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Modeling the metabolic adaptations of the
biomass under rapid growth and starvation
conditions in the activated sludge process

B. Lavallée, P. Lessard, and P.A. Vanrolleghem

Abstract: For wastewater treatment, the activated sludge models (ASMs) 1, 2, and 3 of the International Water Association
(IWA) are accepted as industrial standard. However, many authors have observed that the kinetic parameters of these
models depend on the type of substrate, process configuration, and sludge age. Some publications showed that the kinetic
parameters of ASMs could be influenced by regulation of enzyme production. Therefore, an engineer aiming to make
some modifications to a specific system is not able to predict the response of the real system after the modifications and
choose the right configuration or modifications with the same set of parameters. On the other hand, cybernetic models are
proposed for modeling cell growth and focus, among other things, on regulation of enzyme production, that is to say on
induction. Thus, the objective of this paper is to present an activated sludge model that mimics the enzymatic induction
of active biomass within the framework of ASMs. In the proposed model, process rates are modulated according to the
environmental conditions and cell history. The model is fitted on the basis of data found in the literature. All data collected
from short and long transient experiments were fitted with the same set of parameters, which was not possible with other
models. The proposed model gives a more realistic picture of active biomass and of its specific activity under highly
varying process conditions, but further research is required to support the model with experimental data.

Key words: activated sludge models (ASMs), activity, biomass, enzymes, induction, model, parameter, rate, regulation,
sludge, transient.

Résumé : Les modèles de boues activées 1, 2 et 3 de l’International Water Association (IWA) sont acceptés comme
normes de l’industrie pour le traitement des eaux usées. Toutefois, plusieurs auteurs ont remarqué que les paramètres
cinétiques de ces modèles dépendent du type de substrat, de la configuration du procédé et de l’âge des boues. Certains
articles ont indiqué que les paramètres cinétiques des modèles de boues activées pourraient être influencés par la
régulation de la production d’enzymes. Ainsi, un ingénieur cherchant à modifier un système spécifique ne peut prédire la
réponse du système réel une fois les modifications apportées ni choisir la bonne configuration ou les bonnes modifications
avec le même ensemble de paramètres. Aussi, des modèles cybernétiques sont proposés pour modéliser la croissance
cellulaire et portent, entre autres, sur la régulation de la production d’enzymes, c’est-à-dire sur l’induction. L’objectif
du présent article est donc de présenter un modèle de boues activées qui imite l’induction enzymatique de la biomasse
active dans le cadre des modèles de boues activées. Dans le modèle proposé, les taux de réaction sont ajustés aux
conditions environnementales et à l’historique cellulaire. Le modèle est calé sur les données trouvées dans la littérature.
Les données colligées lors d’expériences transitoires à court et à long termes ont toutes été calées avec le même ensemble
de paramètres, ce qui n’était pas possible avec les autres modèles. Le modèle proposé offre ainsi un regard plus réaliste de
la biomasse active et de son activité spécifique sous des conditions de procédé hautement variables, mais une recherche
plus poussée est requise pour soutenir le modèle avec des données expérimentales.

Mots clés : modèles de boues activées, activité, biomasse, enzymes, induction, modèle, paramètre, taux, régulation, boues,
transitoire.

[Traduit par la Rédaction]

1. Introduction
During the last decade, many models were used for to de-

scribe behaviour of wastewater treatment plants using activated

sludge processes (e.g., Henze et al. 2000). In these models,
kinetic parameters that depict the activity of biomass in the
processes are assumed constant. The representation of active
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biomass can therefore be regarded as a static picture of its par-
ticular metabolic state.Authors of these models stated that these
constant kinetic parameters depend on the type of substrate,
process configuration, and sludge age (Henze et al. 2000).

However, the cell’s metabolism is the result of a large num-
ber of biochemical reactions. These reactions are coordinated
and regulated by different inhibitors and inducers. Thousands
of enzymes exist, and hundreds could be involved in the active
metabolism of the cell (Bailey and Ollis 1986). Consequently,
cells have a variable level of specific activity. For instance,
Grady et al. (1996) showed that the value of the maximum
growth rate of a particular sludge is linked to its metabolic state
and is dependent, among others, on the dilution rate in a chemo-
stat. Many authors also showed that the maximum growth rate
value will change with the applied substrate to biomass ratio
S0/X0 in batch experiments (Chudoba et al. 1992; Daigger and
Grady 1982a; Sin 2004). Furthermore, it was also shown that
evaluation of kinetic parameters could be influenced by en-
zymatic induction (a mechanism inducing the production of a
specific enzyme) (Çinar and Grady 2001; Grady et al. 1996;
Lavallée et al. 2002; Sin 2004; Vanrolleghem et al. 1998).

Thus, variation in operating conditions of a treatment plant,
or modifications made on the system, will induce variation in
the specific activity of cells, but the model (with its constant
parameters) will give a deviation from the response of the real
system. For instance, it is well known that µH max, the maximum
growth rate of heterotrophic biomass, will change according to
culture conditions (Daigger and Grady 1982a). Also, KSTO, a
parameter of the storage process in ASM3, is not universal,
and its value changes with environmental conditions (Hanada
et al. 2001). Variation of the process configuration or the op-
eration mode changes the induction time of particular enzy-
matic chains. Thus, this changes the specific activity level of
the biomass and the dependant parameters. A detailed litera-
ture review on process induction is given in a separate paper
(Lavallée et al. 2005). Therefore, an engineer aiming to op-
timize the configuration of a system or to modify a specific
system is not able to predict the response of the real system
after the modifications and choose the right configuration or
modifications. Hence, further refinement of current models is
desirable for process design and retrofitting.

To model enzymatic induction and metabolic adaptation, bio-
chemical models have already been proposed in the literature
(Jensen and Pedersen 1990; Zhang et al. 2002). In these models,
the protein synthesis system (PSS) will grow and decay with
substrate availability or starvation. The state of the PSS will set
the rate of protein formation and thus the growth rate of bacteria
(Jensen and Pedersen 1990; Zhang et al. 2002).

