Mass and charge conservation check in dynamic models: application to the new ADM1 model

M. de Gracia*, L. Sancho**, J.L. García-Heras*, P. Vanrolleghem*** and E. Ayesa**

*CEIT, Section of Environmental Engineering, P.O. Box 1555, San Sebastián, Spain (E-mail: mdegracia@ceit.es)

**TECNUN, School of Engineering, University of Navarra, Spain

***BIOMATH, Department of Applied Mathematics, Biometrics and Process Control, Ghent University, Coupure Links 653, B-9000 Gent, Belgium

Abstract This paper proposes a systematic methodology for the analysis of the mass and charge balances in dynamic models expressed using the Petersen matrix notation. This methodology is based on the definition of the model components via elemental mass fractions and in the estimation of the COD as a function of the redox equations associated with these elements. This approach makes the automatic calculation of all the stoichiometric coefficients under different measuring units and the study of COD, charge or mass fluxes easier. As an example of its application this methodology was applied to the ADM1 in order to illustrate its usefulness for the analysis of organic matter characterisation, nitrogen release or biogas composition in anaerobic digestion. The application of the methodology for a rigorous integration of different IWA models is proposed for further study.

Keywords Mass balance; charge balance; continuity equations; modelling; anaerobic digestion; ADM1

Introduction

Mathematical modelling and simulation is a commonly used tool in research and the management of environmental systems. Different IWA Task Groups have carried out intensive work into developing models for WWTP and rivers: the ASM1, ASM2 and ASM3 (Henze et al., 2000) to model the transformations in activated sludge processes, the ADM1 (Batstone et al., 2002) to describe the anaerobic digestion transformations and the RWQM1 (Reichert et al., 2001) developed for the prediction of water quality in rivers. The matrix format proposed by Petersen (1965) has been used to develop all those models. However, some differences in model structure, components and hypotheses exist: the description of the organic nitrogen, the pH dynamics (or alkalinity variations), the fractionation of the carbonaceous substrate, gas-liquid interchanges, etc.

Furthermore, many different units were used to define the model components. Engineered systems models have usually been based on chemical oxygen demand (COD) and nitrogen content per unit of COD, while water chemists and biologists are more familiar with organic carbon content or dry weight mass fractions of organic compounds (Reichert et al., 2001; Marañon et al., 2004). The RWQM1 established a systematic methodology for model definition and mass balance that can be used to standardise the rest of the existing IWA models. The use of elemental mass fractions creates a rigorous theoretical basis for bio-geochemical conversion processes that can bring the derivation of most of the commonly used quantification measures, ease the checking of mass and charge continuity of process transformations and simplify the connections between models.

This paper presents the systematic application of this methodology to mathematical models based on the Petersen matrix description. The new anaerobic digestion model (ADM1) has been used as an example to illustrate the usefulness of the methodology proposed.

Methods

The fundamentals of the model formulation with elemental mass fractions are based on the hypothesis that the mass of each component in the model is made up of time constant mass fractions of the elements C, H, O, N and P (Reichert *et al.*, 2001). Furthermore, each component may have an associated charge per unit of mass. The elemental mass fractions ($\alpha_{C,i}$, $\alpha_{H,i}$, $\alpha_{O,i}$, $\alpha_{N,i}$ or $\alpha_{P,i}$) for a generic model component X_i are defined as the mass of C, H, O, N or P per unit of mass of this component (X_i). The calculation of these mass fractions is immediate for all those model components that own a known composition formula, but a proper estimation must be carried out for the remaining elemental mass fractions. According to the hypothesis above, the sum of all elemental mass fractions of each component X_i must be unity.

$$\alpha_{C,i} + \alpha_{H,i} + \alpha_{O,i} + \alpha_{N,i} + \alpha_{P,i} = 1 \tag{1}$$

The charge density $(\alpha_{Ch,i})$ for a generic model component X_i is defined as the electric charge associated to its unit of mass. For each component X_i , it is calculated as the quotient of its molecular charge and its molecular weight. Normally, not all the components X_i can be defined by a molecular formula, their molecular weight being unknown. However, once the elemental mass fractions and the charge density have been assigned, *one unit of mass* of any model component X_i can be expressed with a general formula as follows:

$$\left|C_{(\alpha/12)}H_{(\alpha)}O_{(\alpha/16)}N_{(\alpha/14)}P_{(\alpha/31)}\right|^{\alpha_{Ch,i}} \tag{2}$$

