb1·FT ·
SNH

KNH þ SNH
·

SO2

KO2 þ SO2
·SGC·XH ð3Þ

kbiofilm ¼ f ðkb2; SO2; SNH ;KL;Lf ; SGC;Xf ; dbedÞ ð4Þ

where kbiodeg is the overall pseudo first-order biodegradation rate constant [d21]; kbulk
and kbiof are respectively, the pseudo first-order biodegradation rate constant in the

bulk water [d21] and in the biofilm [d21]; kb1 and kb2 are the second-order

biodegradation rate constant in the bulk water and in the biofilm respectively [L mg21

d21]; FT is the temperature correction factor (Thomann and Mueller, 1987) [2 ]; SO2
is the dissolved oxygen concentration [mg L21]; KO2 is the half saturation constant for

oxygen [mg L21]; SNH is the ammonia nitrogen concentration [mg L21]; KNH is the

half saturation constant for ammonia [mg L21]; SGC is the generic organic

contaminant concentration (LAS) [mg L21]; XH is the suspended microbial biomass

concentration [mg L21]; kb2 is the second-order biodegradation rate constant in the

biofilm [L mg21 d21]; Lf is the biofilm thickness [m]; Xf is the biofilm density [g

m23]; dbed is the active sediment depth [m].

In the benthic sediment compartment, two biofilm modelling approaches were applied:

half-order kinetics (Rauch and Vanrolleghem, 1998) and second-order kinetics (Melcer

et al., 1995). The former was applied for DO, whereas the latter was used for the other

substrates (nutrients and organic contaminants). Nitrogen and oxygen limitations are not

explicitly included in the model of Melcer and his co-workers. Therefore, an attempt has

been made to consider both oxygen and nitrogen limitation in the model using a logistic

function e.g. if SNH . SNH,minimum and SO2 . SO2,minimum then, biofilm degradation of the

organic contaminant will take place. Of course, this method will result in a discontinuous

function, but at least the effect of nutrients and dissolved oxygen is included.

Sensitivity analysis. The sensitivity analysis is an investigation of the influence of

changes in model parameters on simulated results. The most widely used sensitivity

function is the relative sensitivity function. In this method, model parameters or inputs

are changed by a small positive or negative percentage, and then the resulted effect on

the change of the model prediction is examined. Based on the results of such analysis,

the relative importance of the model input parameters can be analysed. Such information

will be used for the model calibration.

For a dynamic (time dependent) analysis, the relative sensitivity function (SR) is calcu-

lated as follows:

SRðtÞ ¼
DC=CðtÞ

DP=P
¼

DC

DP
·
P

CðtÞ
ð5Þ

SR ¼

Pn
i¼1 jSR;ij

n
ð6Þ

where SR(t) is the relative sensitivity at a time t, C(t) is the predicted model output or

concentration C at time t, P is the model parameters or inputs, SR is the average relative

sensitivity, jSR,ij is the absolute value of SR,i, and n is number of data points.
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Model calibration and validation. The model has to be calibrated and validated prior to

application as a tool in the water quality management. The hydraulic submodel was

calibrated first and then by the calibration of the water quality submodel. A conceptual

hydraulic model (a cascade of CSTRS) was applied in which the optimum number of

CSTRS was determined using NaCl as a tracer (conservative substance). Using different

number of CSTRS varying between 5 and 25, the optimum number of tanks was thus

selected based on the best fits between the measured and simulated tracer data. The best

fit was evaluated based on the Root Mean Square error (RMS) objective function as

follows:

RMS ¼

P
ðCmeasured 2 CsimulatedÞ

2

n

� �0:5
ð7Þ

where n is the number of measured data points, and Cmeasured and Csimulated are the

measured and simulated concentration of NaCl.

The water quality submodel was calibrated by changing the values of important model

parameters selected on the basis of the sensitivity analysis. To validate the model, the

model was run on the basis of independent data, and then the model output was compared

with the measured data set. The RMS (Equation 7) was used again to evaluate the agree-

ment of the simulated data set with the measured data set. Both time series and steady-

state data were used to evaluate the model performance.

Model implementation. The proposed model was implemented in the WESTw simu-

lator (Vanhooren et al., 2002; De Pauw and Vanrolleghem, 2003). Figure 2 shows the

graphical representation (configuration) of the CSTRS model used in this study. In this

configuration, the artificial river was divided into 5 main river stretches in series (river_1

to river_5) and each river stretch was further subdivided into the required equal number

of tanks, depending on the results of the model calibration.

Results and discussion

To calibrate the hydraulic submodel, the optimum number of tanks was determined using

an average flow rate of 0.2 L min21 and NaCl as a tracer. Different numbers of CSTRS

were used varying from 5 to 25. The results show that a series of 15 CSTRS gives the

lowest RMS, and hence it is the optimum number of CSTRS (see Figure 3 left). Also, the

simulated data set with 15 CSTRS agrees well with the measured data set (Figure 3

Figure 2 CSTRS model in the WESTw simulator
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Figure 3 Determination of optimum number of tanks (left) and model fit with the measured values using the

optimum number of tanks (right)
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right). This indicates that 15 CSTRS can adequately describe the pollution propagation

(dispersion) of the artificial river.

To select important model parameters for the model calibration, a preliminary sensi-

tivity analysis was carried out with the default parameter values (literature values) (see

Table 1). Using data collected in January and May 2003, the model parameters were cali-

brated manually by trial and error. The results are given in Table 1. For both the dynamic

and steady-state simulations, the calibration results (see Figure 4) show that the simulated

data sets agree well with the measured data sets within 10 – 20% error.