Ramkrishna and co-workers (Baloo and Ramkrishna 1991;
Kompala et al. 1986; Turner et al. 1989) proposed cybernetic
models to mimic enzymatic induction of fast-growing bacteria.
In these models, a structured representation of cells is adopted
to mimic the growth and decay of some PSS components, called
resource machinery. The cybernetic approach is based on an in-
variant strategy rather than an invariant kinetic response, which

is implicit in the framework of kinetic models (Ramkrishna
1983). Mathematical functions are used to model some induc-
tion mechanisms in addition to the usual kinetic functions. In
these models, the enzymatic pool and resource machinery fluc-
tuate with substrate availability and the history of the micro-
organisms. These models fit quite well to data collected in
chemostat cultures with step variations of dilution rate. Liu et
al. (1998) used a cybernetic model to describe the diauxic be-
haviour of activated sludge in the denitrification process. The
significance of this short transient and influence of the induction
time (the unaerated volume fraction) in the denitrification pro-
cess was shown by Lee et al. (2004) using the model proposed
by Liu et al. (1998). However, in this cybernetic model, only
one component having a short time constant is used to mimic
the PSS. Modeling longer transients as growth rate fluctuations
(Frigon et al. 2002a) requires an additional component having
a larger time constant (to mimic the stable RNA). To this end,
different metabolic states of cells (that is to say, the adapta-
tion speed of the cells to new conditions (Daigger and Grady
1982b)) will be described using these two components (for a
review, see Lavallée et al. (2005)). Obviously, the real cellular
processes are much more complex than the chosen representa-
tion, and several steps and components are not included in the
model.

Thus, the objective of this paper is to present a model that
mimics the variation of the specific activity of active biomass
within the frame of the ASM models. The modifications done
to ASM3 aim to model the variation of the process rates (de-
fined in ASM3) and increase the prediction capabilities for a
variety of process configurations. With a model able to mimic
the regulation of the growth rate, it should be possible to ac-
cess the intrinsic value of parameters defining the growth rate
of biomass. As a consequence, it would be possible to predict
the response of continuous systems or semi-continuous systems
and batch processes with the same set of parameters. Hence, re-
calibration of the model to each process configuration would not
be required as for ASMs. This will minimise the experimental
work. Thus, after the model is calibrated with an effluent data
set, it is conceivable that this mathematical tool can be used to
perform design optimisation or plant retrofit.

In the proposed model, the biomass description is limited to
heterotrophic biomass exposed to aerobic conditions. Exten-
sion of the model to anoxic conditions or inclusion of nitrifying
biomass and phosphate accumulating organisms will need ad-
ditional components and processes descriptions. This will be
topics of future work.

2. The chosen picture of biomass

It is difficult to choose the representation of biomass when
one is building a model. Here, the aim of the proposed model is
to describe the varying growth rates of the active cells. The only
parameter that does not vary with growth rate is the mass of the
cell nucleus. Obviously, growing cells could have more than
one copy of the nucleus, but the mass of the nucleus could be
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Fig. 1. Diagram of the structured biomass.
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used as a reference (Bremer and Dennis 1996).According to the
data presented by Bremer and Dennis (1996) for Escherichia
coli and Daigger and Grady (1982b) for Pseudomonas putida,
the ratio of structural proteins (total proteins minus ribosomal
proteins) to DNA remains constant for all growth rates. Also,
Schaechter et al. (1958) suggested that the ratio of cell wall and
membrane per nucleus remains constant for all growth rates.
Their hypothesis is based on their observations that the ratio
“surface areas of cell wall/nucleus” remains virtually constant.
The same assumption is taken in the proposed model, and the
cells will be represented by XH, the mass of structural compo-
nents built of one nucleus, and the corresponding amount of cell
membrane and cell wall. Because the ratio of these structural
components is assumed to be constant, the evaluation of active
cells should be performed by measurement of the DNA con-
centration. Obviously, the model will not describe the various
growth rates of a distributed population of bacteria, and it will
model the mean growth rate of all cells.

Different components are use to structure the chosen repre-
sentation of biomass. The biomass chemical oxygen demand
(COD) consists of endogenous substrate, endogenous reserves
as glycogen or PHA, a simplified representation of the PSS, and
a structural component. Specific model components are used to
describe particular enzymes and their associated rates. The en-
zymes produce the metabolites used by the cell for growth and
are those describing the reactions shown in Fig. 1.A similar rep-
resentation was initially proposed by Dircks et al. (2001) and
was adapted by Lavallée et al. (2005). In Fig. 1, substrate (SS) is
taken up by the cell to form an endogenous substrate (BS). The
cell can grow on this endogenous substrate, make stored prod-
ucts (BSTO), or produce utilization-associated products (UAP).
The numbers (rX) close to the arrows in Fig. 1 are the process
numbers corresponding to the Peterson matrix (Table 1).

Proteins make up the main part of cell mass (Bremer and
Dennis 1996; Daigger and Grady 1982a; Herbert 1976). Thus,
exponential growth could be seen as an increase in proteins
(Zhang et al. 2002). This implies that growth and growth regu-
lation are coupled to the state of the PSS, which sets the rate of
protein formation (Zhang et al. 2002). In short, three compo-
nents, i.e., messenger RNA (mRNA), ribosome (or rRNA), and

Fig. 2. Details of the PSS.
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RNA polymerase, make up the PSS. Proteins are synthesized in
two steps. During the first step, the transcription step, the RNA
polymerase transcribes the DNA code to produce mRNA. In the
second step, the translation step, ribosomes translate the mRNA
to produce proteins. During exponential growth, the number of
ribosomes (the part of the PSS that assembles the proteins)
shows a linear relationship with the growth rate of the cells
(Bremer and Dennis 1996). Therefore, in the proposed model,
the metabolic state of the active biomass is introduced via a sim-
plified representation of the PSS (Lavallée et al. 2005). The PSS
representation is given in Fig. 2. Transcription and translation
are two key steps in protein synthesis (Zhang et al. 2002). The
RNA polymerase limits the rate of transcription, i.e., synthesis
of mRNA (Zhang et al. 2002), and its expression is regulated
proportionally to the amount of ribosome proteins (Berlyn et
al. 1996). Messenger RNA (mRNA) has a short half-life, while
rRNA, which constituted a fixed fraction of the ribosomes, has
a longer half-life. Thus, in the model it is assumed that mRNA
is modeled by the short half-life component of the PSS, mR,
and stable rRNA is modeled by the growth enzyme, EG. Be-
cause RNA polymerase is coexpressed with ribosome proteins,
it is modeled with the variable EG, too. Hence, in the model,
mRNA is produced by EG (RNA polymerase), and the latter is
required as ribosomes for protein (P) or enzyme production.

