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Abstract Optimal experimental design for parameter estimation involves complex mathematical and practical

steps in order to obtain a model with sufficiently accurate parameters. This paper proposes a methodology

where user interaction is only required at the beginning of the experimental design procedure. All

subsequent steps are carried out automatically, including: (1) finding the optimal experiment, (2) performing

the experiments in practice, and (3) recalibrating the model. A software extension to an existing modelling

and simulation package which performs this automatic procedure is also presented. Finally an illustration for

the calibration of a one-step nitrification model using respirometric data is given. In this case, the application

of the proposed procedure resulted, after three iterations, in considerably better confidence intervals on the

parameter estimates, within the desired boundaries.

Keywords Automation; calibration; mathematical modelling; optimal experimental design; parameter

estimation

Introduction

Experimental data are a prerequisite for the development and correct use of biological

models. Indeed, data are required in almost every step of the model building exercise.

This involves selecting an appropriate model structure and tuning the model parameters.

In this paper we will assume that a correct model structure is available and we will focus

more on the aspect of model calibration. Model calibration or parameter estimation is

considered here as the exercise of minimizing the weighted sum of squared errors

between the model prediction and the available data by changing the model parameters

(u), this to ensure that the model predictions coincide with the experimental data. The

quality of the parameter estimates depends largely on the quality and quantity of the

available data. Often experiments are performed which deliver data of low quality result-

ing in a model calibration with very uncertain and correlated parameters. In order to

ensure that an experiment will result in high quality data, an experimental design pro-

cedure can be used. The term experimental design will be described differently by exper-

imenters and mathematicians. Experimenters often view experimental design as an art

involving much intuition while mathematicians tend to view it as a statistical problem.

Probably the best experimental design incorporates both visions and combines expert

knowledge and intuition with mathematical reasoning.

The nonlinear dynamic systems for which experimental design will be discussed in

this paper are described by the general state-output equations:

dx

dt
¼ gðx; u; u; tÞ; xðt0Þ ¼ x0

y ¼ f ðx; u; u; tÞ
ð1Þ
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where x is a vector of state variables, y a vector of outputs, u a vector of parameters and u a

vector of inputs. For this system parameter estimation can be formulated as the minimization

of the following weighted quadratic objective functional:

JðuÞ ¼
XN
i¼1

ðyiðuÞ2 yiÞ
TQiðyiðuÞ2 yiÞ ð2Þ

in which yi and yi(u) are vectors of N measured values and model predictions at times ti
respectively. Qi is a square matrix of user supplied weights often chosen as the inverse

measurement error covariance matrix. The expected value of the objective functional for a

parameter set slightly different than the optimal one can be written as (Vanrolleghem et al.,

1995):

E½Jðuþ ›uÞ� ¼ E½JðuÞ� þ ›uT
XN
i¼1

›y

›u
tið Þ

� �T

Qi

›y

›u
tið Þ

� �" #
›u ð3Þ

A reliable minimum J(u), and thus a good model calibration, requires that the difference

between the expected value E½Jðuþ ›uÞ� and E½JðuÞ� is as large as possible. This implies

that the term between large square brackets in Equation (3) should be maximized. This term

is called the Fisher Information Matrix (FIM) and expresses the information content of the

experiment by combining sensitivity functions and measurement errors.

Under certain conditions (uncorrelated white measurement noise), the inverse of the

FIM gives the lower bound of the covariance matrix of the estimated parameter vector

according to the Cramer–Rao inequality (Ljung, 1999; Walter and Pronzato, 1997).

This relationship is illustrated in Figure 1 for a 2-parameter estimation problem. These

figures represent the confidence regions of two parameters (u1 and u2). The size, shape

and orientation of the confidence ellipse are determined by the eigenvalues and eigen-

vectors of the FIM. The largest axis of the confidence ellipse is inversely proportional

to the square root of the smallest eigenvalue (lmin), while the smallest axis is inver-

sely proportional to the square root of the largest eigenvalue (lmax). In this way prop-

erties of the FIM determine the properties of the confidence region and thus the

accuracy of the parameter estimates.

