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Abstract When introducing new wastewater treatment plants (WWTP), investors and policy makers often

want to know if there indeed is a beneficial effect of the installation of a WWTP on the river water quality.

Such an effect can be established in time as well as in space. Since both temporal and spatial components

affect the output of a monitoring network, their dependence structure has to be modelled. River water

quality data typically come from a river monitoring network for which the spatial dependence structure is

unidirectional. Thus the traditional spatio-temporal models are not appropriate, as they cannot take

advantage of this directional information. In this paper, a state-space model is presented in which the spatial

dependence of the state variable is represented by a directed acyclic graph, and the temporal dependence

by a first-order autoregressive process. The state-space model is extended with a linear model for the mean

to estimate the effect of the activation of a WWTP on the dissolved oxygen concentration downstream.
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Introduction

The increasing interest in environmental issues has currently been translated into legis-

lation. The European Water Framework Directive is an example of these efforts. One of

the major goals of this directive is to maintain and improve the aquatic environment. In

order to reach this goal one of the possible actions is to built wastewater treatment plants

(WWTPs). Obviously, investors and policy makers want to know if there indeed is a ben-

eficial effect of the installation of a WWTP on the river water quality. Such an effect can

be established in time, after as compared to before the installation, and in space, down-

stream as compared to upstream of the WWTP.

In the time-series literature, this question is referred to as intervention analysis. Given

a known intervention, the analysis assesses the evidence that an expected change in the

time-series actually occurred and if so, the nature and magnitude of the change is also

investigated (Box and Tiao, 1975). To investigate the effect of the WWTP, the mean

difference of the water quality before and after the event has to be estimated at sampling

locations down- and upstream from the WWTP. To be significant, the estimated change

of the constituent concentration at the sampling location downstream has to be signifi-

cantly different from zero. This shift in the mean concentration can only be attributed to

the WWTP if no similar shift occurs at the sampling locations upstream from the

WWTP. Since a river monitoring network is used to collect the data, measurements show

spatial and temporal correlation. Hence the statistical model must incorporate this depen-

dence structure. When the spatio-temporal correlation structure is ignored or modelled

incorrectly, all statistical inference on the effect of the WWTP is not guaranteed to be

valid. Given the spatio-temporal dependence and the fact that the effect of the WWTP

can be established both in time and space, it is clear that spatio-temporal models are

needed for intervention analysis (Thas and Ottoy, 1999).
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Traditional approaches to this problem have focused on the geostatistical paradigm

(Wikle and Cressie, 1999; Bilonick, 1983) and on multivariate time-series methods,

which specify dynamic models that are linked spatially (Rouhani and Wackernagel,

1990). Huang and Cressie (1996) classify time-series as dynamic since the temporal

dependence arises from a unidirectional correlation. This unidirectional structure often is

utilised in time-series techniques. A first-order autoregressive model is a clear example.

Geostatistical methods, on the other hand, are classified as descriptive because of the

non-directional correlation. There is no causative interpretation associated with the

observed spatial correlation. Based on these considerations Huang and Cressie (1996)

derived a temporal dynamic and spatial descriptive model to predict the snow water

equivalent during the snow season.

In this paper a spatio-temporal model is presented for the intervention analysis of data

obtained from a river monitoring network. With respect to the spatial dependence struc-

ture an important distinction has to be made with the classical spatial structures. Since

the water flows only in one direction within the river reaches, a causal interpretation can

be given to the correlations. However, as opposed to time, rivers can join or split. This

implies a more general branched unidirectional structure. Therefore, according to Cres-

sie’s terminology, a spatio-temporal model is required that is dynamic with respect to

both the spatial and the temporal dependence structure.

For the case study presented in this paper, only a small part of the river monitoring

network of the Region of Flanders in Belgium is considered. The network consists of

three sampling locations upstream of a WWTP and one sampling location downstream.

The dissolved oxygen concentration (DO) is measured monthly. To derive a valid statisti-

cal procedure for the evaluation of the effect of the WWTP, a linear model for the mean

DO is embedded into a spatio-temporal model.

First the statistical model is formulated. The model consists of two parts: a model for

the covariance structure, which is uniquely determined by the spatio-temporal depen-

dence structure, and a model for the mean, which is needed to answer the substantive

research question raised in the intervention analysis. Then the case study is presented and

is followed by the results and discussion and a conclusion.

The spatio-temporal model

Dependency structure

At each time t ¼ 1, K, N, let St ¼ ðS1t…S
p
t Þ

T denote the stationary spatial process, where S
j
t

represents the DO concentration at time t and sampling location j. The correlation structure

of St is defined by the conditional independence structure, which is easily derived for a

river monitoring network of branched unidirectional river reaches. This is illustrated in

Figure 1. In this figure five sampling locations along two joining river reaches are schema-

tically represented; the direction of the water flow is also indicated. The same figure can

also be interpreted as a directed acyclic graph (DAG) (Whittaker, 1990) in which the

circles represent the vertices associated with the corresponding S
j
t. Missing edges or arrows

Figure 1 DAG of the five sampling locations along two joining river reaches

L.
C
lem

ent
et

al.

