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Abstract

The dynamic behaviour of pesticides in river systems strongly depends on varying climatological conditions and agricultural
management practices. To describe this behaviour at the river-basin scale, integrated hydrological and water quality models are
needed. A crucial step in understanding the various processes determining pesticide fate is to perform a sensitivity analysis. Sensi-
tivity analysis for hydrology and pesticide supply in SWAT (Soil and Water Assessment Tool) will provide useful support for the
development of a reliable hydrological model and will give insight in which parameters are most sensitive concerning pesticide sup-
ply towards rivers. The study was performed on the Nil catchment in Belgium.

In this study we utilised an LH-OAT sensitivity analysis. The LH-OAT method combines the One-factor-At-a-Time (OAT)
design and Latin Hypercube (LH) sampling by taking the Latin Hypercube samples as initial points for an OAT design. By means
of the LH-OAT sensitivity analysis, the dominant hydrological parameters were determined and a reduction of the number of model
parameters was performed. Dominant hydrological parameters were the curve number (CN2), the surface runoff lag (surlag), the
recharge to deep aquifer (rchrg_dp) and the threshold depth of water in the shallow aquifer (GWQMN). Next, the selected param-
eters were estimated by manual calibration. Hereby, the Nash–Sutcliffe coefficient of efficiency improved from an initial value of
�22.4 to +0.53.

In the second part, sensitivity analyses were performed to provide insight in which parameters or model inputs contribute most to
variance in pesticide output. The results of this study show that for the Nil catchment, hydrologic parameters are dominant in con-
trolling pesticide predictions. The other parameter that affects pesticide concentrations in surface water is �apfp_pest�, which mean-
ing was changed into a parameter that controls direct losses to the river system (e.g., through the clean up of spray equipment,
leaking tools, processing of spray waste on paved surfaces). As a consequence, it is of utmost importance that hydrology is well
calibrated while––in this case––a correct estimation of the direct losses is of importance as well. Besides, a study of only the pesticide
related parameters, i.e. application rate (kg/ha), application time (day), etc., reveals that the application time has much more impact
than the application rate, which has itself a higher impact than errors in the daily rainfall observations.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Dynamic models form suitable instruments for risk
assessment of toxic components in natural river systems
(Deksissa et al., 2004). By using exposure models under
time-varying conditions, risks can be determined more
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realistically as compared to a steady state or a static
approach (Verdonck et al., 2002). Advantages consist
in better predictions of impacts of accidental discharges,
of effects of specific climatological or seasonal variations
and of evolutions in water quality. A prominent exam-
ple is the dynamic modelling of pesticides.

The first step in the development of a dynamic expo-
sure model for pesticides is to build a reliable hydrolog-
ical model (Novotny and Olem, 1994). The hydrology of
a river catchment will determine to a great extent the
transport of solutes, suspended sediments and colloids
in the water system. SWAT was found to be a suitable
tool for modelling non-point source pollution on catch-
ment scale. A SWAT model not only allows hydrologi-
cal predictions but also predictions of pesticide loads at
different locations along the river as function of time.

Pesticide modelling is much more complex than
hydrologic modelling. As mentioned by Rickert (1993)
and Ongley (1996), the modelling of pesticides is situ-
ated on a high level of scientific complexity and a lot
of processes are not yet completely understood (Warren
et al., 2003). They require a lot of additional input data
that are often unavailable, incomplete or uncertain.
Nevertheless, they are of great importance for a correct
representation of the pesticide fate (Neitsch et al.,
2002b). Examples are the application rates and dates
of a particular pesticide, which depend on the farmer
and vary from year to year (Beernaerts et al., 2002).
Correct and detailed information is generally not avail-
able and lumped assessments for the entire catchment do
not give reliable results, especially when spatial and tem-
poral dynamics at small scales are of interest.
Fig. 1. Situation of the Nil-catchment and sub-basin
The objectives of this study are twofold: first, to
determine the most influential model parameters, which
results in a reduced set of parameters for model calibra-
tion and second, to gain insight into the important pro-
cesses determining the fate of pesticides. Moreover,
knowledge of the most important sources of uncertainty
for the modelling of pesticide fate is useful in anticipa-
tion of oriented data collection for future pesticide
modelling.
2. Methods

2.1. Catchment area

In this study we focus on the Nil, a small, hilly
basin situated in the central part of Belgium, southeast
of the capital city Brussels (Fig. 1). The average eleva-
tion measures 151 m a.s.l., with the highest top reaching
167 m a.s.l. and the watershed outlet lying at 110 m a.s.l.
The Nil-catchment drains an area of 32 km2, is 14 km
long and has a retention time of about 1 day. Seven per-
cent of the area is inhabited and the main crops grown
are winter wheat (22% of the catchment area), corn
(15%) and sugar beet (10%). Eighteen percent of the
catchment consists of pasture. The predominant soil
type is loam.