The modeled processes are descriptions of the real processes.
Therefore, the values of parameters should be chosen within the
range of the values found in the literature with respect to time
constants.

3. The proposed model

In the following paragraphs, the processes in Figs. 1 and 2
are presented in a mathematical formulation. A complete math-
ematical description of the model is given in Tables 1–3, using
the Peterson matrix notation. In the proposed model, the no-
tation X refers to suspended material, and S refers to soluble
material, as in ASM models. The notation B refers to endoge-
nous material, as building blocks, and E refers to an enzymatic
structure. The concentrations of these are expressed as X, S, B,
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Table 1. Processes description.

Rates Description Processes

R1 Production of BS kmax
BS(1)

EBS(1)

XH

SS
KS(1)+SS

SO
KO+SO

XH

R2 Production of BS kmax
BS(2)

EBS(2)

XH

SS
KS(2)+SS

SO
KO+SO

XH

r3 Production of BSTO kmax
STO

ESTO
XH

BS/XH
KBS +BS/XH

XH

r4 Production of mR αmR
EG
XH

BS/XH
KBS +BS/XH

SO
KO+SO

SNH
KNH+SNH

XH

r5 Growth of heterotrophs and production of EG µint
H max

EG
XH

[mR]/XH
KmR+[mR]/XH

BS/XH
KBS +BS/XH

SO
KO+SO

SNH
KNH+SNH

XH

r6 Production of ESTO αESTO
EG
XH

[mR]/XH
KmR+[mR]/XH

BS/XH
KBS +BS/XH

SO
KO+SO

SNH
KNH+SNH

XH

r7 Production of EBS(1)
αEBS(1)

EG
XH

[mR]/XH
KmR+[mR]/XH

SS
KS(1)+SS

BS/XH
KBS +BS/XH

SO
KO+SO

SNH
KNH+SNH

KS(2)

KS(2)+SS
XH

r8 Production of EBS(2)
αEBS(2)

EG
XH

[mR]/XH
KmR+[mR]/XH

SS
KS(2)+SS

BS/XH
KBS +BS/XH

SO
KO+SO

SNH
KNH+SNH

XH

r9 Production of EA αEA
EG
XH

[mR]/XH
KmR+[mR]/XH

BS/XH
KBS +BS/XH

SO
KO+SO

SNH
KNH+SNH

XH

r10 Production of ET αET
EG
XH

[mR]/XH
KmR+[mR]/XH

BS/XH
KBS +BS/XH

SO
KO+SO

SNH
KNH+SNH

XH

i11 Production of Eh αEh
EG
XH

[mR]/XH
KmR+[mR]/XH

XS
KXS +XS

KS(1)

KS(1)+SS

BS/XH
KBS +BS/XH

SO
KO+SO

SNH
KNH+SNH

XH

r12 Release of BS kmax
RBS

BS/XH
KRBS +BS/XH

XH

r13 Hydrolysis kmax
h

XS
KXS +XS

Eh

r14 Degradation of BSTO δkmax
STO

ESTO
XH

BSTO/XH
KSTO+BSTO/XH

KS(1)

KS(1)+SS
XH

r15 Decay of EG βEG EG

r16 Decay of ESTO βESTOESTO

r17 Decay of EBS(1)
βEBSEBS(1)

r18 Decay of EBS(2)
βEBSEBS(2)

r19 Decay of mR βmR[mR]
r20 Decay of EA βEA EA

r21 Decay of ET βETET

r22 Decay of Eh βEh Eh

r23 Death of biomass cause by toxin bmax
XT

ET
XH

KiT
KiT+EA/XH

XH

r24 Aerobic growth of protozoa µMF max
XH/XMF

KX/MF+XH/XMF

SO
KMFO+SO

XMF

r25 Decay of protozoa bMFXMF

and E, respectively, and are given in milligrams per litre. When
the enzymatic component is expressed in a specific value, the
notation is expressed as E/XH. The variable mR is used to mimic
some components of the PSS, such as mRNA, and is equivalent
to an enzymatic structure. In the text, rX refer to the processes
rate in Table 1. Also, in the text saturation term using O2 and
NH4 are omitted from most of the equations. However, when
required these terms are included in the equations of Table 1.

3.1. Modeling the growth rate fluctuations
In the proposed model, growth of heterotrophic organisms is

regulated by concentrations of mR, EG, and BS. The concentra-
tion of ribosomes (rRNA) is mimicked by the variable EG. So,
the relative concentration of ribosomes within the cell is given
by the ratio EG/XH.

As shown in eq. [1], the ratio EG/XH is added to the growth
rate equation proposed by Monod (1949). The ratio EG/XH

reflects the metabolic state of the active biomass. It will change
the growth rate of heterotrophic organisms, µH, according to
the ribosomes concentration and to RNA theory (Lavallée et
al. 2005). As mRNA (mR) is required for the maximal rate
of translation by ribosomes, a Michaelis–Menten equation is
inserted in the proposed equation, too (Lavallée et al. 2005).
The saturation equation including mR will change the µH value
according to the availability of mRNA (Lavallée et al. 2005;
Roels 1982; Vanrolleghem et al. 1998). This term will mimic
the specific translation rate of ribosome. BS is the representation
of the endogenous substrate or metabolites and building blocks.

[1] µH = µint
H max

EG

XH

[mR]/XH

KmR + [mR]/XH

BS/XH

KBS + BS/XH

The production rate of EG (process r5 in Table 1) is described
by eq. [2] when O2 and NH4 are at saturation level. As shown
in Fig. 1, it is assumed that the ribosome (EG) production is
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Table 3. Stoichiometry of enzymatic components.

Rate ESTO (unit/L) EBS(1) (unit/L) EBS(2) (unit/L) [mR] (unit/L) EA (unit/L) ET (unit/L) Eh (unit/L)

r1
r2
r3
r4 1
r5
r6 1
r7 1
r8 1
r9 1
r10 1
i11 1
r12
r13
r14
r15
r16 −1
r17 −1
r18 −1
r19 −1
r20 −1
r21 −1
r22 −1

r23 −ESTO
XH

−EBS(1)

XH
−EBS(2)

XH
−[mR]

XH
− EA

XH
− ET

XH

r24 − ESTO
XHYMF

− EBS(1)

XHYMF
− EBS(2)

XHYMF
− [mR]

XHYMF
− EA

XHYMF
− ET

XHYMF

r25

dependent on the rate of translation (Lavallée et al. 2005), or
in other words, of the EG/XH and [mR]/XH levels. Accord-
ingly the EG/XH ratio and saturation equation for [mR] are
introduced in eq. [2]. The parameter ϕEG is a stoechiometric
coefficient related to the correlation between the growth rate
and the protein production. The dependency on the availabil-
ity of amino acids is mimicked by including the endogenous
substrate BS term.

