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Abstract: To evaluate the future state of river water in view of actual loading or different management 
options, water quality models are a useful tool. However, the uncertainty on the model predictions is 
sometimes too high to draw proper conclusions. It is of high importance to modellers to minimise the 
uncertainty of the model predictions. Therefor different research is needed according to the origin of 
the uncertainty. If the uncertainty stems from input data uncertainty or from parameter uncertainty, 
more reliable results can be obtained by performing specific measurement campaigns. To guide these 
measurement campaigns, an uncertainty analysis can give important information.  
In this article an overview of different techniques that give valuable information for the reduction of 
input and parameter uncertainty is given. The practical case study is the river Dender in Flanders, 
Belgium.  
First a global sensitivity analysis shows the importance of the different uncertainty sources. Here it is 
seen that the parameters influence the model results more than the input data. Further an analysis in 
time and space of the uncertainty bands is performed to find differences in uncertainty between certain 
periods or places. More measurements are needed during periods or on places with high uncertainty. 
This research also shows that finding a link between periods with high uncertainty and specific 
circumstances (climatological, eco-regional, etc…) can help in gathering data for the calibration of 
submodels (eg. diffuse pollution vs. point pollution). The methods can be used for every variable under 
study and for all kind of rivers but the conclusions made for the practical case study are only applicable 
for the Dender.  
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1. INTRODUCTION 
 
In the field of environmental modelling and 
assessment, uncertainty analysis (UA) is a 
necessary tool to provide, next to the simulation 
results, also a quantitative expression of the 
reliability of those results.  Next to the expression 
of uncertainty bounds on the results, uncertainty 
studies have mainly been used to provide insight in 
the parameter uncertainty. However, uncertainty 
analysis can also be a means to prioritise 
uncertainties and focus research efforts on the 
most problematic points of a model. As such, it 
helps to prepare future measurement campaigns 
and to guide policy decisions.  
In this study, the use of an UA as an evaluation 
tool is assumed to be applied on an already 
calibrated model that can simulate measured data 
well but with an unacceptably high uncertainty. 
We only consider parameter and input uncertainty 
that can be minimised by gathering additional data. 
Model uncertainty and mathematical uncertainty 

are not taken into consideration. The aim of this 
research is to show how UA can be used to guide 
future monitoring campaigns to make model 
results more reliable by minimising the parameter 
and input data uncertainty of the model. 
The practical case study is the river Dender in 
Flanders, Belgium.  
 
2. CASE STUDY: THE DENDER BASIN 
 
The Dender river, a tributary of the river Scheldt  
in Belgium, drains an area of 1384 km2. The main 
channel is partly canalised and contains 14 sluices. 
The river is heavily polluted by domestic, 
industrial and agricultural pollution. 
A water quantity and quality model for the river 
Dender for 1994 was implemented in ESWAT. 
ESWAT is an extension of SWAT (van Griensven 
and Bauwens, 2000), the Soil and Water 
Assessment Tool developed by the USDA (Arnold 
et al., 1998). ESWAT was developed to allow for 
an integral modelling of the water quantity and 
quality processes in river basins. 
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3. METHODS 
 
To reduce the overall uncertainty on the model 
results for a certain variable the following steps are 
proposed. 
 
1. Identify which sources contribute mainly to 

the overall uncertainty on the model results 
2. Estimate or calculate the uncertainty related to 

those main contributors 
3. Propagate the uncertainty through the model 
4. Analyse the model results to set up a future 

monitoring campaign 
5. Perform the measurements 
6. Recalibrate the model with new inputs 
7. Repeat step 3 till 6 until satisfying results are 

obtained 
 
For every step of this process different techniques 
exist that can be chosen among according to the 
experience of the modeller. In the practical 
example the methods we used will be described.  
 
Step 1: Identification of the main uncertainty 
contributors, uncertainty characterisation. 
 