The information content of the experiment can be optimised by considering different

measures of the FIM. Table 1 lists these criteria. The D- and A-optimal design criteria

aim at minimizing the volume of the confidence ellipse, illustrated in Figure 1a. The

modified E design criterion on the other hand aims at reducing parameter correlations by

getting the shape of the confidence region as close to a circle as possible (Figure 1b).

The best value one can obtain for the modified E criterion is 1, and this has been

 (a) (b)

Figure 1 Effect of different FIM design criteria (D-criterion: left, modified E criterion, right) on the size and

shape of the parameter confidence region
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achieved for certain experimental design problems. However, one must be aware that

such optimum only guarantees that the confidence region is a circle, but it can be a very

large circle (Dochain and Vanrolleghem, 2001).

Optimal experimental design based on FIM properties has been applied numerous

times using an iterative procedure. The first step of this procedure is the calibration of the

model based on initial data. Next, new experiments are proposed, simulated and evalu-

ated until the optimal experiment is found. After the optimal experiment is performed in

reality, the model is recalibrated and the procedure repeated if required.

The main reason why the above mentioned procedure is still not used very often is that

it involves different, rather complex mathematical and practical steps in order to obtain the

calibrated model. This paper will therefore focus on the development of a methodology

which automates the entire procedure, making expert interventions almost unnecessary.

The paper is organized in three sections. First, the experimental setup and the model used

to illustrate the methodology are described. The next section is devoted to the development

of the automatic experimental design procedure and software. To conclude, a practical

case study is presented which illustrates the proposed procedure.

Methods

In order to illustrate the automatic experimental design procedure, respirometric

experiments were performed using an integrated sensor for monitoring aerobic and anoxic

activated sludge activities (Sin et al., 2003). Only a short description of the sensor will

be given here since the focus of this paper is more on the experimental design procedure.

Full details about the experimental setup can be found in the above mentioned paper.

The setup of the integrated sensor shown in Figure 2 consists of an aeration (2.5 l) and

a respiration (1.0 l) vessel. A cooling system is used to control the temperature of the

reactors. Data acquisition, pH-control and data processing are implemented in LabVIEW

(LabVIEW 6.1i, National Instruments). In the aeration vessel dissolved oxygen, nitrate

and pH are measured and in the respiration chamber only dissolved oxygen is measured.

OUR data were calculated from the two DO-trajectories as described in Petersen et al.

(2001).

The data acquisition frequency of the sensors is set to 3 seconds. High frequency

noise, known to be present in the weak analog signals of the electrodes of the setup, is fil-

tered using a lowpass Savitzky–Golay least square polynomial filter (Press et al., 1992)

through a Labview Matlab script node (Matlab R12, The MathWorks Inc.). The pH is

controlled within a narrow pH band of ^0.03. Strong autocorrelations were found in the

oxygen uptake rate data up to a lag of ^40 seconds. This was corrected in LabVIEW by

sub-sampling each 13th data point.

The oxygen uptake rate (OUR) measured in the respiration chamber was used to cali-

brate a one-step nitrification model based on ASM1 (Henze et al., 2000) where ammonium

(NH4
þ-N) is converted to nitrate (NO3

2-N) assuming that the NH4
þ-N to NO2

2-N (nitrite)

Table 1 Different optimal design criteria based on FIM properties (Mehra, 1974)

Name Criterion

A-optimal design min[tr(FIM-1)]
Modified A-optimal design max[tr(FIM)]
D-optimal design max[det(FIM)]
E-optimal design max[lmin(FIM)]
Modified E-optimal design min[lmax(FIM)/lmin(FIM)]
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conversion is the rate limiting step. The OUR can be considered as the sum of the

exogenous OUR and the endogenous OUR given by Equation 4.