[2] r5(EG) = ϕEGµint
H max

EG

XH

[mR]/XH

KmR + [mR]/XH

× BS/XH

KBS + BS/XH
XH

[3] r4 = αmR
EG

XH

BS/XH

KBS + BS/XH
XH

In eq. [3] the αmR parameter is the maximal production rate
of the mR components. The expression of mR (or its rate of
production r4) is completely inductive, and changes with the
BS and EG concentrations. The RNA polymerase concentration
is represented in eq. [3] by the ratio EG/XH . The number of
RNA polymerases per nucleus is proportional to the amount
of ribosome, and this for all growth rates (Bremer and Dennis
1996). Thus, the specific RNA polymerase concentration will
be mimicked by the variable EG and the ratio EG/XH. The

activity of the RNA polymerases is different to the ribosome
activity and is therefore modeled by the rate αmR.

In the model, the variable EG has COD units. Hence, the
active biomass COD is now composed of an amount of struc-
tural component (XH) and a variable fraction, the biosynthetic
constituent (EG). The constituent EG is endogenous; thus the
mathematical description of biomass becomes (XH +EG). This
description agrees with the description of biomass proposed by
Masson et al. (1986) and van den Berg (1998). Thus, in the
model, the specific COD of active biomass (COD/XH) will rise
and fall with EG.

The decay of EG (process r15) and mR (process r19) are en-
dogenous processes described as first-order reactions charac-
terized by the “endogenous” rate constants βEG and βmR. This
formulation is similar to the one used by Baloo and Ramkrishna
(1991) for the decay of endogenous enzymes.

3.2. Modeling the substrate uptake rate
It was observed by several authors that the specific sub-

strate uptake rate varies with growth conditions (Ferenci 1999;
Kovárová-Kovar and Egli 1998). It was also observed that the
rate of substrate uptake and storage in ASM3, is not univer-
sal, and the value of this constant changes with environmental
conditions (Hanada et al. 2001). It was furthermore shown that
the substrate uptake rate is dependent on the concentration of
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several transport enzymes in the cell wall (Ferenci 1999).
In the model, readily biodegradable organic substrate (SS) is

taken up by the transport enzyme (EBS ) to yield endogenous
substrate (BS). The accumulation rate is regulated by enzyme
and substrate concentration. In this process, the variation of
the specific substrate uptake rate will be mimicked by the ratio
EBS/XH in eq. [4] (processes r1 and r2 in Table 1). Modeling
of the production of transport enzymes will be done with an
equation similar to the one proposed for production of EG. The
constant kmax

BS
is the maximum specific activity of the enzyme.

[4] r1 or r2 = kmax
BS

EBS 1 or 2

XH

SS

KS(1 or 2) + SS

SO

KO + SO
XH

However, the KS constant could change with substrate, sub-
strate concentration, and growth conditions (Ferenci 1999;
Kovárová-Kovar and Egli 1998). Ferenci (1999) showed that
the level of expression of various transport enzymes of glucose
is regulated by the substrate concentration. At low substrate
concentrations, a transport enzyme with a high substrate affin-
ity would be induced at a higher intensity than a second transport
system with a low substrate affinity, which is favoured at high
glucose concentrations. Thus, the model includes two transport
systems (processes r1 and r2) with respective enzymes (EBS(1)

and EBS(2)
) and saturation constants (KS(1) and KS(2)). Accord-

ing to Ferenci (1999), in the model, EBS(1)
production will be

subject to catabolite repression at high substrate concentration.

3.3. Modeling the formation of endogenous reserves
It is well known that in some conditions cells store substrate

in the form of glycogen or PHB. Cells able to quickly use and
store substrate possess a selective advantage over cells that can-
not (van Loosdrecht et al. 1997).

Modeling of storage product formation (process r3) is done
as suggested by Dircks et al. (2001) for glycogen and Beun et
al. (2000) for PHB. Storage products (BSTO) are synthesized
from endogenous substrate (BS) through a single reaction.

[5] r3 =
(

kmax
STO

ESTO

XH

BS/XH

KBS(2)
+ BS/XH

)
XH

Also, as shown on Fig. 1, degradation of storage product is
modeled by a single reaction, and this process produces BS. Ac-
cording to the expression of glycogen enzymes, the enzymes
that synthesize and depolymerize BSTO are coexpressed by the
same operon (Lavallée et al. 2005). Therefore, these two en-
zymes should be modeled by the variable ESTO and the rates
kmax

STO and δkmax
STO. Obviously, depolymerization of BSTO (process

14) is regulated by its concentration and inhibited by high levels
of BS, as shown in eq. [6].

[6] r14 =
(

δkmax
STO

ESTO

XH

BSTO/XH

KSTO + BSTO/XH

× KS(1)

KS(1) + SS

)
XH

Fig. 3. Production rates of soluble microbial products (SMPs).
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The process rates are modulated by the ratio ESTO/XH. Sim-
ilar to EG, production of ESTO is regulated at the transcription
level. Consequently, the rate of formation or degradation of
endogenous reserves will be modulated according to environ-
mental conditions, as observed by Hanada et al. (2001).

3.4. Modeling the formation of soluble microbial
products

In addition to the storage process, release of metabolites by
the cell is often observed (Grady et al. 1972; Hao and Lau 1988;
Huang and Cheng 1987). Utilization-associated product forma-
tion may be significant, and the TOC or COD mass balance
should take it into account.

Equation [7] models this process (r12).