This step is mainly carried out via a global or local 
sensitivity analysis. Because it is assumed that an 
already calibrated model is available, a local 
sensitivity analysis will certainly identify the most 
important parameters and data of the model. 
Indeed, local analysis is done around an a priori 
assumed value of the parameter. For a local 
sensitivity analysis the following methods exist: 
finite difference method, (b) the direct differential 
method, (c) the Green’s function method, (d) the 
polynomial approximation method and (e) 
automatic differentiation. 
For a detailed review of existing sensitivity 
techniques reference is made to the reviews of 
Turanyi (1990) and Rabitz et al. (1983) 
 
Step 2: Estimation or calculation of uncertainty 
 
Parameter uncertainty can be calculated using the 
covariance matrix obtained during the local 
sensitivity analysis or the calibration process. 
(Beck, 1987) 
If no direct calculations are possible, e.g. for the 
uncertainty on the inputs, it is best to estimate the 
uncertainty for this. One can divide the parameters 
and data in uncertainty classes (accurately known, 
very poorly known and an intermediate class) and 
assign a percentage uncertainty to them. A similar 
approach was adopted by Reichert and 
Vanrolleghem, 2001. 
 

 
 
 
Step 3: Propagate the uncertainty through the 
model 
 
For this step Monte Carlo methods can be used, in 
which the input data or parameters are sampled 
between the uncertainty bounds that are detected in 
the previous step. Another option is to apply linear 
error propagation. The advantage of the latter is 
computational efficiency. However, if model non-
linearities are significant within the uncertainty 
range, the results will be inaccurate. Monte Carlo 
simulation is a simple technique but requires a 
large number of model runs, which is 
computationally very demanding. Less runs with 
the same results as ‘ad random sampling’ are 
needed with ‘the Latin Hypercube sampling’ 
(McKay et al., 1988). 
 
Step 4: Analyse the model results to set up a future 
measurement campaign 
 
Two different approaches can be used according to 
the aim for which the additional measurements are 
collected. If it is the aim to reduce parameter 
uncertainty an automated optimal experimental 
design method that is explained in Vandenberghe 
et al (2002) can be used.  It is based on 
maximisation of the determinant of the Fisher 
Information Matrix, which corresponds to the 
minimisation of the variance of the parameters. 
This method requires a lot of simulation runs but is 
totally automated and as such requires no 
additional information or knowledge from the 
modeller. 
However, when only focussing on the input data 
uncertainty that leads to output uncertainty expert 
–knowledge is required. It is then the aim to find a 
link between periods of high/low uncertainty and 
external circumstances (rain, discharge points, 
seasons, solar radiation,…) This information is 
then  used to make decisions about, place, period, 
frequency,… of future measurements.  
 
Step 5: Perform the measurements 
 
At this stage it is essential to ensure a good quality 
control on the measurements to minimise  
measurement errors. Important is also to carefully 
add information concerning hour, place and depth 
of the sample. 
 
Step 6: Recalibrate the model with new inputs 
 
An important issue here is that the calibration 
method has to be able to find the optimum.  First, a 
choice is made between manual and automated 
methods. The former depends totally on the 
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experience of the modeller.  Automated methods 
can differ in search method: global search methods 
scan the whole parameter space and are as such 
able to find the global optimum, but do not provide 
uncertainty measures. Local search methods start 
on a certain point in parameter space and end when 
they find an optimum. However, there is no 
assurance that this is the global optimum, so it is 
best to start in the neighbourhood of the optimum 
for those methods. With these methods  covariance 
matrices for the optimum parameters are often 
calculated.  
 
Step 7: Repeat step 3 till 6 until satisfying results 
are obtained 
 
The stop criterion for this trial and error method is 
dictated by an ‘a priori’ desired reliability of the 
model results. In practice however, personnel, time 
and equipment matters will be the limiting factor 
and will indicate when this process stops.  
 
 
4. RESULTS AND DISCUSSION 
 
The seven steps are now demonstrated on a case 
study: simulations of the water quality of the river 
Dender, Flanders, Belgium for 1994.  The 
evaluation of the uncertainty on model results is 
performed for Nitrate in the river water. 
 