OUR ¼
4:57 2 YNH4

YNH4

£ 1 2 e2
t2tpulse

t

� �
£ mmax ;NH4

£
SNH4

KNH4
þ SNH4

£ XNH4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
OURexogenous

þ 1 2 f P
� �

£ bH £ XH|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
OURendogenous

ð4Þ

In this equation YNH4
(mgCOD.mg21N) is the yield of the autotrophic biomass XNH4

(mgCOD.l21); mmax,NH4
(min21) the maximum growth rate of the autotrophic biomass;

KNH4
(mgN.l21) the Monod half-saturation constant for ammonium; t (min) an OUR tran-

sient term time constant (Vanrolleghem et al., 2004); SNH4 (mgN.l21) the ammonium con-

centration; fP (-) the inert particulate fraction of the biomass and bH (min21) the decay

coefficient of the heterotrophic biomass XH (mgCOD.l21).

Experiments were performed with pulse additions of NH4
þ-N added to the aeration

vessel using a pump. For these experiments biomass from the Maria Middelares WWTP

(Gent, Belgium) was used.

Results and discussion

Development of the automatic optimal experimental design procedure and software

Figure 3 illustrates the proposed automated optimal experimental design procedure. In

order to apply this procedure in practice an extension was programmed to the modelling

and simulation software package West (Vanhooren et al., 2003). This extension makes

use of existing West software modules like simulation, optimization and sensitivity

analysis.
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Figure 2 Illustration of the integrated sensor set-up (from Sin et al., 2003)
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Two main parts can be distinguished in the procedure. The left side of Figure 3 rep-

resents reality where experiments are conducted and data collected. The right side of the

figure represents the computer system where models are calibrated and experiments are

simulated and their potential information content evaluated. User interaction is only

required once at three points in the proposed procedure, these are indicated by a human

symbol in Figure 3.

The starting point of the experimental design procedure is the identification of the

model using data of an initial experiment. At this point user interaction is still very

important as automation seems as yet unfeasible. First, the user has to select a model

structure which is appropriate. Next, the identifiability of the proposed model should be

studied in order to find the parameter combinations which can be uniquely estimated

based on the available data. This can be done by analysing the output sensitivities of the

measured variables to the parameters (Brun et al., 2002; Weijers and Vanrolleghem,

1997). Parameters for which the output sensitivities are very small or highly correlated

should not be estimated but fixed at a default value. Once the parameter subset is deter-

mined, the model can be fitted to the data of the initial experiment.

User interaction is also required to specify the experimental degrees of freedom and

constraints. These can be classified into two types: measurements and manipulations. The

user needs to specify which variables can be measured and which measurement frequen-

cies and measurement locations in time or space are allowed possibly within certain con-

straints. Also, the measurement error characteristics of each measurement need to be

specified. Experimental manipulations concern all actions that can be taken to manipulate

the experimental setup in some way. These include the initial conditions and experimen-

tal inputs like imposed flow, temperature or concentration profiles.

Identify model

Propose

experiment

Simulate

experiment

Evaluate

objective

LabVIEW

setup

Initial

experiment

Internet

OK

Yes

No

Internet

Reality Computer

Define experimental

degrees of freedom

and constraints

Define objective

OK

M
a
ster

 P
C

Calibrated model

No

Yes

Figure 3 General automatic optimal experimental design procedure (adapted from Dochain and

Vanrolleghem, 2001)
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The choice of the experimental degrees of freedom has important implications on the

choice of optimizer that has to be used to solve the design problem. For continuous

optimization problems classical optimization algorithms can be used. However, if exper-

imental degrees of freedom have been defined which can only take certain discrete

values, other algorithms which can cope with this kind of restrictions have to be used.

Ideal candidates for this are genetic algorithms (Goldberg, 1989) because of their ability

to optimize combined continuous and discrete problems.

The final decision the user has to make is to define the objective that will be used to

evaluate the proposed experiments. These objectives can be any of the FIM properties

that are listed in Table 1. In addition to that, multiple objectives (including, for instance,

experimental cost) can be evaluated using a multi-objective genetic algorithm optimizer

(Fonseca and Fleming, 1998). In contrast to single objective optimization, multi-objective

optimization does not give a single solution but a set of solutions that can be Pareto opti-

mal. This means that each solution of this set is optimal in the sense that no improvement

can be achieved in one objective that does not lead to a degradation in at least one of the

remaining objectives. However, since this type of optimization produces multiple sol-

utions, it cannot be used in an automatic experimental design procedure.