[7] r12 = kmax
RBS

BS/XH

kRBS + BS/XH
XH

In this equation, the constant kmax
RBS

mimics the outward dif-
fusion of metabolites through the cell membrane. A satura-
tion equation is used to model this process. Thus, diffusion
of metabolites through the cell membrane will be negligible at
low BS concentrations and proportional to high BS concentra-
tions. The BS diffusion will increase according to an exponential
function relative to the growth rate. The half-saturation coeffi-
cients KBS used in the growth equation could be set at a lower
value than kRBS used in eq. [7]. Thus, an excess of endoge-
nous substrate will not significantly increase the growth rate,
but it will induce an increasing release of BS in the bulk liquid
(Fig. 3). This relation is in accordance with the exponential re-
lation proposed by Hao and Lau (1988) for modeling UAP in
a chemostat. Obviously, the real process is more complex than
this representation, but for modeling convenience, a single-step
formulation is adopted, as was also done for storage formation.
Moreover, because nitrogen is required for growth and is not
required for UAP formation, this representation presents the op-
portunity to model the UAP formation under nitrogen-limiting
conditions. Also, a balance evaluation of storage on UAP for-
mation is possible because the two processes are in competition
for BS utilization.

The formation of soluble biomass associated products, which
are released after exhaustion of the substrate, has not been mod-
eled yet. However, this process has a significant impact on the
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COD concentration in the effluent, and it will be included in the
model after completion of further modeling studies.

3.5. Modeling the maintenance process
The decay of EG (βEG ) is a continuous process and thus oc-

curs during both starvation and growth. Therefore, the biomass
(EG + XH) uses substrate to maintain ribosome concentrations
at the desired level. The renewal of these enzymes will use
the COD, and a part will be used for respiration. This will
be assumed to be the maintenance process. Thus, the EG pro-
duction and decay are a cycling process quite similar to the
maintenance process proposed by Pirt (1965).According to Pirt
(1965), maintenance is the use of substrate for other purposes
than growth. Thus, in the model, the maintenance is propor-
tional to the macromolecules turnover as proposed by some
authors (Chudoba et al. 1992; van den Berg 1998). Then, oxy-
gen used in the energy production process is coupled to the
production of enzymes and the growth of active biomass. The
decaying macromolecule EG is used for energy production and
leads to endogenous respiration and a loss of specific activ-
ity. Thus, the exogenous and endogenous respiration of active
biomass are regulated as proposed by some authors (Beeftink
et al. 1990; Nicolaï et al. 1991), with the model combining the
Herbert (1958) and Pirt (1965) formulations of endogenous and
maintenance metabolism, respectively.

Additionally, some energy could be spent in futile cycles as
metabolites are released (Hao et Lau 1988). In this process,
the constant kmax

RBS
mimics the outward diffusion of metabolites

through the cell membrane. Thus, with the combination of the
substrate uptake process and the release process, energy is spent
in substrate uptake and release cycling.

Several additional processes could be included in the mainte-
nance process (Lavallée et al. 2005), but only some are included
in the proposed equations to keep the complexity of the model
at a reasonable level.

3.6. Modeling decay and death of active cells
As explained below, the proposed model makes a distinction

between endogenous respiration and death of active biomass.
The usual concept of active biomass decay includes grazing
(process r24) and the influence of other external factors on
cells (external decay as proposed by van Loosdrecht and Henze
(1999)). Predation is a complex phenomenon that could be mod-
eled with simple processes as in River Water Quality Model
No. 1 (Reichert et al. 2001). However, there is a general lack of
information in the literature on kinetic description of grazing by
protozoa in activated sludge. Future work will focus on DNA
extraction, as done by Brands et al. (1994), and inhibition of
protozoa to give some information on the kinetics of cell death.

In the model, microfauna are modeled as a whole. Theyt graze
on active bacteria and a cause decrease in the active biomass.
Initially, a Lotka–Voltera equation form is adopted for modeling
of microfauna growth (process r24). The microfauna compo-
nent (XMF) is associated with COD used and respiration. Also,
the nitrogen fraction is assumed to be the same in microfauna

as in active biomass. Therefore, respiration of micro fauna re-
leases nitrogen in proportion to (1 - YMF). Decay of XMF is
modeled by a simple first-order reaction (process r25).

On the other hand, the concept of cell death is proposed here
(process r23 in Table 1); it consists of lysis and other internal
factors affecting the cell. Death of active biomass can be in-
duced by a toxin–antitoxin couple (TA) (Yarmolinsky 1995).
The TA is produced by an inductive process that depends on
the substrate concentration in the mixed liquor. The antitoxin
(EA) is produced by the cell during growth at a higher rate
than the toxin and neutralize the effect of the toxin (ET). How-
ever, antitoxin has a shorter half-life than the toxin, as shown
by Aizenman et al. (1996). Thus, as suggested by Aizenman
et al. (1996), only a short time after substrate depletion, the
toxin could turn on its bactericidal effect (bmax

XT ) (for a review
see Lavallée et al. 2005). EA and ET are functional components
required for modeling, but not directly identifiable chemically.
In the model, the toxin exerts its bactericidal effect when the
EA/XH ratio is low as described by the Michaelis–Menten term
in eq. [9].

The rates of production of the toxin and its antitoxin (pro-
cesses r10 and r9, respectively) are described as inductive pro-
cesses dependent on endogenous substrate BS and of the PSS
state. Their decay is a simple first order process with different
specific rates to account for the differences in half-life. Model-
ing of antitoxin (eq. [8]) or toxin production will be done with
an equation similar to the one proposed for production of EG.

[8] r9 = αEA

EG

XH

[mR]/XH

KmR + [mR]/XH

BS/XH

KBS + BS/XH
XH

Modeling of TA action on active biomass (process r23) is
done with the following equation for the toxin-induced death:

[9] r23 = bmax
XT

ET

XH

KiT

KiT + EA/XH
XH

In this equation, KiT is the half-saturation coefficient of the
toxin-induced death that is inhibited by the presence of the
antitoxin.

3.7. Modeling the hydrolysis process
Previously, it was shown that variation of the hydrolysis pro-

cess could be significant in evaluation of the COD fraction of
the influent (Haïder et al. 2000). Here, for the same wastewater,
the hydrolysis activities and COD fractions were found to be
highly dependent on the sludge activity levels and the food to
micro-organisms ratio. On the other hand, Frigon et al. (2002b)
showed that different populations (the Acinetobacter spp., and
an actinomycete) within the sludge could use different sub-
strates (as SS and XS) for growth. Therefore, a model should
mimic the variable ability of sludge to hydrolyse suspended
substrate (XS).