10



immediately determine the conditional independencies: S1t is independent of S
3
t ; S

1
t is inde-

pendent of S4t given S2t ; S
1
t is independent of S

5
t given S2t ; S

1
t is independent of S

5
t given S4t ;

S2t is independent of S
3
t , S

2
t is independent of S

5
t given S4t ; S

3
t is independent of S

5
t given S4t .

This conditional independence structure is assumed to hold at each time t.

Since the covariance structure can be formulated as a DAG, it can also be equivalently

represented by a recursive system of equations (Wermuth, 1980).

St ¼ ASt þ gt; ð1Þ

where the order of the elements of St can be arranged such that A is a lower triangular

square matrix with zeroes on the diagonal, and gt is a multivariate zero-mean random

vector with a diagonal variance-covariance matrix Sg. It is further assumed that g is mul-

tivariate normally distributed (MVN), denoted as ~gMVNð0;SgÞ.

In reality, however, the dependence structure may possibly be obscured by common

environmental influences such as rainfall or climatological conditions in general. The

rather strict structure implied by the model in Equation (1) is assumed to hold only for an

isolated river system. Therefore this model is seen as the model for the unobservable

state variable St, and the model is embedded into an observation model

Yt ¼ St þ ht; ð2Þ

where Yt is the observation vector corresponding to St, and ht is the zero-mean error

term. Here, ~hMVNð0;ShÞ. Equations (1) and (2) define the spatial model, which is a

state-space model.

Temporal dependence structure

For the temporal dependence structure a first-order autoregressive model for the state

variable is assumed,

St ¼ BSt21 þ dt; ð3Þ

where B is a diagonal matrix containing the autoregressive parameters and ~dMVNð0;SdÞ

with a diagonal variance-covariance matrix Sd.

Model for the mean

Up to here it has been assumed that the mean of Yt is zero, i.e. E[Yt] ¼ 0 for all t. Only

the covariance structure of the stationary process Yt has been modelled. Throughout this

paper a linear model for the mean is used,

E Yt½ � ¼ Xtb; ð4Þ

where b ¼ (b1,… , bq)
T is the parameter vector and Xt is the p £ q design matrix which

may contain time-dependent covariates. After embedding the mean model in Equation

(2), the following equation is obtained

Yt ¼ Xtbþ St þ ht: ð5Þ

Spatio-temporal model formulated as a structural equation model

Another equivalent formulation of the spatio-temporal model is accomplished by recog-

nising that the model (Equations (1), (3) and (5)) can be written as a structural equation

model (SEM) (Maruyama, 1997)

CS ¼ z

Y ¼ Xbþ Sþ 1;

(
ð6Þ
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where S ¼ ðST1…STNÞ
T , Y ¼ ðYT

1…YT
NÞ

T , X ¼ ðXT
1…XT

NÞ
T , C is a pN £ pN square matrix

constructed from the elements of the matrices A and B, ~zMVNð0;SzÞ, where Sz is diag-

onal, and ~1MVNð0;S1Þ where S1 is block-diagonal with blocks Sh.

From this SEM formulation it is obvious that a zero-mean spatio-temporal model

(b ¼ 0) only specifies the covariance structure of the observation vector Y

Sy ¼ var ðYÞ ¼ C21SzC
2T þ S1: ð7Þ

Parameter estimation

The spatio-temporal model determines the covariance structure of the observation vector

Y. The parameter vector b can be estimated by weighted least squares (WLS)

b̂ ¼ ðXT Ŝ
21

Y XÞ21XT Ŝ
21

Y Y ð8Þ

for which a consistent estimator of var(Y) is needed (Equation (7)),

ŜY ¼ Ĉ21ŜzĈ
2T þ Ŝ1: ð9Þ

Inference on b is then based on the estimated covariance matrix Ŝb

Ŝb ¼ ðXT Ŝ
21

Y XÞ21; ð10Þ

where Ĉ, Ŝz and Ŝ1 are all consistent estimators based on the model represented by

Equation (6). The estimation of the parameters is based on the factorisation of the likeli-

hood according to the recursive nature of the DAG. Since the DAG is only applicable to

S, the likelihood of Y cannot be factorised accordingly. An efficient algorithm has been

developed to overcome this computational problem. Details are given elsewhere (Clement

et al., submitted).

Case study

The data used in this case study are part of a public database of the Flemish Environmen-

tal Agency (http://www.vmm.be); more details can be obtained from the first author.

Figure 2 shows schematically the location of four sampling locations along three river

reaches in the neighbourhood of the city of Ertvelde in Belgium. Actually the three river

reaches join just before sampling location S1, but this is not indicated to maintain the

DAG-interpretation of Figure 2.