Conservation equations

Each column of the Petersen matrix gathers the stoichiometric coefficients for each *i* model component, while the rows represent the mass transformation for the different *j* processes. Conservation equations are the mathematical equivalent to the principle that in physical, chemical or biological transformations, neither matter nor net electric charge is created or destroyed. Commonly, model components are expressed in terms of concentration (amount of component per unit of volume). The stoichiometric unit of a generic model component X_i refers to the measurement unit on which the amount of each component is expressed in the model (for example COD, mol, mass, etc.). Based on the elemental mass fractions and charge density previously defined, six conservation equations can then be written for each of the *j* processes included in the model:

$$\sum_{i} \nu_{ij} \cdot \beta_{C,i} = \sum_{i} \nu_{ij} \cdot \beta_{H,i} = \sum_{i} \nu_{ij} \cdot \beta_{O,i} = \sum_{i} \nu_{ij} \cdot \beta_{N,i} = \sum_{i} \nu_{ij} \cdot \beta_{P,i} = \sum_{i} \nu_{ij} \cdot \beta_{Ch,i}$$
$$= 0 \tag{3}$$

Where ν_{ij} is the corresponding stoichiometric coefficient of the Petersen matrix and the conversion parameters $\beta_{C,i} \beta_{H,i} \beta_{O,i} \beta_{N,i} \beta_{P,i}$ and $\beta_{Ch,i}$ are the mass of C, H, O, N and P, and the charge respectively, in one stoichiometric unit of the model component X_i . These equations contain information about the transformation and allow the prediction of one stoichiometric coefficient ν_{ij} in each process *j* without the need for any experiment, provided the remaining coefficients are known. The conversion parameters can be calculated if and only if a unique mathematical relationship exists between the stoichiometric unit of component X_i and its elemental mass fractions and charge density. As many model components have been traditionally expressed in terms of COD, a simple and systematic

methodology for estimating the relationship between its COD and its mass should be established in order to apply the mass conservation equations described above.

The relationship between the COD and the mass of every model component can be based on redox equations when its elemental mass fraction and charge density have been previously defined. The notion of theoretical oxygen demand (ThOD) has been introduced to characterise the corresponding concept, and in order to apply it to inorganic compounds as well (Gujer *et al.*, 1999). The principle of ThOD assumes that each reactive electron is equivalent to 8 g of ThOD and, therefore, when an element is oxidised to its redox state of reference (CO₂, H₂O, O₂, NH₄⁺, PO₄³⁻, etc.), there is an exchange of electrons, to which an equivalent ThOD value is associated. Table 1 shows the equivalent ThOD for C, H, O, N, P and charge.

The total ThOD of *one unit of mass* of a generic model component X_i can then be calculated as the sum of the individual ThOD contributions of each element or charge multiplied by the corresponding coefficient of its general formula (2).

Mass and charge balance in the extended ADM1 model

The ADM1 model (Batstone *et al.*, 2002) includes disintegration and hydrolysis, acidogenesis, acetogenesis and methanogenesis steps that take place in treatment systems based on the anaerobic digestion process. In addition to the biochemical processes, mechanisms included to describe physico-chemical processes are acid-base reactions and nonequilibria liquid–gas processes. The methodology presented above has been applied to the model in order to characterize the components involved in the processes, calculate the conversion parameters for identifying possible imbalances, visualizing the whole stoichiometric matrix based on different formalisms, and constructing mass fluxes through the model transformations.

Components and processes of the extended model

This study has been based on the differential equation (DE) implementation of the ADM1 model, including 30 components and 19 biological processes, 3 gas-liquid transfer kinetic processes and 6 acid-base kinetic processes. To be coherent with the objective of this study, 9 more components and 3 more processes have been added for complete definition of the processes. This approach allows the application of the continuity check not only to those formalisms for which the model is arranged (COD, carbon, nitrogen) but to all elements (hydrogen, oxygen, phosphorus and electric charge).

Closed mass balances require that some model components act as source-sink for each element. This role has been associated to inorganic carbon, water, ammonia, inorganic phosphorous and protons for C, H, N, P and charge respectively. For anaerobic conditions, the oxygen balance is accomplished without any source-sink component. Two forms of inorganic phosphorous have been included (S_{h2po4-} ; $S_{hpo4=}$) acting as source-sink for the phosphorus, in the same way that it is already implemented for the inorganic

Table 1	I ThOD) for	some	elements	and	charge
---------	--------	-------	------	----------	-----	--------

Element	or charge Z	State of reference		Equivalent ThOD
С	Carbon	CO ₂	+32	q ThOD (mol C) $^{-1}$
Н	Hydrogen	H ₂ O	+8	g ThOD (mol H) ⁻¹
0	Oxygen	$\overline{O_2}$	- 16	g ThOD (mol O) $^{-1}$
Ν	Nitrogen	$N\bar{H}_{4}^{+}$	- 24	g ThOD (mol N) ⁻¹
Р	Phosphorus	PO4 ³⁻	+40	g ThOD (mol P) $^{-1}$
_	Negative charge	Zero charge	+8	g ThOD (mol $(-))^{-1}$
+	Positive charge	Zero charge	- 8	g ThOD (mol (+)) ⁻¹