In the model, the hydrolysis rate (process r13) changes
according to the specific density of hydrolytic enzymes Eh
(eq. [10]). Indeed, hydrolytic enzyme expression is regulated by
the substrate or substrate derivatives (Priest 1992). In the model
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it is assumed that XS concentration (thus the derivatives) in-
duces the production of hydrolytic enzymes. On the other hand,
hydrolytic enzyme expression is subject to catabolite repression
(Priest 1992). Hence, a switching function is added in the hy-
drolytic enzymes synthesis rate equation to mimic catabolic re-
pression. Thus, enzymes will be produced only when the soluble
substrate concentration, and thus the observed growth rate, is
low (eq. [11] and process r11). In addition, hydrolytic enzymes
will be produced only when the necessary substrate concentra-
tions are high. They are exogenous enzymes and are not affected
by growth rate or decay of active biomass.

[10] r13 = kmax
h

XS

KXS + XS
Eh

[11] r11 = αEh

EG

XH

[mR]/XH

KmR + [mR]/XH

XS

KXS + XS

× KS(1)

KS(1) + SS

BS/XH

KBS + BS/XH
XH

In eq. [10], the substrate saturation function is adopted be-
cause Goel et al. (1998) showed that cellulose hydrolysis is
dependent mainly on the enzyme concentration in the mixed
liquor. Also these authors showed that hydrolysis process is in-
dependent of the electron donor. Finally, Eh/XH models in the
enzyme density per cell or flock surface used in the ASM, as
shown in eq. [12].

[12] kmax
h Eh = kmax

h
Eh

XH
XH

The surface saturation function adopted in the ASM should
be considered as a specific application of the more general rep-
resentation chosen here.

4. Estimation of parameters

A number of new parameters are proposed in the model,
which includes 17 state variables and 41 parameters. This is
seven state variables and 20 parameters more than used inASM3
for description of heterotrophic biomass in aerobic conditions.
Hence, new methods are required for evaluation of state vari-
ables and parameter identification. They are proposed in the
following paragraphs. These new methods are based on tran-
sient behaviour data. These data are usually discarded when
using ASMs because it is not possible to fit the responses of
the models to these data. Transient behaviour data give addi-
tional information compared with the steady state or the usual
dynamic data. With these rich information data a multi-steps
identification procedure can be used to identify parameters one
by one. Each parameter can be identified on a particular tran-
sient behaviour according to the transient time constants. Thus,
identification of each parameter can be done independently.

4.1. Evaluation of the active biomass
As proposed by Schaechter et al. (1958), in the model the ratio

of cell wall to cell membrane per nucleus remains constant for
every growth rate. The active biomass will be represented by
XH, i.e., the mass of structural components built of one nucleus,
cell membrane, and cell wall. As the ratio of these structural
components is assumed constant, evaluation of active cells as
XH can be performed by measurements of DNA concentration
using a COD/DNA ratio.

According to the model assumptions, during exponential
growth, the decay of active cells is not significant. Therefore
in such experiment, the COD of suspended solids is equivalent
to the COD of the cells (XH+EG+BSTO). The concentration of
active cells (XH + EG) will be given by the COD of suspended
solids minus that of BSTO. Also, the increase in growth rate is
linked to an increase of EG/DNA. The increase of COD per ac-
tive cells ((XH + EG)/DNA) will give the increase of COD of
EG/DNA. The concentration of active cells (XH + EG) minus
the COD of EG will give the COD/DNA of XH. Thus, with a
DNA measurement, the XH concentration expressed as COD
should be available.

4.2. Evaluation of kinetic coefficients
Identification of parameters is done most easily by taking

advantage of differences in relaxation times, or time constants.
According to Roels (1982), the mass action law (substrate satu-
ration) operates within milliseconds, mRNA control in a matter
of minutes, enzyme production in a matter of hours, and selec-
tion within a population in a matter of days. It is possible to turn
these time constants to our advantage and make some simplifi-
cations in methods used for parameter evaluation. For instance,
it is possible to choose an experimental design for evaluation of
a particular coefficient and make the assumption that variables
changing with larger time constant have constant value.

It is well known that the saturation of enzymes is reached
within a few seconds, and usually this time constant is set to
zero. According to the relaxation time as proposed by Roels
(1982), in a batch experiment the observable variables will in-
crease or decrease along a sequence as explained below. The
first one to increase will be the DNA transcript (Oerther et
al. 2002; Cangelosi and Brabant 1997). This first increase of
mRNA (mR in the model) induces a rapid increase of the growth
rate. After the initial increase, the growth rate and RNA con-
centration per cell remain constant for at least 2 h (Kjeldgaard
et al. 1958). Daigger and Grady (1982a) called this first in-
crease of the growth rate “the available reaction potential”. The
second observable variable is the stable rRNA concentration
(EG in the model), which showed a slow and gradual increase
(Cangelosi and Brabant 1997; Muttray et al. 2001; Oerther et
al. 2002). This increase of stable rRNA concentration is corre-
lated to the increase of the growth rate (Muttray et al. 2001).
According to data presented by Daigger and Grady (1982a),
this slow increase of the growth rate could take several hours
and is preceded by a lag phase. The length of the lag phase is
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dependent on the initial growth conditions, i.e., on the induc-
tion level of the sludge (the initial ratio EG/XH in the model).
In the model, as the synthesis rate of EG is dependent on its
own concentration, the duration of this lag phase will be depen-
dent on the initial concentration of EG. Hence, the model is in
agreement with the “unifying theory” proposed by Daigger and
Grady (1982a).

Also, within biomass grown in a chemostat, by definition,
different species of bacteria have the same growth rate. As dis-
cussed by Lavallée et al. (2005), selection within a population
will take place with the difference between the growth rates of
these species. Thus, during the first few hours of a batch culture,
the differential growth rate is small, and selection should not
occur to a significant level.

Therefore, in a batch experiment, parameters can be iden-
tified one at a time on a simple curve fit with adequate mea-
surements. Albertson et al. (1990) observed an increase of the
translation rate and a corresponding increase of the respiration
after a substrate step-increase in batch experiments. Thus, DNA
should be measured to estimateµH,and respiration rate for iden-
tification of parameters associated with mR and EG/XH.As mR
has a short half-life, a quick variation of µH will be caused by
mR dynamics.A slow variation of µH will be caused by EG/XH
variation as it has a greater half-life. As discussed by Lavallée
et al. (2005), during exponential growth, the death of active
biomass (caused by toxin) is close to zero. Hence, independent
identification of the growth rate of XH and the production rate
of EG and mR is possible.