Further, the catchment is characterised by a low base-
flow which results from its specific geological structure.
Highly permeable Brusselian sands, showing hydraulic
conductivities between 10�3 and 10�5 m/s, lay above a
less permeable socle (Abdeslam, 1998). Hereby, an
delineation automated by means of a DEM.
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important part of the groundwater of the Nil-catchment
is drained to the adjacent river �Train�.

The Nil-catchment was selected because it is a well-
documented basin, studied in detail in terms of pesticide
application (Beernaerts et al., 2002).

2.2. Model description

SWAT2000—the Soil and Water Assessment Tool—
was developed by the USDA (Arnold et al., 1998) to
predict the impact of land management practices on
water, sediment and amount of chemicals originating
from agriculture, in large complex river basins with
varying soils, land use and management conditions over
a long period of time. It is a partly physically based and
partly distributed, continuous model with a daily calcu-
lation time step.

The water quantity processes simulated by SWAT in-
clude precipitation, evapotranspiration, surface run-off,
lateral subsurface flow, ground water flow and river flow.
The pesticide component of SWAT simulates pesticide
losses in surface runoff, sediments and percolation below
the root zone. Themovement of the pesticide is controlled
by its solubility, degradation half-life, and soil organic
carbon adsorption coefficient. Pesticides on plant foliage
and in the soil degrade exponentially according to the
appropriate half-life coefficient (Neitsch et al., 2002a).

This research focuses on the pesticide atrazine. Since
the monitoring of in-stream atrazine concentrations
showed clear peaks during non-rainy periods and even
non-windy days, it was concluded that significant direct
losses occur during the pesticides application dates (e.g.
through the clean up of spray equipment, leaking tools,
processing of spray waste etc.) (Beernaerts et al., 2002).
Therefore, the SWAT codes were slightly modified in
order to consider these direct losses by changing the
meaning of the parameter �apfp_pest� (application effi-
ciency coefficient) from indicating the process whereby
a fraction of the applied rate is lost from the system
towards the process by which a fraction of the applied
pesticide is diverted directly to the river system. This
modification is allowed in this case, in which pesticides
are not applied by airplanes but directly on the fields
by spray equipments and where losses outside the sys-
tem are not expected to be significant. The direct losses
are considered to be lower than 5%, but their impact is
nevertheless significant since these losses are directly
ending up in the river system.

We used the AVSWAT2000 version of the model,
where the simulator is integrated in a GIS by an Arc-
View pre-processor (Di Luzio et al., 2002). It uses grid-
ded DEM data, polygon/grid coverages of soils and
land use, and point coverages of weather stations as
basic input to the model.

Within SWAT, a catchment is partitioned into a
number of sub-basins (Fig. 1), based on the threshold
area which defines the minimum drainage area required
to form the origin of a stream. Within the sub-basins,
hydrologic response units (HRUs) are defined, which
are lumped land areas consisting of unique combina-
tions of land cover, soil and management (Neitsch
et al., 2002a).

2.3. Input data

For the Nil-catchment, weather data from 1998 to
2002 were obtained from the Belgian Royal Meteorolog-
ical Institute for the stations of Chastre and Ernage.
These data include daily precipitation and daily maxi-
mum and minimum temperatures.

Because the quality of the performed calculations will
strongly be influenced by the detail of the maps used, spe-
cial attention was given to utilise high resolution maps. A
30 m resolution DEM created by local government
authorities was added to the AVSWAT model-interface.

The 1999 land use map with a spatial resolution of
30 m, was obtained from Romanowicz et al. (2003).
They combined Landsat TM satellite images with the
SIGEC dataset. The SIGEC dataset includes informa-
tion of crop distribution over a catchment area and is
based on the claims of farmers for EU subsidies. A stan-
dard classification resulted in 50 classes, which was
reduced to 23 land use classes which can be handled
by the SWAT model.