Table 2 Extended stoichiometric matrix for the ADM1 model

		1	2	3	4	5	6	7
		S_{su} Monosaccharides $ m C_6H_{12}O_6$	S _{aa} Amino acids C ₄ H _{6.1} O _{1.2} N	S _{fa} Long chain fatty acids C ₁₆ O ₂ H ₃₂	S _{hva} Valeric acid C ₅ H ₁₀ O ₂	S_{va-} Valerate C ₅ H ₉ O ₂	S _{hbu} Butyric acid C₅H ₉ O ₂	S _{bu-} Butyrate C ₄ H ₇ O ₂
1	Disintegration							
2	Hydrolysis	1						
	of chyd.							
3	Hydrolysis		1					
	of prot.							
4	Hydrolysis	0.0500		0.9500				
	of lipids							
5	Uptake	- 1					0.1170	
	of sugars							
6	Uptake of AA		- 1		0.2116		0.2392	
7	Uptake			- 1				
	of LCFA							
8	Uptake				- 1			
	of valerate							
9	Uptake						- 1	
	of butyrate							
10	Uptake							
	of propionate							
11	Uptake							
	of acetate							
12	Uptake							
	of hydrogen							
13	Decay of X _{su}							
14	Decay of Xaa							
15	Decay of X_{fa}							
16	Decay of X_{c^4}							
17	Decay of Xpro							
18	Decay of X _{ac}							
19	Decay of X _{h2}							
20	Valerate acid-base				- 1	1		
21	Butyrate acid-base						- 1	1
22	Propionate							
	acid-base							
23	Acetate acid-base							
24	Inorg							
	C acid-base							
25	Inorg							
	N acid-base							
26	Inorg							
	P acid-base							
27	Equilibrium							
	H ⁺ -OH ⁻							
28	H ₂ dissolution							
29	CH ₄ dissolution							
30	CO ₂ dissolution							
31	Water condensation							
		kgCOD	kgCOD	kgCOD	kgCOD	kgCOD	kgCOD	kgCOD

		8	9	10	11	12	13	14
		S _{hpro} Propionic	S _{pro-} Propionate	S _{hac} Acetic	S _{ac-} Acetate	S _{co2} Carbon-dioxide	S _{hco3-} Bicarbonate	S _{nh4+} Ammonium
		acid C ₃ H ₆ O ₂	$C_3H_5O_2^-$	acid C ₂ H ₄ O ₂	$C_2H_3O_2^-$	CO ₂	HCO3	NH_4
1	Disintegration					- 1.4E-03		-4.4E-04
2	Hydrolysis					1.1E-03		0.0E+00
3	ot cnya. Hydrolysis					0.0F+00		0.0F+00
0	of prot.					0.02 00		0102 00
4	Hydrolysis					2.2E-05		0.0E+00
	of lipids							
5	Uptake	0.2430		0.3690		7.2E-03		-6.2E-04
	of sugars							
6	Uptake of AA	0.0460		0.3680		-4.1E-04		6.6E-03
7	Uptake			0.6580		-9.9E-04		- 3.7E-04
	of LCFA							
8	Uptake	0.5076		0.2914		-4.9E-04		- 3.7E-04
~	of valerate			0.0500		0.05.04		
9	Uptake			0.7520		- 3.3E-04		-3.7E-04
10	of butyrate	1		0 5 4 7 0		9 5E 02		0.55.04
10	of propionate	- 1		0.0472		0.3E=03		- 2.5E-04
11	Untake			- 1		1 5E-02		-31F-04
	of acetate			•				0.12 0 1
12	Uptake					- 1.7E-02		-3.7E-04
	of hydrogen							
13	Decay of X _{su}					-4.7E-03		3.9E-03
14	Decay of X _{aa}					-4.7E-03		3.9E-03
15	Decay of X_{fa}					-4.7E-03		3.9E-03
16	Decay of X_{c^4}					-4.7E-03		3.9E-03
17	Decay of X _{pro}					-4.7E-03		3.9E-03
18	Decay of X _{ac}					-4.7E-03		3.9E-03
19	Decay of X_{h2}					-4.7E-03		3.9E-03
20	Valerate acid-base							
21	Butyrate acid-base							
22	Propionate	- 1	I					
03	Acotata acid-base			- 1	1			
23 94	Inorg			1	'	- 1	1	
24	C acid-base					·	•	
25	Inora							-1
	N acid-base							
26	Inorg							
	P acid-base							
27	Equilibrium							
	H ⁺ -OH							
28	H_2 dissolution							
29	CH ₄ dissolution							
30	CO ₂ dissolution							
31	Water condensation		1OOD		1OOD		land a Q	Loss L. N.
		KGUUU	KGCOD	KGCOD	KGUUU	KMOIEC	KMOIEC	KMOIEIN

.