Step 1: Identification of the main uncertainty 
contributors. 
 
We evaluate the sensitivity of the model on the 
following result: the time that NO3 is higher than 3 
mg/l at Denderbelle, near the mouth of the river in  
1994. A sensitivity analysis for all input data and 
parameters in the ESWAT model is too complex 
for the program we use: UNCSAM (Janssen et al, 
1992). This program cannot handle more than 50 
parameters at the time. So we split the problem in 
different parts: 1) sensitivity to model parameters 
2) sensitivity to point pollution input and 3) 
sensitivity to diffuse pollution input.  Each sub 
problem gives a ranking of the parameters by using 
the Standardised Regression Coefficient (SRC) (1) 
 

SRCi = 

ixi

y

Sx

Sy

/

/

∆
∆

 (1) with  ixy ∆∆ /  = change 

in output due to a change in an input factor and 

yS , 
ixS  the standard deviation of respectively the 

output and the input. The input standard deviation 

ixS  is specified by the user. 

The technique is explained in Vandenberghe et al. 
(2001). For each of the subproblems the 
parameters or data that contribute significantly to 
the output (5 % level) are then taken together in 

one overall sensitivity analysis to compare the 
contribution of the different outputs. The column 
with the SRC as a result of that analysis is 
indicated in table 1 with “combined parameter- 
input”.  
 
Table 1: Results of the sensitivity analysis for the 
model output “hours NO3 >3mg/l” at Denderbelle, 
1994. (pa16 = Amount of fertilisation on pasture in subbasin 
16; fa4 = Amount of fertilisation on farming land in subbasin 4; 
gropa = growth date of pasture; plfa = Plant date on farming 
land; co5 = Amount of fertilisation on corn in subbasin 5; co15 
= Amount of fertilisation on corn in subbasin 15; pa12 = 
Amount of fertilisation on pasture in subbasin 12; co11 = 
Amount of fertilisation on corn in subbasin 11; ai5 = O2 uptake 
per unit of NH3 oxidation; rk5 = denitrification rate; rk2 = 
oxygen reaeration rate; ai6 =  O2 uptake per unit of HNO2 
oxidation; bc2 = rate NO2 to NO3; rk3 = rate of loss of bod due 
to settling; ai4 = O2 uptake per unit of algae respiration; Rs5 = 
organic phophorous settling rate) 

D
iff

u
se

 p
o

llu
tio

n
 

in
p

ut
 

S
R

C
 

P
o

in
t p

o
llu

tio
n

 in
pu

t 

S
R

C
 

p
a

ra
m

e
te

r 
 

S
R

C
 

C
o

m
b

in
e

d
 

P
a

ra
m

et
e

r-
in

pu
t 

S
R

C
 

Pa1
6 

-0.30 BOD 
point 
6 

-0.61 Ai5  -0.7 Ai5 -0.51 

Fa4 0.23 NO3 
point 
7 

0.42 Rk5  -0.34 Ai6  -0.50 

gro
pa 

-0.18 BOD 
point 
5 

-0.38 Rk2  0.32 Rk5 -0.40 

plfa 0.17 BOD 
point 
8 

-0.24 Ai6  -0.21 Bc2 0.38 

Co5 -0.17 NH3 
point 
1 

0.23 Bc2 -0.2 Ai4 -0.31 

Co 
15 

-0.16 BOD 
point 
3 

-0.23 Rk3 0.17 Rk2  0.12 

Pa 
12 

0.16 BOD 
point 
7 

-0.22 Ai4 0.12 plfa -0.08 

Co 
11 

0.15 BOD 
point 
1 

-0.14 Rs5 -0.09 BOD 
point 
6 

-0.07 

  NO3 
point 
5 

0.11  0.07 BOD 
point 
1 

-0.07 

  BOD 
point 
4 

-0.09   Pa16 0.07 

  NH3 
point 
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0.09     

  BOD 
point 
2 

-0.08     

  NH3 
point 
3 

0.06     

 
 
For the parameters, the sampling for the sensitivity 
analysis was based on own experience and 
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literature ranges.  The ranges for the diffuse 
pollution inputs are given in table 2 and the way 
they are determined is explained in Vandenberghe 
et al. (2003). For the point pollution inputs we 
sampled uniform between halve and double the 
values, as we decided that those inputs belong to 
the uncertainty class 'poorly known’, indeed, the 
loads coming from point pollution were only 
available as yearly averages. 
 