Monthly observations were available at each sampling location between January 1990

and November 2002. In August 1997 a WWTP, located just downstream from the junc-

tion of the river reaches coming from locations S2, S3 and S4 and just upstream from

location S1, was activated. The question addressed in this paper concerns the possible

effect of the WWTP on the DO concentration. The DO concentration shows a highly sea-

sonal pattern, which is modelled by a factor with 12 levels (one for each month). The

model of the mean DO at time t and location j is given by

E DOj
t

� �
¼ b1j þ b2jt þ b3jIðt $ tcÞ þ Xma; ð11Þ

where I (.) denotes the indicator variable, tc is the date of the activation of the WWTP

(August 1997); Xm is a matrix with dummy variables used to model the seasonal effect

(it is equal to 1 when the data belongs to the current month and 0 elsewhere), and a is

the vector with the effect parameters for the 12 months, with the restriction S
12
k¼1 ak ¼ 0.

Note that the model in Equation (11) is a linear model which can be written in matrix

notation as in Equation (4).
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The effect of the activation of the WWTP at location S1, quantified by b31, has to be

assessed by means of statistical tests. If a beneficial effect exists due to the wastewater

treatment plant, the effect should be detected over time as well as over space. The former

is equivalent to b31 – 0 and the latter effect can be tested by comparing b31 to the effects

b32, b33, b34 in the sampling locations upstream. The hypothesis of interest for the first

test is formulated as

H0 : b31 ¼ 0; ð12Þ

which expresses that there is no change in the mean DO at the downstream location

(location S1).

The second hypothesis of interest is formulated as

H0 : L¼ L1 L2 L3
h iT

¼Hb¼ b312b32 b312b33 b312b34

h iT
¼ 0 0 0
� �T

; ð13Þ

where H is the appropriate contrast matrix. Equation (13) expresses that, if there is a

change in mean at the downstream location (location S1), this shift in mean is the same

at the upstream locations, and hence it cannot be attributed to the installation of the

WWTP. The null hypothesis has to be tested against the alternative hypothesis that the

effect at the downstream location is different from all three effects at the upstream

locations. (As soon as one of the upstream effects is similar to the downstream effect, the

effect at the downstream location cannot be attributed to the WWTP). The vector L will

be estimated by

L̂¼ L̂1 L̂2 L̂3
h iT

¼ b̂312 b̂32 b̂312 b̂33 b̂312 b̂34

h iT
; ð14Þ

which is MVNð0;HSbH
T Þ. This multivariate normal distribution will be used to calculate

the p-value.

All the statistical tests will be performed on a 5% significance level.

Results and discussion

Figure 3 shows monthly observations between January 1990 and November 2002, and

the resulting model fit for DO at each location. This figure clearly indicates a sudden

increase in DO at location S1 at the time the WWTP was activated (August 1997). The

results of the parameter estimation are presented in Table 1.

Figure 2 DAG of the four sampling locations along three river reaches. The WWTP is located between

locations S2, S3, S4 and S1
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The parameter estimates and the p-values for the intercept, the long-term trend and

the intervention effect are given in Table 1 (estimates for the seasonal trend are not

shown). They indicate a very significant increase of the mean DO (p , 0.001) after the

start-up of the WWTP at the downstream location (S1), whereas at the upstream locations

S2, S3 and S4 no significant changes are seen ( p ¼ 0.63, p ¼ 0.08 and p ¼ 0.06). Since a

significant positive shift in mean DO is only established in the location S1, there seems

to be a positive effect of the WWTP over time.

The presence of a spatial effect of the WWTP is tested using Equations (13) and (14).

The p-value is p , 0.001, and, therefore, the null hypothesis is very strongly rejected.

Thus, it may be concluded that the shift in mean at location S1 is different form the

upstream locations, indicating that there is indeed a spatial effect of the WWTP. Although

this data analysis methodology has no causal interpretation, the results give a strong

indication that the WWTP has a positive effect on the downstream DO concentration.

The current spatial and temporal dependence structure implies some strong assumptions

on the data, such as multivariate normally distributed residuals and a second-order statio-

narity in the temporal and spatial covariance structure. For many space-time

processes there is little reason to expect spatial (and sometimes temporal) stationarity of

the covariance structure (Chunsheng, 2003; Wikle and Cressie, 1999). It is a challenge to

develop new, less-restrictive spatio-temporal covariance structures for river network

modelling.

Figure 3 Time-series (o) and model fit (–) of the DO (mg/l) at the different sampling locations (location 1

downstream from the WWTP, locations 2–4 upstream from the WWTP)

Table 1 Estimates of bij, their standard deviations (sd) and the p-values corresponding to H0:bij ¼ 0,

p-values are not given for the intercepts

Intercept (i 5 1) Slope (i 5 2) Intervention effect (i 5 3)

J Estimate sd Estimate sd p Estimate sd p

Location S1 3.27 0.55 20.007 0.01 0.5 4.53 0.92 ,0.001
Location S2 3.65 1.04 20.009 0.018 0.61 0.79 1.64 0.63
Location S3 2.20 0.29 0.014 0.005 0.01 0.87 0.5 0.08
Location S4 6.41 0.62 0.013 0.012 0.26 22.00 1.07 0.06
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Conclusions

The proposed spatio-temporal model is able to quantify the spatial and temporal depen-

dence in river water quality networks. This dependence structure is necessary to perform

correct statistical inference on the model parameters. In the case study the model was used

to perform an intervention analysis on the activation of a WWTP. The results gave a strong

indication of a positive effect of the WWTP on the downstream DO concentration.
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