229

Table 2 (cont.)

		15	16	17	18	19	20	21
		S _{nh3} Ammonia NH ₃	$S_{hpo4}=$ Dehydrogen- phos HPO4 ²⁻	<i>S_{h2po4−}</i> Hydrogen-phosph H₂PO₄	$egin{array}{c} S_{h+} \ { m lon} \ { m hydroxyl} \ { m H}^+ \end{array}$	S _{oh} _ Ion hydroxyl OH ⁻	S _{h2} Dissolved hydrogen gas H ₂	S _{ch4} Dissolved methane gas CH ₄
1 2	Disintegration Hydrolysis		- 1.8E-05 3.1E-04		- 4.1E-04 6.3E-04			
3	Hydrolysis of prot		0.0E+00		0.0E+00			
4	Hydrolysis of lipids		1.1E-04		2.2E-04			
5	Uptake of sugars		- 6.9E-05		4.8E-04		0.1710	
6	Uptake of AA		- 5.6E-05		- 6.7E-03		0.0552	
7	Uptake of LCFA		- 4.2E-05		2.9E-04		0.2820	
8	Uptake of valerate		- 4.2E-05		2.9E-04		0.1410	
9	Uptake of butyrate		-4.2E-05		2.9E-04		0.1880	
10	Uptake of propionate		- 2.8E-05		1.9E-04		0.4128	
11	Uptake of acetate		- 3.5E-05		2.4E-04			0.95
12	Uptake of hydrogen		-4.2E-05		2.9E-04		- 1.00	0.94
13	Decay of X		5.5E-04		- 2.8E-03			
14	Decay of X _{ee}		5.5E-04		- 2.8E-03			
15	Decay of X ₆		5.5E-04		- 2.8E-03			
16	Decay of X_{-4}		5.5E-04		- 2 8E-03			
17	Decay of X		5.5E-04		- 2 8E-03			
18	Decay of X		5.5E-04		- 2 8E-03			
19	Decay of X ₄₀		5.5E-04		- 2 8E-03			
20	Valerate acid-base		0.02 0 .		4.8E-03			
21	Butvrate acid-base				6.3E-03			
22	Propionate acid-base				8.9E-03			
23	Acetate acid-base				1 6F-02			
24	Inorg				1			
25	Inorg	1			1			
26	Inorg R acid-base		- 1	1	- 1			
27	Equilibrium				1	1		
00	H dissolution						1	
20 00	CH dissolution						I	1
20 20	CO dissolution							1
30								
51	Trater Condensation	kmoleN	kmoleP	kmoleP	kmoleH	kmoleH	kgCOD	kgCOD

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	X _{aa} nino acid degr.
1 Disintegration 0.10 -1 0.20 0.20 0.30 2 Hydrolysis -1 <t< td=""><td></td></t<>	
 Hydrolysis -1 of chyd. Hydrolysis -1 of prot. Hydrolysis -1 of lipids Uptake 0.10 of sugars 	
3 Hydrolysis -1 of prot. -1 4 Hydrolysis -1 of lipids -1 5 Uptake 0.10 of sugars 0.10	
4 Hydrolysis -1 of lipids 5 Uptake 0.10 of sugars	
5 Uptake 0.10 of sugars	
of sugars	
6 Uptake of AA 0.0	80
7 Uptake of LCFA	
8 Uptake	
of valerate	
9 Uptake	
of butyrate	
10 Uptake	
of propionate	
11 Uptake	
of acetate	
12 Uptake	
of hydrogen	
13 Decay of X_{su} 1 -1	
14 Decay of X_{aa} I - I	1
16 Decay of X _{/a} I	
17 Decay of X_{c^4} 1	
18 Decay of X 1	
19 Decay of X _{ac} 1	
20 Valerate acid-base	
21 Butvrate acid-base	
22 Propionate acid-base	
23 Acetate acid-base	
24 Inorg	
C acid-base	
25 Inorg	
N acid-base	
26 Inorg Placid-base	
27 Equilibrium	
20 CO. dissolution	
31 Water condensation	
kgCOD	

Table 2 (cont.)