To validate the model, the model was run on the basis of independent data without

changing the calibrated values except for the forcing function parameters e.g. temperature

and the active sediment layer. Using data collected on January 27, 2003, the dynamic

simulation result shows that the predicted data set agrees well with the measured data set

(see Figure 5).

Table 1 Model parameter values applied in the model

Parameter Literature values Calibrated

1 Lf 0.0001a 0.0001
2 Xf 40000a 40000
3 kb1 3.8b 3
4 kb2 0.024c 0.028
5 KL 0.00365d 0.00365
6 KNH 0.012e 0.012
7 KO2 0.011e 0.011
8 dbed measured measured
9 used 0–0.25f 0.25
10 uresusp 0.0–0.0008g 0.0005

aMelcer et al. (1995); bSchnoor (1996); cBoejie, 2001; dcalculated based on the empirical formula given
in Thomann and Mueller (1987); eReichert et al. (2001); fGiri et al. (2001); gDiToro (1982)

0
1
1
2
2
3
3
4

0 50 100 150 200 250 300 350
Time (min)

LA
S

 (m
g/

l)

0.0

0.4

0.8

1.2

1.6

0 2 4 6 8 10 12
Distance (m)

LA
S

 (m
g/

l)

Model

Measure

Figure 4 Model calibration: dynamic simulation (left) and steady-state simulation (right); the lines are the

model predictions, the dot marks with error bar are the measured data

0.0

0.5

1.0

1.5

2.0

0 50 100 150 200 250 300 350
Time (min)

LA
S

 (m
g/

l)

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10 12
Distance (m)

LA
S

 (m
g/

l) Model
Measured

Figure 5 Model validation with a dynamic simulation (left) and steady state simulation (right)
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Sensitivity analysis

Using data collected in January 2003, the model output sensitivity was examined. In

order to investigate the effect of model parameters and model inputs (conventional pollu-

tants) on the fate of organic contaminant, the simulated concentration of LAS was used

as the model output of interest. The results are given in Table 2 where the parameters are

ranked on the basis of the average jSRj values. The results show that the biodegradation

parameters are more influential than the physical parameters (Used and Uresusp). This indi-

cates that these most sensitive parameters must be determined or measured accurately.

In addition to model parameters, the sensitivity to the model input variables was

analysed too. Four model input variables were considered: readily biodegradable COD,

NH4-N, dissolved oxygen and suspended heterotrophic biomass concentrations. The

results of this analysis are given in Table 3 where the average jSRj values are again used

to rank the relative importance of the model input variables.

The results show that SNH ranks first, followed by XH, SO2 and SS. Hence, LAS degra-

dation is very sensitive to small changes in ammonia nitrogen, suspended microbial bio-

mass, dissolved oxygen, and relatively less sensitive to the soluble readily biodegradable

COD (SS). This is due to the fact that SNH, XH and SO2 are explicitly incorporated in the

organic contaminant fate submodel, while SS only indirectly influences through XH and

SO2 by regulating the growth of XH and increasing the SO2 consumption.

Consider an adequate COD concentration, but a low concentration of other inorganic

nutrients such as dissolved oxygen, phosphorus, and nitrogen in the river system. As the

bacterial growth depends on such multiple substrates, the limitation of one of the sub-

strate reduces aerobic microbial activities. If there are adequate oxygen, phosphorus and

nitrogen concentrations, an increase of the COD concentration will determine the growth

of heterotrophic bacteria, which thereby will also enhance the LAS degradation. In con-

trast, for waters highly loaded with COD and ammonia, oxygen can be depleted and the

Table 2 Sensitivity analysis for the model parameters

Rank Parameters Average jSRj (%) Minimum jSRj (%) Maximum jSRj (%)

1 kb1 0.08219 0.01175 0.12885
2 KL 0.02099 0.00226 0.03224
3 KNH 0.01926 0.00275 0.03021
4 KO2 0.01167 0.00009 0.01908
5 kb2 0.01128 0.00154 0.01871
6 Xf 0.01125 0.00154 0.01867
7 Lf 0.01125 0.00154 0.01864
8 dbed 0.00657 0.00010 0.01486
9 Used 0.00093 0.00001 0.00173
10 Uresus 0.00002 0.00000 0.00007

Table 3 Sensitivity analysis for the model input variables

Model inputs Descriptions Minimum jSRj (%) Average jSRj (%) Maximum jSRj (%)

SNH Ammonia nitrogen
(NH4-N þ NH3-N) (mg l21)

15.26 110.58 163.16

XH Active heterotrophic microbial
biomass concentration (mg l21)

2.23 16.06 24.24

SO2 Dissolved oxygen
concentration (mg l21)

1.02 13.85 21.15

SS Readily biodegradable
soluble COD (mg l21)

0.01 0.11 0.17
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LAS degradation can be slowed down by development of anoxic conditions in the riv-

erbed. Indeed, LAS is only biodegradable under aerobic conditions.

Conclusions

The biodegradation submodel of the proposed integrated model was refined. A nitrogen

limitation term was incorporated in the organic contaminant fate submodel. The relative

importance of the different model inputs was analysed on the basis of a relative sensi-

tivity analysis. Based on the results obtained, it could be concluded that considering the

nutrient limitation in the organic contaminant fate model is important. The proposed

model has sufficient complexity to describe the interaction of conventional pollutants and

organic contaminants. The most sensitive model parameters also need to be determined

or measured accurately. Finally, the model adequately describes the fate of LAS in the

microcosm study, but needs to be validated on the basis of a future field study.
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