Obviously, during a batch experiment, release of substrate
and storage could influence the growth curve. Hence, if glucose
is used as soluble substrate, the glucose concentration and solu-
ble COD concentration will have to be measured. Accordingly,
the specific substrate uptake rate can be evaluated. A curve fit

will give the uptake enzyme concentration (EBS/XH) when the
specific rate reaches a constant value.A curve fit on the increase
rate of the specific substrate uptake rate will give the production
rate of the uptake enzyme (αEBS ). Similar methods can be used
for identification of the production rates of other enzymes.

The decay of enzymes can be studied during starvation in a
batch experiment. Biomass should be starved for several days.
According to the time constants, biomass samples should be
taken at constant intervals to build a time series. Consequently,
the decline of the growth rate or of the specific activity could be
evaluated by performing pulse substrate addition experiments,
as done by Vanrolleghem et al. (1998). The half-life of mRNA
is in the order of a few minutes, and the half-life of stable rRNA
or proteins is a few hours. The decline of the specific respiration
rate during starvation should give the decay rate of mR (at the
beginning of starvation with an interval of minutes) and of EG
(during the first day of starvation with an interval of hours).

Identification of the decay rate of active biomass should be
performed by measurement of the decay rate of the endogenous
DNA concentration.

YH will be obtained with the usual method for ASM cali-
bration (Henze at al. 2000). As the time constant of the stable
rRNA is in the order of hours, one could assume that the vari-
ation of rRNA will be limited during short experiments. The
heterotrophic yield can thenbe determined from eqs. [13] and
[14]. Here, eq. [13] is written two ways, but both expressions
have the same meaning. The substrate used should contain only
soluble organic matter. If the substrate uptake and storage pro-
cess occur simultaneously, eq. [13] could be used. At the end of
substrate uptake, the yield on stored product could be assessed
with eq. [14]. BS is assumed to be negligible at the beginning
and the end of the experiment.

[13]

YBS = (� suspended solids COD − �BSTO)/YH + �BSTO + (
rO2 maintenance/YH

)
�t

� soluble COD

YBS = � [(XH + EG)/YH] + �BSTO + [(1 − YH)/YH] EGβEG�t

� soluble COD

After exhaustion of soluble substrate one can evaluate the
actual growth yield on BS.

[14] YH = �(EG + XH) + (1 − YH) EGβEG�t

�BSTO

However, it is assumed that no respiration is associated with
the synthesis of storage product (YBSTO/BS = 1). As discussed
by Dircks et al. (2001), a gap of only 4% is observed between the
yield of biomass on internal substrate and the yield of biomass

on storage product. This simplification is required for the easy
independent identification of the yield constant YBS and YH.

The kinetic constants of the hydrolysis process can be identi-
fied from a curve fit on data from batch experiments (as carried
out by Orhon et al. (1999) and Goel et al. (1998)). With sludge
taken from chemostats operated at different dilution rates, the
batch experiments will give different initial kh values for the
different sludges. The increase of the kh rate along the experi-
ment will give the αEh value. kmax

h will be found from a curve
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fit on the kh variation and the corresponding value of Eh.
The variation of the structure of the population remains un-

known. However, it is known that selection within a population
can take more than days or weeks, and the time constant of this
function is large (Roels 1982). Therefore, short experiments can
be performed in which the population structure is assumed to
be constant. Further research is required to obtain a formulation
of this function.

5. Fitting the model to data

The value of a model is often expressed by its capacity to fit
data. Therefore, data found in the literature were fitted with the
model. It was built on GPS-X™ using the spreadsheet utility
Model Developer (Hydromantis Inc., Canada).

Under aerobic conditions, the oxygen uptake rate (OUR) can
be associated with the active biomass concentration and its spe-
cific activity. Some specific activity fluctuations (or specific
growth rate fluctuations) are related to “endogenous variables”
such as the mR and EG levels. This complex behaviour can be
observed in the data of Vanrolleghem et al. (1998) for OUR
start-up phenomena when sludge starved for 12 h was dosed
with three pulses of SS at 22-min intervals (Fig. 3). The start-up
phenomenon could be explained as follows: the growth process
induces an increase of the specific activity and starvation in-
duces a loss of specific activity, resulting is a rise and a drop in
growth rate and in OUR, respectively (Albertson et al. 1990).
Albertson et al. (1990) observed a rapid increase of the tran-
scription rate in the first 60 s. After the first minute, the trans-
lation rate increased and within the first 10 min it reached five
times the initial rate. This was accompanied by a proportional
increase of the respiration rate. This behaviour is similar to
that observed by Vanrolleghem et al. (1998). With the model,
this behaviour is simulated as follows. Because mR has a short
half-life, a decrease of the mR pool occurs during the 12 h
starvation period and after the exhaustion of the substrate. The
available substrate is used for reconstruction of the mR pool,
raising the specific OUR, as shown in the two first substrate
pulses in Fig. 4. After the second pulse, the mR concentration
reaches the saturation level, and the decline of the specific ac-
tivity associated with a decay of the mR concentration is not
observed on the third pulse. The proposed analysis is a simpli-
fied view of time-varying PSS activity, but the fit of the model
with this experiment gives good agreement with the data.

With this simple experiment it is possible to identify βmR and
also αmR, since the time constant of EG is larger. Indeed, the fit
was quite sensitive to αmR and βmR. No storage occurred as no
tailing of OUR was observed. The calculated level of internal
substrate was always less than COD of 5 mg/L (of bulk liquid),
and this value is in agreement with those observed in the litera-
ture (Chassagnole et al. 2002; Vanrolleghem et al. 2004). More-
over, it was not possible to model the observed variation using
only substrate uptake and storage without using the dynamics
of the variable [mR]. Also, the identified value of βmR gives a
half-life of 20 min. This value is of the same magnitude as the