		29	30	31	32	33	34	35
		X _{fa} LCFA degraders	<i>X_{c4}</i> Val and but degr.	X _{pro} Propionate degr.	X _{ac} Acetate degraders	<i>X_{h2}</i> Hydrogen degr.	X, Particulate inerts	G _{CO2} Carbon-dioxide gas CO ₂
1	Disintegration						0.20	
2	Hydrolysis						0.20	
-	of chvd.							
3	Hydrolysis							
	of prot.							
4	Hydrolysis							
	of lipids							
5	Uptake							
	of sugars							
6	Uptake of AA							
7	Uptake	0.06						
	of LCFA							
8	Uptake		0.06					
	of valerate							
9	Uptake		0.06					
	of butyrate							
10	Uptake			0.04				
	of propionate							
11	Uptake				0.05			
	of acetate							
12	Uptake					0.06		
	of hydrogen							
13	Decay of X _{su}							
14	Decay of X _{aa}							
15	Decay of X _{fa}	-1						
16	Decay of X_{c^4}		- 1					
17	Decay of X _{pro}			- 1				
18	Decay of X_{ac}				-1			
19	Decay of X _{h2}					-1		
20	Valerate acid-base							
21	Butyrate acid-base							
22	Propionate							
~~	acid-base							
23	Acetate acid-base							
24	Inorg							
05	C acid-base							
20	N agid base							
06	In aciu-base							
20	R acid-base							
27	Fauilibrium							
21	H ⁺ -OH							
28	H _o dissolution							
29	CH ₄ dissolution							
30	CO ₂ dissolution							- 1
31	Water condensation							
							1 000	

	36	37	38	39
	G _{H2}	G _{CH4}	SH20	GH20
	Hydrogen gas H ₂	Methane gas CH ₄	Water H ₂ O	Water steam H ₂ C
Disintegration			- 0.0073	
2 Hydrolysis			- 0.0465	
of chyd.				
B Hydrolysis				
of prot.				
Hydrolysis			- 0.0380	
of lipids				
Uptake			-0.0275	
of sugars				
Uptake of AA			-0.1039	
Untake			- 0 2989	
of LCEA			0.2000	
Untake			0 1467	
of valerate			0.1.107	
Untako			-01967	
of buturato			0.1307	
0 Untako			-0.0080	
o opiake			0.2902	
or propionale			0.0180	
Оргаке			0.0180	
of acetate			0 50 44	
2 Uptake			0.5841	
of hydrogen				
B Decay of X _{su}			- 0.1541	
4 Decay of X _{aa}			- 0.1541	
5 Decay of X_{fa}			- 0.1541	
6 Decay of X_{c^4}			- 0.1541	
7 Decay of X _{pro}			- 0.1541	
B Decay of X _{ac}			- 0.1541	
Decay of X _{h2}			-0.1541	
0 Valerate acid-base				
1 Butyrate acid-base				
2 Propionate				
acid-base				
3 Acetate acid-base				
4 Inorg				
C acid-base			- 18.0	
5 Inorg				
N acid-base				
6 Inorg				
P acid-base				
7 Equilibrium			- 18.00	
H ⁺ -OH				
8 H ₂ dissolution	-1			
9 CH₄ dissolution		-1		
0 CO ₂ dissolution				
1 Water condensation	1		1	- 1
	kaCOD	kCOD	kaH ₂ O	kaH_O
	NGOOD	1000	Ngi 120	Ngi 12O

_

_

Table 3 Elemental mass fractions and charge density for the ADM1 components

	Ssu	S _{hva}	S _{va} _	S _{hbu}	S _{bu -}	S _{hpro}	S _{pro-}	Shac	S _{ac-}	S _{co2}	Sh _{co3-}	$S_{nh4 +}$	S _{nh3}	Shpo4 +	Sh2po4-	S _{h+}	\mathbf{S}_{oh-}	S_{h2}	S _{ch4}
α_{C}	0.40 0.07	0.59 0.10	0.59 0.09	0.55 0.09	0.55 0.08	0.49 0.08	0.49 0.07	0.40 0.07	0.41 0.05	0.27 0	0.20 0.02	0 0.22	0 0.18	0 0.01	0 0.02	0 1.00	0 0.06	0 1.00	0.75 0.25
α_N α_N α_P	0.53 0 0	0.31 0	0.32 0 0	0.36 0	0.37 0 0	0.43 0 0	0.44 0	0.53 0 0	0.54 0 0	0.73 0 0	0.78 0 0	0 0.78 0	0 0.82 0	0.67 0 0.32	0.66 0 0.32	000	0.94 0 0	000	000
	S _{aa}	Sta	S,	×	X _{ch}	X _{pr}	X	X _{su}	X _{aa}	X _{fa}	X _{c4}	X _{pro}	X _{ac}	X h2	×'				
$\alpha_{\rm C}$	0.47	0.75	0.56	0.57	0.40	0.47	0.76	0.51	0.51	0.51	0.51	0.51	0.51	0.51	0.56				
α_H	0.10	0.13	0.06	0.08	0.06	0.10	0.12	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06				
α_O	0.28	0.12	0.28	0.28	0.53	0.28	0.11	0.28	0.28	0.28	0.28	0.28	0.28	0.28	0.28				
α_N	0.15	0.00	0.09	0.06	0.00	0.15	0.00	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.09				
α_P	0.00	0.00	0.01	0.01	0.01	0.00	0.01	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.01				
	S _{va}	S_{bu}	S_{pro}	S _{ac}	S _{hco3}	S_{nh4}	S_{hpo4}	Sh2po4	S _h	Soh									
α_{Ch}	- 0.0099	- 0.011	-0.014	- 0.017	-0.016	0.0556	-0.021	- 0.01	-	-0.059									