Once the experimental degrees of freedom/constraints and the objective are specified

the experimental design procedure can be started. Based on the initially calibrated model

new experiments are proposed using the specified experimental degrees of freedom.

These experiments are simulated and the objective evaluated. The optimization of the

experimental degrees of freedom is continued until an optimal experiment is found, opti-

mal in the sense that it minimizes or maximizes the objective, depending on the choice

of the objective.

If the optimal experiment has been found, it can be performed in reality. The devel-

oped software is able to transfer the chosen values for the experimental degrees of free-

dom of the optimal experiment through TCP-sockets over the internet. In this way it can

communicate with every software package which is equipped with this form of communi-

cation interface. In this work LabVIEW (National Instruments) is used to perform the

experiment and collect the data. The experimental design module transfers the exper-

imental degrees of freedom and signals LabVIEW to perform the experiment automati-

cally. After the experiment is finalized LabVIEW transfers the acquired data through the

same network interface to the West experimental design module. Once the data is

received, the model is recalibrated using the parameter values of the already available

model as initial guesses. It is then decided if the procedure needs to be repeated. Depend-

ing on the chosen objective criterion, this decision can be made on the basis of the accu-

racy of the parameter estimates or the correlations among them. In this work, the

proposed procedure is stopped when the largest correlation is lower than 0.5 if the modi-

fied-E criterion is used, or when the largest 95% confidence interval is smaller than

^20% of the parameter value if another FIM criterion is used. The procedure is also

stopped when the correlation or confidence intervals for the latest experiment show no

further improvements compared to the previous one. These proposed stopping criteria are

useful in practice but further research is certainly desirable.

Practical illustration of the developed procedure

To illustrate this procedure it is applied to the model and experimental setup described at

the beginning of this paper. As a first step in the procedure, the model was calibrated

with OUR data of an initial experiment (Figure 4). For this experiment, lasting 35 min-

utes, a pulse of 0.5 mg NH4
þ-N was added to the aeration vessel at 12 minutes after the

start of the experiment.
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Five parameters were selected for parameter estimation: mmax,NH4, KNH4, YNH4, t, XH.

This selection was made based on the fact that the measured variable (OUR) was suffi-

ciently sensitive to these parameters. In order to fit the endogenous respiration rate, the

heterotrophic biomass concentration XH was selected for parameter estimation while bH
and fP were kept at their default value of 1.39E-04 min21 and 0.2 respectively. The auto-

trophic biomass concentration XNH4 is also assumed to be known and was fixed here at a

value of 40 mg.l21.

Figure 4 shows the model fit to the data of the initial experiment. The calibrated par-

ameters and their confidence intervals are listed in Table 2. From the table it is clear that

the confidence intervals of the parameters are extremely large. In order to improve this,

the automatic optimal experimental design procedure was run.

The next step in the proposed procedure is to fix the experimental degrees of freedom

and constraints. It was decided to perform an experiment with two pulse additions of

NH4
þ-N where the total amount of NH4

þ-N was limited to 5 mg in order to limit biomass

growth. The duration of the experiment was fixed to 110 minutes and the experimental

degrees of freedom to be optimized were chosen to be: (1) the amount of the second

addition; (2) the time instant of the second pulse addition. The first pulse of NH4
þ-N was

always added at the start of the experiment.

Next the objective function was selected. The D-optimal design criterion was chosen

in order to decrease the overall confidence region of the parameter estimates. Since the

optimization problem only consists of continuous experimental degrees of freedom, the

Simplex method (Nelder and Mead, 1965) could be used as optimization algorithm. This

algorithm converges faster for this type of problem.

The experiment that was found to be optimal for the model with parameters obtained

from the first experiment was the addition of all 5 mg NH4
þ-N in the first pulse at the

start of the experiment while a negligible amount had to be added using a second pulse.

For this experiment the D criterion was 2.07Eþ15.