A detailed soil map was created by digitizing the
required parts of the maps 117E, 130E and 130W; all
at scale 1:25,000 (IRSIA, 1961). The basic soil properties
(percentage of sand, clay and silt, the texture class, the
percentage of carbon and the horizon thickness) were
obtained from the analytical database AARDEWERK
(Van Orshoven and Vandenbroucke, 1993). In order
to calculate the hydraulic conductivity (Ksat), pedotrans-
fer functions from the HYPRES database were used
(Wösten et al., 1999). The available water capacity
(AWC) was estimated from water contents at pF 4.2
and 2.5 using the RETC program (van Genuchten
et al., 1991).

Pesticide data were collected by CODA (2003). To
this end, inquiries were conducted during springs of
1998 until 2001. The farmers were asked to give as
detailed information as possible concerning the amount
of pesticide they applied, the application dates, the kinds
of pesticides they utilised for their different crops and the
treated surface. Forty two percent of the farmers could
give detailed information. In this study, we focus on
the use of atrazine on corn during the growth season
of 1999, when the application rate amounted to
0.783 kg/ha. All applications occurred in the month of
May.

For the simulation, the Nil was divided into 27 sub-
basins and reaches. The sub-basins are further divided
into 227 HRUs, as defined by land use and soil type.
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2.4. Sensitivity analysis for the model parameters

2.4.1. Sensitivity analysis and parameter reduction

A complex hydrologic model is generally character-
ised by a multitude of parameters. Due to spatial
variability, measurement error, incompleteness in des-
cription of both the elements and processes present in
the system, etc., the values of many of these parameters
will not be exactly known. Therefore, to achieve a good
fit between simulated and measured data, models need
to be conditioned to match reality by optimising their
internal parameters. This model calibration procedure
can be either manual or automated. In both cases, it is
advisable to be supported by techniques such as sensitiv-
ity analysis. A parameter sensitivity analysis provides
insights on which parameters contribute most to the
output variance due to input variability. Based on this
information, a calibration can be performed for a lim-
ited number of influential parameters. The performance
of the calibration may then be evaluated by performance
criteria such as e.g. the Nash–Sutcliffe coefficient of effi-
ciency (Nash and Sutcliffe, 1970).

2.4.2. The LH-OAT sensitivity analysis

In this study, we performed an LH-OAT sensitivity
analysis. The LH-OAT method combines the One-
factor-At-a-Time (OAT) design and Latin Hypercube
(LH) sampling by taking the Latin Hypercube samples
as initial points for an OAT design (Fig. 2) (van Griens-
ven and Meixner, 2003).

Latin Hypercube sampling (McKay, 1988) is a
sophisticated way to perform random sampling such
as Monte-Carlo sampling, resulting in a robust analysis
requiring not too many runs (Saltelli et al., 2000). It sub-
divides the distribution of each parameter into m ranges,
each with a probability of occurrence equal to 1/m. Ran-
dom values of the parameters are generated, such that
each range is sampled only once. For each of the m ran-
p1 

p2 

  

Fig. 2. Illustration of LH-OAT sampling of values for a two
parameters model where X represent the Monte-Carlo points and d,
the OAT points (van Griensven and Meixner, 2003).
dom combinations of the parameters an OAT loop is
performed.

In the OAT design (Morris, 1991), only one input
parameter is modified between two successive runs of
the model. Therefore, the change in model output (e.g.
SSE of the surface runoff) can then be unambiguously
attributed to such a parameter modification by means
of an elementary partial effect Si,j defined by Eq. (1).

Si;j ¼
SSEðU1; . . . ;Ui � ð1þ f Þ; . . . ;UpÞ�SSEðU1; . . . ;Ui; . . . ;UpÞ

f

� �

ð1Þ

where Si,j is a partial effect for parameter Ui around an
LH point j, f is the fraction by which the parameter Ui

is changed (a predefined constant) and SSE is the sum
of squared errors. In Eq. (1), the parameter is randomly
increased or decreased with the fraction f. Considering p

parameters, one loop involves performing p + 1 model
runs to obtain one partial effect for each parameter.
As the influence of a parameter may depend on the val-
ues chosen for the remaining parameters, the experiment
is repeated for all the m LH samples. The final effect will
then be calculated as the average of a set of the m partial
effects.

As a result, the LH-OAT sensitivity analysis method
is a robust and efficient method: for m intervals in the
LH method, a total of m · (p + 1) runs is required.
The LH-OAT provides ranking of parameter sensitivity
based on the final effects. Using the LH and One-factor-
At-a-Time techniques in unison means that the sensitiv-
ity of model output to a given parameter is assessed
across the entire feasible range for that parameter and
across a number of different values for other parameters
in the model, thus incorporating a limited amount of
parameter interaction.