components
e ADM1
s for th
of mas
per unit
ThOD
Table 4

	Ssu	Saa	Sfa	S _{hva}	S _{va}	S _{hbu}	S _{bu} -	S _{hpro}	S _{pro-}	Shac	S _{ac} –	S_{h_2}	S _{ch4}
γi	1.067	1.516	2.920	2.039	2.059	1.818	1.839	1.513	1.534	1.067	1.085	8.0	4.0
	Si	×	X _{ch}	X _{or}	Ϋ́	X _{su}	X _{aa}	X_{fa}	Xc4	X _{pro}	X _{ac}	X_{h_2}	X
γi	1.552	1.842	1.0627	1.516	2.890	1.393	1.393	1.393	1.393	1.393	1.393	1.393	1.552

_

Table 5 Mass and charge conversion parameters of the ADM1 components

Bch,i		I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I
βe,i		I	0.006	0.004	0.010	I	0.003	0.021	0.021	0.021	0.021	0.021	0.021	0.021	0.006	I	I	I	I	I
Bw,i		I	0.058	0.031	I	0.099	I	0.086	0.086	0.086	0.086	0.086	0.086	0.086	0.058	I	I	I	I	I
βo,i		I	0.180	0.151	0.515	0.185	0.038	0.201	0.201	0.201	0.201	0.201	0.201	0.201	0.180	32	I	I		0.889
вн,і		0.062	0.039	0.047	0.058	0.066	0.041	0.043	0.043	0.043	0.043	0.043	0.043	0.043	0.039	I	0.125	0.062	0.889	0.1111
βc,i		0.187	0.361	0.310	0.388	0.310	0.263	0.366	0.366	0.366	0.366	0.366	0.366	0.366	0.361	12	I	0.187	I	I
		S_{ch4}	S,	$\overset{\circ}{\star}$	X_{ch}	X_{pr}	X	X_{su}	$\chi_{_{aa}}$	X_{fa}	X_{c4}	X_{pro}	$\chi_{_{ac}}$	X_{h2}	×'	G_{co2}	G_{h2}	G_{ch4}	G_{h2o}	$S_{h_{2o}}$
		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39
βcn,i	I	I	I	I	- 0.005	I	- 0.006	I	- 0.009	I	- 0.016		- 	-	I	- 2	- 	-	-	I
βe,i	I	I	I	I	I	I	I	I	I	I	I	I	I	I	I	31	31	I	I	I
βn,i	I	0.099	I	I	I	I	I	I	I	I	I	I	I	14	14	I	I	I	I	I
βο,	0.500	0.185	0.041	0.154	0.154	0.200	0.200	0.286	0.286	0.500	0.500	32	48	I	I	64	64	I	16	I
вн,	0.062	0.066	0.044	0.048	0.043	0.050	0.044	0.054	0.045	0.062	0.047	I	-	4	ი	-	2	-	-	0.125
βc,i	0.375	0.310	0.257	0.288	0.288	0.300	0.300	0.321	0.321	0.375	0.375	12	12	I	I	I	I	I	I	I
	S _{su}	S_{aa}	S_{fa}	S_{hva}	$S_{\nu a}$	S_{hbu}	S_{bu}	Shpro	Spro-	Shac-	S_{ac}	S_{c02}	S_{hc03} -	S_{nh4}	S_{nh3}	S_{hp04}	Sh2p04-	S_{h-}	S_{oh+}	S_{h2}
-	-	2	ო	4	ъ 2	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20

Figure 1 COD flow chart for the anaerobic digestion of 100 gCOD of X_c

carbon (S_{co2} ; S_{hco3-}) or nitrogen (S_{nh4+} ; S_{nh3}). The pH calculation has been incorporated by means of cations (S_{h+}) (Siegrist *et al.*, 2002), hydroxyls (S_{oh+}) and water (S_{h2o}). Two more acid-base processes and one gas–liquid transfer process have also been added, to represent the phosphate and water equilibrium and the water evaporation respectively. Finally, to complete the ADM1 gas: liquid transfer kinetics four additional components associated to the gaseous state of CH₄ (G_{ch4}), H₂ (G_{h2}), CO₂ (G_{co2}) and H₂O (G_{h2o}) have been considered for mass balancing. Table 2 shows the extended stoichiometric matrix and the components considered.