Table 2. Uncertainty ranges for diffuse pollution 
input.  
Input Uncertainty 
Plant date for the crops +/- 1 month 
Harvest date of the crops +/- 1 month 
Amount of fertiliser applied per 
subbasin and per crop (kg/ha) 

+/-25% 

 
The global sensitivity of the parameters and the 
inputs shows that some parameters, O2 uptake per 
unit of NH3 oxidation, O2 uptake per unit of HNO2 
oxidation, denitrification rate, rate NO2 to NO3, O2 
uptake per unit of algae respiration and the 
reaeration rate are most influencing followed by 
the input data, plant date on farming land, Amount 
of fertilisation on pasture in subbasin 12 and bod 
loads from point 1 and 6. This could not be seen 
from the separate analyses of inputs and 
parameters. So the parameters can make the model 
give different results that are not much influenced 
by the input data. This again shows the importance 
of a well-calibrated model.  
 
Step 2: Estimation or calculation of uncertainty 
 
For both the point and diffuse pollution input the 
same uncertainties were taken as the sampling 
range used for the sensitivity analysis because we 
obtained no new information between the SA and 
the UA.  For the uncertainty on the parameters a 
recalibration with the most influencing parameters 
so that uncertainty ranges can be calculated with 
the covariance matrix is best, but is not done here. 
Uncertainties of 50 % were assigned to each of the 
parameters.  
 
Step 3: Propagation of the uncertainty through the 
model 
 
Here again the uncertainties are split: parameter 
uncertainty, diffuse pollution uncertainty and point 
pollution uncertainty.  
Then for each an uncertainty analysis was 
performed in which all of the uncertainty sources 
are varied at the same time to see the effects of the 
uncertainty on parameters and inputs. For this 
analysis we calculate the uncertainty bands (i.e. the 
5% and 95% percentiles) for the results of the time 
series.  
Figure 2 and 3 shows the time series of nitrate in 
the river water at Denderbelle, situated near the 

mouth, with the 5% and 95% uncertainty bounds 
with resp. uncertainty on diffuse input and point 
pollution input. Figure 1 shows the uncertainty 
bounds for nitrate at the same location due to 
parameter uncertainty. 
 
Step 4: Analyse the model results to set up a future 
measurement campaign 
 
Figure 1 shows the propagation in time of the 
parameter uncertainty for Nitrate in the river at 
Denderbelle, 1994. Parameter uncertainty becomes 
at certain moments.   
To cope with the parameter uncertainty optimal 
experimental design based on the Fisher 
Information Matrix should be done (as explained 
in the methods section) as this is the most 
objective method to find important measurement 
places to better estimate the parameters. This 
design of new experiments is not presented here as 
we focus here on the uncertainty analysis and what 
information can be revealed from it.  
 
 
 
 
 
 
 
 
 
 
Figure 1. Simulation of nitrate with confidence 
intervals related to parameter uncertainty at 
Denderbelle, 1994. 
 
Figure 2 and 3 give shows the simulations and 
their confidence intervals related to the uncertainty 
on the model inputs.  
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Figure 2 and 3. Simulation of nitrate with 
confidence intervals related to diffuse and point 
pollution input uncertainty at Denderbelle, 1994. 
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Figure 4. Rainfall and Flow in 1994 at 
Denderbelle. 
 
