

Model-based scenario analysis of activated sludge treatment options:

Optimal but robust nutrient removal in SBRs

Peter A. Vanrolleghem Gürkan Sin, Güclü Insel and Dae Sung Lee

Special Seminar Series on Modeling of Wastewater Treatment Systems Tokyo, May 13th 2004

UGent-Biomath, Coupure 653, 9000 Gent, Belgium (gurkan@biomath.ugent.be)

• Introduction

- Systematic optimisation protocol
- Evaluation of the protocol
 - Definition of objective(s)
 - Framework of the optimisation
 - Model selection and calibration
 - Scenario analysis
 - Evaluation of the scenario analysis
- Limitations of the model-based optimisation
- Conclusions & perspectives

Introduction

- Both N & P removal successfully demonstrated at lab- and full-scale SBR installations.
- SBR offers more flexibility in operation (compared to continuous systems) a key aspect in process optimisation.
- Many possible operating strategies to optimise nutrient removal performance in SBRs.
- Usually process developed at lab- or pilot-scale
 & only comparison of a few operating scenarios
- Increasingly, mathematical models are used to search for the optimal operating scenario (e.g. ASM1 for N-removal and ASM2d for N- & P- removal)

Statement of Objective

- Systematize and standardize the model-based optimisation of SBRs. Important:
 - i. to ensure an objective and detailed search for an optimal operating strategy
 - ii. for internal quality check
 - iii. to compare different optimisation studies

Systematic optimisation protocol

- Objective oriented & iterative protocol
- A grid of scenarios (fullfactorial design) built on the basis of the degrees of freedom and the constraints of the SBR system
- Selection and calibration of a suitable model to describe the biological processes
- Simulation and evaluation of a multitude of scenarios
- Selection of the best scenario
- Implementation & final evaluation

Evaluation of the systematic protocol 1. Objective

Improved and robust N and P removal in a nutrient removing SBR

2. Framework of the optimisation

• The SBR system:

• A lab-scale reactor with 80 L treating a synthetic wastewater

2. Framework of the optimisation cont'd.

• The SBR system:

• A lab-scale reactor with 80 L treating a synthetic wastewater

2. Framework of the optimisation cont'd.

• The SBR system:

• A lab-scale reactor with 80 L treating a synthetic wastewater

LABVIEW Data-acquisition and Control

Tokyo, May 13 2004

2. Framework of the optimisation cont'd.

• Characteristics

- V= 80 I
- SRT= 10 d, HRT = 12h
- synthetic influent (COD/N/P = 100/13,7/2,14) similar to municipal wastewater
- 4 cycles per day (6 hours)

Anaerobic	Aerobic 1	Anoxic	Aerobic 2	Settling	Draw
60 min	150 min	60 min	30 min	45 min	15 min

• Measurements

- DO, pH, ORP, conductivity, weight (on-line minute)
- COD, CODsol, Total-N, NH₄, NO₃, NO₂, PO₄ (off-line daily)
- MLSS (2-3 g/l), SVI (80-120 ml/g) (off-line daily)
- DGGE (microbial community) (off-line weekly)

2. Framework of the optimisation cont'd

The SBR system: Typical process data
 Dissolved oxygen

2. Framework of the optimisation cont'd

• The SBR system: Typical process data

Redox potential (aeration +, denitrification -)

2. Framework of the optimisation cont'd

• The SBR system: Typical process data

pН

2. Framework of the optimisation cont'd

• The SBR system: Typical process data Phosphate

2. Framework of the optimisation cont'd

• The SBR system: Typical process data

Nitrogen fractions (NH₄, NO₃, NO₂)

2. Framework of the optimisation cont'd.

• Performance:

- 95 % COD-removal
- 65 % N-removal
- complete nitrification / incomplete denitrification
- 65 % PO₄-removal (limited because of nitrate presence)

2. Framework of the optimisation cont'd.

• The SBR system:

- 1. A lab-scale reactor with 80 L treating a synthetic wastewater
- Degrees of freedom (based on systems-analysis)
 - 1. Oxygen set-point (S_O-sp)
 - 2. Length of the anaerobic phase (T_{ANB})
 - 3. Length of the reaction (aerobic + anoxic) (T_R) ,
 - 4. Step-feed of the influent to anoxic periods (V_{step-feed})
 - Intermittent aeration frequency during the react phase
 i.e. more than 1 aerobic/anoxic phase per SBR cycle of 6 hours

2. Framework of the optimisation cont'd.

• Constraints

- 1. Total volume (80 L)
- 2. The volumetric exchange ratio, $V_{initial}/V_{total}$ (0.5)
- 3. SRT (10 d) & HRT (12 h)
- 4. The total cycle length (360 min)
- 5. The K_La is sufficiently high to ensure oxygen at set-point value
- 6. The settling/draw phase fixed (60 min)

Systematic optimisation protocol

3. Model selection and calibration

• Selected model:

ASM2d extended with hydrolysis of organic nitrogen module of ASM1

• Systematic calibration procedure:

3. Model selection and calibration

Model implementation:
 in WEST[®] with

- extended ASM2d
- aeration control for phases

3. Model selection and calibration cont'd.

• Calibration results:

Tokyo, May 13 2004

4. Scenario analysis

Formulation of grids of scenarios: Ο

Configuration of intermittent aeration frequencies & step-feed of influent (\downarrow)