Figure 2 N mass flow chart of a mass of nitrogen equivalent to 100 g of COD of X_c . Mass of N formed or consumed (table)

M. de Gracia et

al.

Figure 3 Mass flow chart for the anaerobic digestion of the equivalent in mass of 100 gCOD of X_c (chart). Mass of inorganic components formed or consumed in each process (table)

Conversion parameters for the ADM1 components

Elemental mass fractions and charge density. All model components must have their associated elemental mass fractions in C, H, O, N and P and their charge density. The mass fractions assigned to components without a fixed molecular formula should agree with the literature (Eastman and Ferguson, 1981; Miron et al., 2000) satisfying the following assumptions: A 28% mass of oxygen is estimated for the inorganic compounds and biomass (Reichert et al., 2001). In the same way, a 3% in mass of phosphorous has been considered for the biomass, 1% for the generic organic compound (X_c) , inerts (S_i) X_i , carbohydrates (X_{ch}) and lipids (X_{li}) and 0% for amino acids (S_{aa}) , long chain fatty acids (S_{fa}) and protein (X_{pr}) . Mass fractions in the elements carbon, nitrogen and hydrogen have been estimated so that they are equivalent to the parameters suggested by the ADM1 report and to satisfy equation (1). In order to avoid nitrogen release in the hydrolysis processes, it is suggested to consider similar C and N mass fractions for the proteins and amino acids. The elemental mass fractions of the generic organic compound (X_c) have been estimated in coherence with the corresponding mass fractions of the particulate inerts, proteins, carbohydrates and lipids. The resulting elemental mass fractions and charge density are shown in Table 3.

ThOD by unit of mass. Once the procedure for the ThOD calculation has been established (Table 1) and the elemental mass fractions have been estimated (Table 3), the value of ThOD per unit of mass γ_i can be calculated. Table 4 is included to present the value of ThOD per unit of mass of the ADM1 components that are expressed in terms of COD.

Conversion parameters. Table 5 shows the mass and charge conversion factors obtained for each of the model components, considering their stoichiometric unit.

Mass and charge balances of the ADM1 model

Once the elemental mass fractions and charge density for each model component have been established and the numerical values of the stoichiometric matrix have been evaluated (Table 2), all conversion parameters (Table 5) can be calculated and the six balance equations (3) can be directly checked, detecting any possible imbalance in mass or charge. Additional stoichiometric matrices can be built in terms of C, H, O, N, P and charge, and thus the flux of mass in the model transformations can be analysed in depth.

If all the matrices are properly introduced in linked worksheets, any change in the elemental mass fractions will be automatically reflected to the stoichiometric matrices without any imbalance in mass or charge. Figure 1 and Figure 2 show the flow chart of the organic matter and nitrogen mass for the elemental mass fractions previously selected (Table 3). The table in this figure shows the inorganic nitrogen produced (positive) and consumed (negative) in each step of the process. A similar analysis can be made for the remaining elements and the electric charge. Figure 3 shows the flow chart of the mass of 100 gCOD of X_c . The table inside the figure contains the mass of inorganic components formed and consumed in each step. Any other flow chart could be easily constructed from the mass fractions, the stoichiometric matrix and the conversion parameters.

Mass flow diagrams can be used to study the influence of elemental mass fractions. For example, the stoichiometric coefficients for X_c disintegration should be coherent with the elemental mass fractions of composites, lipids, proteins, carbohydrates and inert components, in order to reduce mass compensation by the source-sink components (like carbon dioxide, ammonia, etc.). Note in Figure 3 that for the selected mass fractions and model parameters, a noticeable amount of CO_2 is being consumed when disintegration occurs in order to maintain the carbon balance. This suggests that the selected elemental mass fractions or the fractionation of X_c should be tuned. Mathematical tools (e.g. MS Excel's solver) can be used to minimize the errors in the assumptions.