2.4.3. Parameter sensitivity for hydrology
The sensitivity analysis was performed for 27 param-

eters that may have a potential to influence river flow
(Table 1). The ranges of variation of these parameters
are based on a listing provided in the SWAT manual
(Neitsch et al., 2002a) and are sampled by considering
a uniform distribution. The distributed parameters are
changed in a lumped way by sampling a relative change
(in percentage), whereby they are restricted to their
physical range. The analysis was carried out using simu-
lations for hydrology at the mouth of the river, for the
period between 1998 and 2001.

2.4.4. Parameter sensitivity for atrazine modelling

In addition to the hydrological parameters of Table
1, the pesticide parameters of Table 2 were also included
in the sensitivity analysis. The ranges of variation are
defined based on the extensive literature review for atra-
zine that was performed by Liu et al. (1998). Only for



Table 1
Parameters and parameter ranges used in the sensitivity analysis + sensitivity ranking (with Gw. = groundwater, Evap. = evaporation,
Geom. = Geomorphology)

Name Min Max Definition Process

ALPHA_BF 0 1 Baseflow alpha factor (days) Gw.
BIOMIX 0 1 Biological mixing efficiency Soil
blai �50 50 Leaf area index for crop* Crop
canmx 0 10 Maximum canopy index Runoff
CH_K2 0 150 Effective hydraulic conductivity in main channel alluvium (mm/hr) Channel
ch_n �20 20 Manning coefficient for channel Channel
CN2 �50 50 SCS runoff curve number for moisture condition II* Runoff
epco �50 50 Plant evaporation compensation factor* Evap.
ESCO 0 1 Plant evaporation compensation factor Evap.
GW_DELAY 0 100 Groundwater delay (days) Gw.
GW_REVAP 0.02 0.2 Groundwater ‘‘revap’’ coefficient Gw.
GWQMN 0 1000 Threshold depth of water in the shallow aquifer required for return flow to occur (mm) Soil
rchrg_dp 0 1 Groundwater recharge to deep aquifer (fract)
REVAPMN 0 500 Threshold depth of water in the shallow aquifer for ‘‘revap’’ to occur (mm) Gw.
SFTMP �2 2 Snowfall temperature (�C) Snow
SLOPE �50 50 Average slope steepness (m/m)* Geom.
SLSUBBSN �50 50 Average slope length (m/m)* Geom.
SMFMN 0 10 Min. melt rate for snow (mm/�C/day) Snow
SMFMX 0 10 Maximum melt rate for snow (mm/�C/day) Snow
SMTMP �2 2 Snow melt base temperature (�C) Snow
sol_alb 0 1 Moist soil albedo Soil
SOL_AWC �50 50 Available water capacity (mm/mm soil) Soil
sol_k �50 50 Soil conductivity (mm/h)* Soil
sol_z �50 50 Soil depth* Soil
surlag 0 10 Surface runoff lag coefficient Runoff
TIMP 0.01 1 Snow pack temperature lag factor Snow
TLAPS �50 50 Temperature laps rate (�C/km)* Geom.

*Relative percent change.
Italicised: parameters that were optimised in the manual calibration.

Table 2
Pesticide parameters and parameter ranges used in the sensitivity analysis + sensitivity ranking

Name Default Min Max Definition Process

apfp_pest – 0.95 1 Application efficiency when considering direct losses Pesticide
hlff_pest 5 4 7 Degradation half-life of the chemical on the foliage (days) Pesticide
hlfs_pest 60 8 170 Degradation half-life of the chemical in the soil (days) Pesticide
Koc_pest 100 64 135 Soil adsorption coefficient Pesticide
pwsol_pest 33 28 70 Solubility of the chemical in water (mg/l) Pesticide
wofp_pest 0.45 0.36 0.45 Wash-off fraction Pesticide

*Relative percent change.
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the parameter �wofp_pest� (wash off fraction), no infor-
mation was found, and an arbitrary range of ±20%
was taken. The parameter sensitivities for the pesticide
sub-model focus on the variation of the daily average
pesticide concentrations and the daily average pesticide
loads for the period 1998–2001 at the mouth of the river.

2.5. Sensitivity analysis for the model inputs

Compared to water quantity modelling, pesticide
modelling is confronted with many more uncertainties
related to the model inputs. This may even cause a
parameter calibration to be impossible. For instance,
correct information on the amount and date of pesticide
application does often not exist while it is expected that
such information is crucial for a correct modelling (Nei-
tsch et al., 2002b). A proper calibration then requires
some inverse modelling techniques to tackle this prob-
lem. A sensitivity analysis of these model inputs can help
to get insights in what the major input factors are that
affect the model output and that hence need special
attention.