Tokyo, May 13 2004

4. Scenario analysis cont'd.

• Construction of grids of scenarios

- > Choose a range and interval for the degrees of freedoms
 - > S_O-sp: [0.2, 0.4, 0.6, 0.8, 1.0]
 - ▹ V_{step-feed}: [0, 5, 10]
 - ▷ T_{ANB}: [60, 70, 80]
 - > T_{AER}: [130, 140, 150]
 - Intermittent aeration frequency:[1, 2, 4, 8]
- > Full-factorial design of degrees of freedoms:
 - ➔ total <u>648</u> scenarios
- Simulate each scenario for 3 X SRT, in this case 30 days

4. Scenario analysis cont'd.

o WEST Scenario analysis tool

BIOMATH

Tokyo, May 13 2004

Slide-25

Special Seminar on Modelling of WWT systems

4. Scenario analysis cont'd.

• WEST Scenario analysis tool: Scenario generator

	Parameter		Distribution					
Name		Method	Refer	ence Mir	nimum	Maximum	Vector size	
P.SbrCycle.ExtraTimeANB		Linear equally spaced	0	0		0.01388888888		
P.SbrCycle.timer.FeedVolANX		Linear equally spaced	••• 0	0		0.01		
P.SbrCycle.timer.TimeAER		Linear equally spaced	0	0		0.0138888888		
		Linear equally spaced	0.5	0.2		1		
CSbrCycle.	controller_1.y_S		► S ₀ -	sp: [0.	2, 0.4	I, 0.6, 0.	8, 1.0]	
SbrCycle.	.SbrCycle.timer.Feed	WolANX	► S ₀ -	sp: [0.	2, 0.4	I, 0.6, 0.	8, 1.0]	
CSbrCycle. Info Full name Description	SbrCycle.timer.Feed	VolANX xic period in one cycle (in m3)	> S ₀ -	sp: [0.	2, 0.4	I, 0.6, 0.	8, 1.0]	
ofo Full name Description	SbrCycle.timer.Feed	MolANX xic period in one cycle (in m3)	> S _o -	sp: [0.	2, 0.4	I, 0.6, 0.	8, 1.0]	
CSbrCycle. Info Full name Description	Controller_1.y_S SbrCycle.timer.Feed Feed Volume to anox 0.015	MolANX xic period in one cycle (in m3)	Default value	sp: [0	2, 0.4	I, 0.6, 0.	8, 1.0]	

BIOMATH

4. Scenario analysis cont'd.

• WEST Scenario analysis tool: Scenario results window

🔊 Scenario Analysis								
Parameters Variables Scenario runs								
📲 🗖 📸 😼 📲 🐁 🤹 O Cross Scenario 💿 Grid Scenario								
BUN	PARAMETERS							
Runnr ▼ Prog △	.SbrCycle.ExtraTimeANB 🔽	.SbrCycle.timer.FeedVolANX	.SbrCycle.timer.TimeAEI					
b 1	0.2							
2	0.2	0	0.006944444444					
3	0.2	0.00694444444444445						
4	0.2	0.00694444444444445	0.006944444444					
5	0.2	0	0.013888888888					
6	0.2	0.01388888888888888888						
7	0.2	0.00694444444444445	0.013888888888					
8	0.2	0.01388888888888888888	0.006944444444					
9	0.2	0.013888888888888888	0.013888888888					
10	0.4	0						
11	0.4	0	0.006944444444					
12	0.4	0.00694444444444445						
13	0.4	0.00694444444444445	0.006944444444					
14	0.4	0	0.013888888888					
15	0.4	0.01388888888888888888888888888888888888						
10	1	0.0000444444444444	0.01.000000000					
			<u>OK</u> <u>Apply</u> <u>Cancel</u>					

BIOMATH

Systematic optimisation protocol

BIOMATH Tokyo,

Tokyo, May 13 2004

5. Evaluation of the scenarios

• Effluent quality

Effluent quality of 648 scenarios were analysed Conclusions:

- Increasing T_{ANB} improves P-removal but decreases N-removal
- Increasing T_{AER} slightly improves the nitrification but negative effect on denitrification.
- The S_o-sp is the most critical/dictates the overall behaviour of the system.
- The step-feed has a positive effect on the denitrification.
- Increasing the intermittent aeration frequency (IAF) increases N & P removal

5. Evaluation of the scenarios cont'd.

Systematic optimisation protocol

BIOMATH Tokyo, May 13 2004

Limitations of model-based optimisation

- Settling properties of activated sludge are not predicted by the model
 - No unified mechanistic model available to predict filamentous bulking or pin-point settling issues in activated sludge.
 - But expert knowledge may be incorporated at the decision making step to account for this unknown parameter
- Changing system operation may alter the microbial population thereby resulting in a change of the kinetic & stoichiometric parameters of the model.
 - To account for this, iterate the systematic calibration protocol & re-calibrate the model if necessary until the objective of the optimisation is satisfied.

Conclusions & Perspectives

- A systematic protocol for model-based optimisation of SBRs is developed and successfully evaluated at a lab-scale SBR to achieve optimal N & P removal.
- Step-feeding of influent improves denitrification
 => reduces negative NO₃-N effect on P-removal
- Frequent intermittent aeration during react phase is positive for overall N & P-removal
- Unmodelled phenomena should always be considered
- The systematic protocol is made flexible and objective oriented which can be used for different activated sludge systems
- Software support makes such scenario evaluation easy.

Arigato !

BIOMATH

UGent-Biomath, Coupure 653, 9000 Gent, Belgium (gurkan@biomath.ugent.be)