

BIOMATH

Department of Applied Mathematics, Biometrics and Process Control

Integration is a central theme

(Reflections on the SAIA "Specialist" Group)

Peter Vanrolleghem 01-jan-04

Watermatex 2004, Beijing, Nov 3-5 2004

UGent-BIOMATH, Coupure 653, 9000 Gent, Belgium (e-mail Peter.Vanrolleghem@ugent.be)

Water...

I begynnelsen skapade Gud himmel och jord. Jorden var öde och tom, och mörker var över djupet. Och Guds Ande svävade över vattnet. (Genesis 1:1-2)

In the beginning God created the heaven and the earth. And the earth was without form, and void; and darkness was upon the face of the deep.

And the Spirit of God moved upon the face of the waters.)(Genesis 1:1-2)

Docentföreläsning Ulf Jeppsson, 15 Dec 2003
BIOMATH

- IWRM : Integrated Water Resources Management
- Within-fence modelling (complete WWTP)
- Ecological Risk Assessment/Management
- Plug&Play modelling
- Distributed Virtual Experimentation
- Concluding remarks

HUMEUR

- HUMEUR = HUMUS for EU (2006 ?)
- HUMUS = Hydrologic Unit Model of the US (1993)
- Nutrients/Pesticides
- Catchment-scale
- Non-point source focus
- SWAT-model (Soil & Water Assessment Tool, USDA)
- HUMUNGOUS™ = HUMUS for the World (????)

eter A. Vanrolleghem - 13

Data collation

- No common database structure/format
- Different levels of quality/detail
- JRC
 - Joint Research Centre, DG Environment
 - First European database by 2006
 - SWAT-use oriented
 - Uncertainty aspects are considered
 - Information on point pollution is major issue (unexpectedly)

BIOMATH IIII

- IWRM : Integrated Water Resources Management
- Within-fence modelling (complete WWTP)
- Ecological Risk Assessment/Management
- Plug&Play modelling
- Distributed Virtual Experimentation
- Concluding remarks

Model interfacing

- Principles
 - Elemental balancing (C, H, O, N, P, COD, charge...)
 - System-specific behaviour of components must be carefully reflected upon by domain specialists (e.g. nitrifiers in waste sludge ending up in digester)
- 3 approaches
 - Supermodel (Dold et al., 2003)
 - One-to-one interfaces (Vanrolleghem et al., 2004)
 - Plant Wide Model Interface (Ayesa et al., 2004)

Plant-Wide Model Interface

- Bus: models have a "wrapper" to one interface vector
- 2xN interfaces, but if new model: work to be redone
- Generalized method to create interfaces proposed

Role of SAIA-IWA?

- Support Benchmarking Task Group
 - Test case for interface development
- Some model upgrading may be useful
 - E.g. pH-modelling in all units
 - Elemental composition in all models
- Time to revise the IWA model suite ? (SBML!)
 - Gernaey et al. (2004): deficiencies in ASM1
 - Gernaey et al. (2004): errors in current reports
- Define IWA standard interfaces
 - Agree on underlying assumptions

- IWRM : Integrated Water Resources Management
- Within-the-fence modelling (complete WWTP)
- Ecological Risk Assessment/Management
- Plug&Play modelling
- Distributed Virtual Experimentation
- Concluding remarks

Ecological risk assessment/management

- Detailed information can be made available now
 - Geo-referenced
 - Variability and Uncertainty (Imprecise probabilities)
- How does the manager deal with this?
 - Summary statistics, indicators
- Where is the divide between
 - Assessment
 - Management
- Where does the precautionary principle belong?

- IWRM : Integrated Water Resources Management
- Within-the-fence modelling (complete WWTP)
- Ecological Risk Assessment/Management
- Plug&Play modelling
- Distributed Virtual Experimentation
- Concluding remarks

Peter A. Vanrolleghem - 32

BIOMATH **IIII**

Plug-&-play Modelling

- OpenMI (Blind, Watermatex2004): Software coupling
- Peter Reichert (Watermatex 2004)
 "A standard interface between simulation programs and systems analysis software"
- Pasky Pascual (Beijings News Plaza, 3-4 Nov 04)
 "Modellers shouldn't be coding anymore"
- New back-end of WEST (Tornado)
 software platform
 with defined API
 with plug-&-play capability for tools
 set of available tools
 extensible by "coders"

- IWRM : Integrated Water Resources Management
- Within-the-fence modelling (complete WWTP)
- Ecological Risk Assessment/Management
- Plug&Play modelling
- Distributed Virtual Experimentation
- Concluding remarks

Peter A Vanrolleghem - 35

Complex virtual experimentation

- Virtual experimentation
 - = model-based studies
 - For environmental systems: Simulation determines time
- The studies we undertake:
 - Always take maximum a weekend to calculate...
 - Become more complex according to Moore's law (x 1.8/yr)
- How to speed up?

CD4WC project

- <u>C</u>ost-effective <u>d</u>evelopment of urban water systems for <u>W</u>ater Framework Directive <u>c</u>ompliance
 - EU-project
 - Integrated study of sewer-WWTP-river system
 - Methodology for evaluation of design/upgrade scenarios
- Simulations of WWTP options
 - 5 climatic conditions
 - 3 plant sizes (3.000, 30.000, 300.000)
 - 20 options
 - 100 Monte Carlo shots (LHS) for uncertainty propagation

= 30.000 simulations

Peter A. Vanrolleghem - 39

BIOMATH IIII

Computational burden in modelling

- Scenario analysis → multiple independent simulations
- Sensitivity analysis → multiple independent simulations
- Monte Carlo analysis → multiple independent simulations
- Monte Cano analysis 7 multiple independent simulation
- Optimization :
 - Genetic Algorithm
 Steepest Descent
- → multiple independent simulations
- → multiple dependent simulations
- Experiment Design
- multiple independent sensitivity analyses for different parameters
- Robustness Optimization (Walters, Watermatex2004)
 - = Optimization of sensitivity analyses
 - → multiple independent sensitivity analyses for different parameters

Distributed Virtual Experimentation

- No split-up of model in submodels that are then simulated over multiple calculation nodes
- Independent virtual experiments (e.g. simulations, sensitivity analyses) can be distributed
- Different approaches to reach this:
 - Grid technology
 - Clustering
 - WDVE (West Distributed Virtual Experimentation)

Peter A. Vanrolleghem - 41

World-wide network of computational & storage nodes Virtual organizations

• Supercomputer for Model Uncertainty and Sensitivity Evaluation • Babendreier et al. (2002) Cluster-based solution

SuperMUSE Cluster (US EPA, Athens, Georgia)

- Linux/Windows mix
- Goal: 384 client PCs, ~1000 GHz
- No other use of PCs possible

Take home (Things to keep you awake ?)

- Characteristics of the Specialist Group on Systems Analysis and Integrated Assessment (SAIA)
 - A Generalist Group, not a Specialist Group
 - Galilei: last person to know everything about everything
 - Now: a molecular layer of knowledge above the whole sea
 - Specialist Group: Know everything about something
 - SAIA: Know something about everything

BIOMATH III

Peter A. Vanrolleghem - 47

Take home (Things to keep you awake ?)

- Possible tasks of Specialist Group on Systems Analysis and Integrated Assessment (SAIA)
 - Don't become a "Specialist" group, but "Generalist" group
 - Remain multidomain in interest
 - Support Task Groups (BSM, Calibration guidelines)
 - Direct Task Group on Modelling ASPs
 - Be at the nexus of policy-law-science

BIOMATH III