To perform a sensitivity analysis, the model inputs
cannot be dealt with in the same way as the model
parameters since they cannot be represented by a single
value: for each run, a series of error values needs to be
sampled to consider the spatial or temporal variation
of the system. It is, for instance, not likely that the error
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in rainfall input is the same for each rain gauge or for
each day. It is neither likely that all farmers apply pesti-
cides on the same day or that the error on application
rate is the same within the entire catchment. Therefore,
another procedure must be used to evaluate the sensitiv-
ity of model outputs to uncertainties that are inherent to
the model inputs.

A new module ‘‘CANOPI’’ (Confidence ANalysis Of
Physical Inputs) was developed within the SWAT codes
that allows for a random variation on model inputs for
each day (for the climate data) or for each HRU within
the model (for both the pesticide application data)
according to a uniform or normal distribution. For each
input factor,N runs are performed whereby that particu-
lar input factor is randomly varied in time and/or space
according to the provided error range. The average and
variation of a model output are calculated for each
input. The corresponding coefficient of variation pro-
vides insights in the relative importance of the uncer-
tainty of these input factors.

Both the influence of climatic inputs (such as daily
rainfall and temperature data) and atrazine application
data (such as atrazine application rate and dates) are
analysed. For both, a uniform distribution is considered
over the ranges of variation that are listed in Table 3.
rank order

Fig. 3. Graphical representation of the sensitivity ranking for hydrol-
ogy over the whole year and during spring, for a subset of parameters.
The definition of the different parameters can be found in Table 1.
3. Results and discussion

3.1. Parameter sensitivity for hydrology

Fig. 3 summarizes the sensitivity ranking for the per-
formance for flow, which is determined by calculating
the sum of squared errors (SSE) between daily simulated
flows and daily flow observations. When we focus on the
spring periods (March–June), the same parameters
appear to be important.

In both cases the curve number (CN2) is the most
important parameter, followed by the parameters sur-
lag, rchrg_dp and GWQMN. The importance of the
groundwater parameters is not surprising, due to the
fact that drainage to deeper groundwater is high which
has its origin in the geological structure of the catch-
ment. Through the permeable Brusselian sands, ground-
water of the Nil-catchment passes towards the adjacent
river �Train� (Abdeslam, 1998).
Table 3
Ranges of variation for the input data

Type of input data Range Variability

Rainfall ±10% Temporal: daily
Temperature ±1 �C Temporal: daily
Atrazine
application rate

±20% Spatial: for each HRU
with CORN

Dates ±20 days

(from May 15)

Spatial: for each HRU

with CORN
The sensitivity of the curve number is consistent with
results determined in other studies (e.g. Lenhart et al.,
2002; Cryer and Havens, 1999).

3.2. Calibration of the hydrological parameters

In the manual calibration, parameters influencing
baseflow and surface flow are optimised. To reduce the
number of parameters that will be calibrated, the
above-mentioned ranking of sensitive parameters is
used. Only the most influential parameters are eligible
for calibration. As the parameters SOL_AWC and sol_z
are supposed to be determined precisely, no optimisa-
tion was performed for them. The parameters that are
given priority in the manual calibration are italicised
in Table 1.

The results of the manual calibration are given in
Fig. 4b. By way of comparison, cold simulation results
are presented in Fig. 4a. Cold simulation results are pro-
duced by the model before any calibration is performed.

As shown in Fig. 4b, a reasonable fit was obtained for
the manually calibrated flows. Nevertheless, better cali-
bration is possible if seasonally dependent parameters
could be adjusted throughout the year. For example,
different values for the ESCO parameter during winter
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Fig. 4. (a) Comparison of measured ( ) and cold simulation ( ) flow data. (b) Comparison of measured ( ) and manually calibrated ( ) flow data.
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and summer would permit more realistic simulations of
water evaporation during both seasons and thereby in-
crease model efficiency. As herbicides are applied during
the spring period from begin March to the end of June,
we focused on good prediction performance in that per-
iod and we optimised the selected parameters specific
for spring. As shown in Fig. 5, a good fit is obtained
between measured and simulated flows during spring.
The Nash–Sutcliffe coefficient improved from an initial
value of �22.4 for the cold simulation, to +0.53 after
calibration specific for spring.