The nitrogen mass flow chart can be easily used to predict the nitrogen recycled from the anaerobic digestion to the water line (Zaher *et al.*, 2002). For example, according to Figure 2, 3.10 g of influent TKN will release 1.05 g of ammonium/ammonia (34%) that would be partially recycled to the water treatment line in a WWTP. Finally, the composition of the biogas produced can be also analysed using these figures. For instance, Figures 1 and 3 show that, for the model coefficients used in the paper, 100 gCOD of X_c will produce 60.16 gCOD of CH₄ (equivalent to 0.94 moles of CH₄) and 21.27 g of CO₂ (equivalent to 0.48 moles of CO₂), in total coherence with the gas composition reported in the literature (66% of CH₄ and 34% of CO₂) (Gujer and Zehnder, 1983). For different mass fractions, the estimation of biogas production will change. For example, an X_c fractionation of 30% inerts and 70% lipids will result in a biogas composition of 77% of CH₄ and 23% of CO₂.

Conclusions

The aim of this paper was to introduce a systematic way of applying the methodology proposed in the RWQM1 for the definition and analysis of dynamic models represented in the Peterson matrix structure. This methodological application is based on the selection of the model components, including "source-sink" components of mass and charge, the definition of their elemental mass composition and charge, and the estimation of the relationship between mass and COD.

The potential of models based on elemental mass fraction has been proven. It makes a rigorous mass balance and the detection of possible imbalances easier, whether they are in the definition of the model or in the estimation of the elemental compositions. The stoichiometric matrix can be completely filled as a function of the elemental composition of the model components. Furthermore, its application makes the prediction of the COD/VSS ratio in different unit-processes, the analysis of mass fluxes in the processes and a possible standardisation of model definition easier. It also can simplify modelling

due to its versatility, as any measurement unit can be easily used (COD, total carbon, mole, mass) for the description of the model components.

The ADM1 model was easily adapted to this methodology with the incorporation of some model components and some transformations. This adaptation has turned out to be useful for selecting the elemental composition of the substrates (X_c) and by analysing, via the mass fluxes obtained, the effect of the type of waste on the resulting products (methane, carbon dioxide, etc.). The proposed methodology may be a new step forward in the standardisation of the mathematical modelling methodology of biological WWTPs. It also can facilitate the rigorous development of new interfaces for connecting the different plant's processing units, integrating the existing models for the sludge and water lines (the "plant-wide modelling" objective).

References

Batstone, D.J., Keller, J., Angelidaki, I., Kalyuzhnyi, S.V., Pavlostathis, S.G., Rozzi, A., Sanders, W.T.M., Siegrist, H. and Vavilin, V.A. (2002). *Anaerobic Digestion Model No. 1*, Scientific and Technical Report No. 1 IWA Publishing, London, UK.

Eastman, J.A. and Ferguson, J.F. (1981). Solubilization of particulate organic carbon during the acid phase of anaerobic digestion. J. Wat. Pollut. Control Fed., 53(3), 352–366.

- Gujer, W. and Zehnder, A. (1983). Conversion processes in anaerobic digestion. Wat. Sci. Tech., 15, 127–167.
- Gujer, W., Henze, M., Mino, T. and van Loosdrecht, M.C.M. (1999). Activated Sludge Model No. 3. Wat. Sci. Technol., 39(1), 183–193.
- Henze, M., Gujer, W., Mino, T. and van Loosdrecht, M. (2000). Activated Sludge Models ASM1, ASM2, ASM2d and ASM3. Scientific and Technical Report No. 9. IWA Publishing, London, UK.

Marañón, I., de Gracia, M., Ayesa, E. and Sancho, L. (2004). A deterministic dynamical model for the System Fe(II)/H₂O₂. A methodology for the mass and charge balance analysis of the mathematical model. Presented at 6th IWA International Symposium on Systems Analysis and Integration Assessment (Watermatex 2004). Beijing, China, 3–5 November, 2004.

Miron, Y., Zeeman, G., van Lier, J.B. and Lettinga, G. (2000). The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR system. *Wat. Res.*, 34(5), 1705–1713.

Petersen, E.E. (1965). Chemical Reaction Analysis. Prentice-Hall, Englewood Cliffs, NJ, USA.

- Reichert, P., Borchardt, D., Henze, M., Rauch, W., Shanahan, P., Somlyódy, L. and Vanrolleghem, P. (2001). *River Water Quality Model No. 1.* Scientific and Technical Report No 12. IWA Publishing, London, UK.
- Siegrist, H., Vogt, D., García de las Heras, J.L. and Gujer, W. (2002). Mathematical model for meso and thermophilic anaerobic sewage sludge digestion. *Environ. Sci. Technol.*, **36**(5), 1113–1123.
- Zaher, U., de Gracia, M. and Vanrolleghem, P.A. (2002). Implementation of anaerobic digestion models for plant wide modeling and performance benchmarking. In *Proceedings of the VII Latin American Workshop and Symposium on Anaerobic Digestion*, Vol. 2, Merida, Mexico, October 2002, pp. 73–76.