Once the optimal experiment was found, the values of the experimental degrees of

freedom for the optimal experiment were transferred automatically to the LabVIEW

setup (slave PC) and the experiment was started. When the experiment ended 110 minutes

later, the data were transferred to the master PC. As soon as the data were received, the

model was recalibrated using the parameter values of the already available model as

initial estimates. Again, the calibration was performed using the Simplex optimization

method. Figure 5 shows the data of this experiment together with the model fit. Table 2

shows the parameter values found after calibration together with their 95% confidence
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Figure 4 OUR data and model fit for the initial experiment
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interval. From the table it is clear that the confidence in the parameters has increased

considerably.

Next, a second iteration of the procedure was started because the largest estimation

error was still above 20%. Another optimal experiment was found and this time it con-

sisted of one pulse of 4.17 mg NH4
þ-N at the start of the experiment and another pulse of

0.83 mg NH4
þ-N after 48.32 minutes. This corresponds to an addition just after the first

pulse of NH4
þ-N is completely taken up by the biomass. The FIM D criterion for this

experiment increased to 1.26Eþ23. Vanrolleghem et al. (1995) also obtained an optimal

experiment with extra pulse addition after the substrate was almost exhausted for a

respirometric experiment similar to the one described here. Again, the experimental

degrees of freedom were transferred to the slave PC and the experiment was performed.

After the experiment, the data were sent to the master PC and the model was recalibrated.

Figure 6 and Table 2 show the data and the results of the model calibration. From the

table it is clear that the parameters have not changed too much but, probably surprisingly,

the errors on the parameter estimates have increased. Although the information content

of the second optimal experiment was higher (see above), the model fit was less good

than the fit on the first optimal experiment as a result of a model structure problem.

Indeed, the model was unable to optimally fit the acquired data and the increased residual

error propagated in the higher parameter estimation errors. Since no further improvement

was made in parameter confidence, the optimal experimental design procedure was

stopped at this point.
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Figure 5 Model calibration based on the OUR data for the first designed experiment
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Figure 6 Model calibration based on the OUR data for the second designed experiment
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Looking at the parameter values in Table 2, it is clear that the yield parameter has a

quite different value from the often reported 0.24 mgCOD.mg21N for autotrophic bio-

mass. The area below the OUR profile corresponds to (4.57-YNH) £ SNH(0) where SNH(0)

is the added NH4
þ-N concentration which is assumed to be known (Petersen et al., 2001).

For the first designed experiment, the integrated surface corresponds to 5.55 mgO2.l21

which is identical to the calculated value (5.56 mgO2.l21) using a yield of

1.01 mgCOD.mgN-1 and assuming a known concentration of 1.65 mgN.l21 (5 mgNH4
þ-N

in 3.2 l). If we assume a default yield of 0.24 mgCOD.mg21N and calculate the NH4
þ-N

concentration that would correspond to an oxygen utilization of 5.55 mgO2.l21, it

becomes 1.28 mgN.l21, significantly less than the assumed value. The gap in NH4
þ-N

could be explained by several things: (1) adsorption of ammonium on biomass, (2) assim-

ilation of ammonium by heterotrophic biomass, (3) inaccuracies of the ammonium

addition pump. Indeed, the effect of these processes can be significant because only a

small amount of NH4
þ-N is added to the system.

Conclusions

An automatic optimal experimental design procedure was proposed. In this procedure,

user interaction and expert knowledge is only required at the beginning and all sub-

sequent steps can be performed automatically. These include: (1) finding the optimal

experiment; (2) performing the experiments in practice; and (3) recalibrating the model.

The proposed procedure was implemented in an existing modelling and simulation pack-

age (West) that interacts with a slave LabVIEW-PC. This slave PC controls the exper-

iment and can be located anywhere in the world.

The proposed procedure was applied successfully to the calibration of a one-step nitri-

fication model using respirometric data. After an initial model calibration, an optimal

experiment for the parameter values obtained, was found and performed automatically by

transferring the experimental degrees of freedom through the internet to the LabVIEW

experimental setup. The acquired data was sent back to the experimental design module

where the model was automatically recalibrated and a second and final experiment

designed, performed and used for a final recalibration. This resulted in significantly smal-

ler confidence intervals for the estimated parameters.
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