3.3. Parameter sensitivity for atrazine modelling

As presented in Fig. 6, the only parameter that is in
competition with the hydrological parameters is �apfp_
pest�. In this case, this parameter controls the direct
losses to the river system (see above). The importance
of direct losses in the Nil-catchment was already men-
tioned by Beernaerts et al. (2002) and was also found
to be important in certain catchments in Germany (Neu-
mann et al., 2002) and Greece (Albanis et al., 1998).

In summary, for making reliable predictions of atra-
zine towards the river, it is highly important that the
hydrology, especially the curve number, is well cali-
Fig. 5. Comparison of measured ( ) and manually calibrated ( ) flow da
brated while a correct estimation of the direct losses is
of importance as well.

3.4. Input sensitivity for atrazine modelling

This sensitivity analysis is performed with the previ-
ously described manually calibrated model, but a recal-
ibration might be needed when pesticides are also
considered. However, since this may require better
assessments for the model inputs, it is first aimed to
define the most important input factors.

For each input factor, 100 runs were performed. The
results for the average concentrations and average loads
(Table 4) show that the date of application is much more
important than errors that may occur in the application
rate or rainfall errors. Errors in temperatures are the
least important. The importance of the application date
can be explained twofold: first, the contribution of direct
losses (through the clean up of spray equipment, leaking
tools, processing of spray waste etc.) to total amount of
pesticides found in the river is estimated to be 50–70% in
the studied catchment. Consequently, errors in applica-
tion date will result in significant errors in predictions of
the direct losses in this catchment. Secondly, the per-
centage of pesticides that eventually will reach the river
ta for the spring periods shown sequentially from 1999 up to 2001.
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Fig. 6. Graphical representation of the sensitivity ranking for atrazine
modelling for a subset of parameters. The definition of the different
parameters can be found in Tables 1 and 2.

Table 4
Coefficient of variation for the CANOPI results

Type of input data Average atrazine
concentration

Average atrazine
load

Rainfall 0.0434 0.0512
Temperature 0.0029 0.0031
Atrazine application rate 0.0321 0.0324
Dates 0.3024 0.3233
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through surface run-off depends highly on the period be-
tween the application and the next rain event. In Bel-
gium, a randomly defined application date may easily
coincide with a rainy day. In reality, farmers will not ap-
ply pesticides on rainy days. Therefore, it is important to
consider the weather pattern while setting up the man-
agement files for pesticide applications. If we would con-
sider this also in the sensitivity analysis, we may expect a
somewhat smaller influence of the application date on
the losses originating from surface runoff.
4. Conclusions

A methodology to achieve information about sensi-
tive parameters and model inputs for hydrology and
pesticide supply in SWAT, was presented. First, an
intensive data collection, the digitisation of soil maps
and the calculation of related soil parameters was per-
formed for the Nil catchment.

An LH-OAT sensitivity analysis for hydrology al-
lowed for the screening of the large set of input param-
eters. The selected subset of parameters was then used
for model calibration. The manual calibration resulted
in good fits to the observed flows. Better results would
be possible if seasonally dependent parameters could
be adjusted to the current season.

By including pesticide parameters in the sensitivity
analysis, it appears that besides a good calibration of
the hydrology also a correct estimation of the direct
losses is important. The importance of these direct losses
for this catchment was already proven by an experiment
during the years 1998–2002. Measurements of pesticide
concentrations at the mouth of the river Nil (1998–
1999) showed high peaks even during non-rainy wind
still days. Consequently, these high peaks can only orig-
inate from direct losses due to the clean up of spray
equipment, leaking tools, etc. During the years 2000–
2001, sensitization of farmers regarding this issue re-
sulted in a significant decrease of pesticide loads in the
river. When this sensitization campaign was finished in
2002, pesticide loads in the river immediately increased
(Beernaerts et al., 2002). This proves the importance of
direct losses, which were estimated to be 50–75% of
the total amount of pesticides found in the river �Nil�.

Finally, the sensitivity analysis for the input factors
reveals that the date of application is much more impor-
tant than errors that may occur in the application rate or
rainfall errors. Consequently, the application date can
be an important source of uncertainty and needs special
attention for data collection. As the management files
were not adapted to the weather pattern, we can expect
that such a sensitivity analysis will result in a smaller
influence of the application date on the losses originat-
ing from surface runoff.

The importance of hydrology and of the reduction of
uncertainties in inputs for modelling pesticide fate were
also mentioned by Dubus et al. (2003).
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