Linking the obtained results in step 3 to the 
external circumstances, rain and flow (fig.4), we 
can see that diffuse pollution inputs are important 
during periods with high rainfall and high flows. 
During dry weather flows, the input uncertainty of 
the loads is also propagated.  Hence this UA learns 
that we can obtain a better calibration for the 
diffuse pollution part of the model with data that 
are taken during wet periods with high flows, 
because the model output nitrate is more sensitive 
towards inputs of diffuse pollution in those 
periods. If one focusses on calibrating the in-
stream behaviour and point pollution then 
measurements during dry periods are needed, as 
the model is in such conditions not sensitive 
towards input of diffuse pollution. 
 
Further it is seen on fig. 1 that the 95 % bounds 
show much higher peaks than the mean 
concentrations time series. This means that some 
peak values of nitrate in the river water at 
Denderbelle may not be predicted properly due to 
an underestimation of the amount of fertiliser used. 
Those peaks (eg. day 156 and 260) are 
significantly higher than the levels of nitrate for 
basic water quality.  
 
It is also of intrest to know how the uncertainty is 
propagated from one place to the other. This 
analysis was done for the uncertainty propagation 
due to diffuse pollution inputs. The amount of time 
that NO3 was higher than 3 mg/l was calculated. 
This was done for the time series of the mean, the 
5 % - bound and the 95% - bound (Fig. 5). The 
uncertainty bounds become larger when 
approaching the mouth due to the summation of 
the uncertainties on all diffuse pollution inputs that 
enter the river. However, it is interesting to see that 
with the available quality of input data no 
conclusions can be drawn concerning the question 
whether the diffuse pollution causes more hours 
nitrate exceedance downstream than upstream. 
More accurate data are needed to draw good 
conclusions from the model results. 
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figure 5. Uncertainty propagation from upstream to 
the mouth of the Dender in 1994 related to diffuse 
pollution input uncertainty. 
 
Step 5: Perform the measurements 
Step 6: Recalibrate the model with new inputs 
Step 7: Repeat step 3 till 6 until satisfying results 
are obtained 
 
Those three steps are only relevant for future 
measurement campaigns. However, no additional 
measurements were done until now.  
 
5. CONCLUSIONS & RECOMMENDATIONS 
 
The results of uncertainty analysis were here 
evaluated to guide future monitoring campaigns.  
Diffuse and point pollution inputs are considered 
separately and give information of the model 
sensitivity to the inputs. Measurements during dry 
periods can be used to better calibrate the model 
for point source pollution because the inputs of 
diffuse pollution are not important then. On the 
other hand, periods with rainfall and high flows are 
needed for the calibration of the model with 
diffuse pollution because the model output nitrate 
is then very sensitive towards the inputs related to 
farmer’s practices.  
 
When comparing the influence of the uncertainty 
of the diffuse pollution inputs, the uncertainty 
bounds appeared to be too high to draw reliable 
conclusions from the model results. So, it showed 
the importance of accurate measurements and 
input data if the model results serve for decision 
support. 
 
It is obvious from the comparison between the 
global sensitivity analysis for the subgroups and 
for all most influencing parameters together that 
the parameters are most important. This shows that 
it is best to start with a good calibration of your 
model and then focus on more accurate input data. 
 
Too often a model is calibrated with only one 
comprehensive measurement campaign. This is 
mostly not the most efficient way. When e.g. only 
measurements during dry periods are made, the 
model cannot be well calibrated for the diffuse 
pollution part. So it is better to perform two 
separate smaller measurement campaigns with the 
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first one being ‘exploring’, while the second 
campaign is guided by previous analysis of the 
model results. The combination of the two 
monitoring campaigns can assure that at least some 
measurements are performed at ‘the right 
moment’, making the calibration process easier 
and more reliable.  
 
It is necessary to combine all previous uncertainty 
analysis to evaluate the total uncertainty on the 
model results and to compare them with the 
measurements. In this way, model structure 
uncertainty can also be quantified (Willems and 
Berlamont, 2002). 
 
In this research the second monitoring campaign is 
missing and could have shown the possibilities of 
the proposed succession of steps.  
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