Fig. 4. OUR start-up phenomenon observed when 3 pulses of SS

are dosed (data from Vanrolleghem et al. 1998).
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half-life of mRNA found in literature (Östling et al. 1993). Thus,
the proposed mathematical formulation seems to be in agree-
ment with the real processes. The parameters identified using
this experiment are given in Table 4. The parameters identified
in the fitting on data of Vanrolleghem et al. (1998) were used
to fit other parameters representing slow processes to data first
presented by Chiu et al. (1973). In these experiments, bacte-
ria were cultivated in chemostats with imposed dilution rates,
and the cells were taken out of the chemostats and put in batch
reactors. Daigger and Grady (1982a) re-examined these data
and showed that an increase of growth rate took place within a
few hours after the shift up and that the lag phase was depen-
dent on the initial growth conditions.To perform the fit shown
on Fig. 5, only the initial values of state variables as XH, EG,
[mR], EBS(1)

and EBS(2)
were changed. The set of parameters

used is given in Table 5. The parameters related to the uptake
processes (in r2 and r8) were identified using the substrate con-
centration data from Chiu et al.’s batch experiments (data not
showed). To minimize the number of degrees of freedom, only
the substrate uptake and the growth and storage processes were
modeled. The other processes (r9 to r13, and r20 to r25) were set
to zero. Additional data are required to identify the parameters
included in these processes. In the fit of Vanrolleghem et al.’s
(1998) data, shown in Fig. 4, the KS(1) = 0.2 mg/L was used.
To perform the fit of Chiu et al.’s data, the KS(2) value was set
close to 40 mg/L. These different values are of the same mag-
nitude as those obtained by Chiu et al. (1973) in steady-state
culture with dilution rates of 0.022 and 0.6 h−1, respectively,
or by Ferenci (1999) for two transport enzymes. The batch ex-
periment favours the induction of an uptake system with low
affinity and high capacity and therefore increases the specific
substrate uptake rate and the observed KS value, as seen in these
fits. The observed KS value and the specific substrate uptake
rate change according to the relative induction of the two trans-
port systems. The values of βEA and enzyme decay (βEX ) were
chosen according to literature values (Aizenman et al. 1996;
Cozzone 1981). Finally, all the data shown were fitted with the
single set of parameters identified. Thus, with the same set of
parameters, the model is able to describe short and long tran-
sients. It is not possible to fit all these data with the usual ASM
without changing the values of the parameters because µH max
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Table 4. Identified parameters on experiment of Vanrolleghem et al. (1998).

Parameter Symbol Units Value

Maximal heterotrophic growth rate µH d−1 30
Yield coefficient YBS COD/COD, g/g 0.92
Half saturation constant KS(1) COD, mg/L 0.2
Half saturation constant KBS mg mg−1 0.0015
Half saturation constant KmR unit mg−1 0.007
Ratio of production rate of EG and µH ϕEG mg mg−1 1.3
Production rate of mR αmR d−1 0.75
Production rate of EBS(1) αEBS(1)

d−1 15
Maximum specific activity of substrate uptake enzyme (1) kmax

BS(1)
COD, g g−1 d−1 41

Decay rate of mR βmR h−1 2.083

Table 5. Additional parameters used to perform the fits of Chiu et al. (1973).

Parameter Symbol Units Value

Yield coefficient YH COD/COD, g/g 0.73
Half saturation constant KS(2) COD, mg/L 40
Maximum specific activity of substrate uptake enzyme (1) kmax

BS(1)
COD, g g−1 d−1 10

Maximum specific activity of substrate uptake enzyme (2) kmax
BS(2)

COD, g g−1 d−1 26

Maximum specific activity of storage enzyme kmax
STO COD, g g−1 d−1 8

Maximum specific activity of degradation enzyme of storage product δkmax
STO COD, g g−1 d−1 5

Half saturation constant KSTO (COD of BSTO)/(COD of XH), mg mg−1 0.7
Production rate of EBS(2)

αEBS(2)
d−1 51

Production rate of ESTO αESTO d−1 43
Decay rate of EG βEG d−1 1.44
Decay rate of EBS(1)

βEBS(1)
d−1 1.44

Decay rate of EBS(2)
βEBS(2)

d−1 1.44

Decay rate of ESTO βESTO d−1 1.44

Fig. 5. Fit of lag phase (data from Chiu et al. 1973).
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varies during these experiments. With Chiu et al.’s (1973) data,
ASMs will simply give straight lines with the same slope. With
Vanrolleghem et al.’s (1998) data, ASM1 will give three square
waves and ASM3 will give three identical waves with tailing.

To model the data presented in Fig. 6, the yield value (YH)
used to perform the fit was lower (YH = 0.66) than the one
used for modeling of the other experiments (YH = 0.73). In
Fig. 6, one sees that the initial growth rate was 0.022 h−1, lower
than those in Fig. 5. The lower yield might be justified by an
uncoupling between the growth process and the oxidation pro-
cess under a critical growth rate (Daigger and Grady 1982b).

Fig. 6. Fit of a lag phase (data from Chiu et al. 1973).
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The uncoupling phenomenon is not modeled here. Hence, it
was necessary to modify the yield coefficient to perform the fit
with a low initial growth rate. To perform the fit with a YH of
0.73 (Fig. 6), some trials were done using several values of EG
turnover; however, a higher turnover of this component had a
significant impact on the growth process but only a small one
on the observed yield. Alternatively, an increase in soluble mi-
crobial product production was modeled with the BS release
process. This process had a significant impact on the substrate
concentration but still only a small one on the observed yield.
This deficiency in the description of the biomass is a limit in
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Fig. 7. Simulated variation of cell characteristics during a batch
experiment (µ0 = 0.095 h−1).
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Fig. 8. Simulated relative concentrations of components during a
batch experiment (µ0 = 0.095 h−1).
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the application of the model. Perhaps futile cycles should be
included in the model to enlarge the application range of the
model.

Nevertheless, the turnover of EG had some impact on the
yield. Figure 7 shows the typical variation of the yield during
the batch experiment. In the first phase of the experiment, the
growth rate is low, and the maintenance of EG uses a greater
fraction of the substrate taken up. As the growth rate increases,
the percentage of substrate used for the maintenance process de-
creases and the yield increases. Thus, in steady-state culture, the
maintenance process decreases the observed yield, as discussed
by Pirt (1965). Also, although the death of active cells was set
to zero, after the substrate exhaustion the growth rate is neg-
ative, as discussed by Herbert (1958). For a starving biomass,
the turnover of EG (βEG = 0.06 h−1) gave a respiration close to
that of the usually observed endogenous respiration (2 to 5mg
of O2 per hour per gram of volatile suspended solids) of acti-
vated sludge or that calculated with the decay rate default value
in ASM (Avcioglu et al. 1998; Henze et al. 2000; Lavallée et
al. 2002).

The relative concentrations of EG and XH and the growth
rate are shown in Fig. 8. The cell components are expressed
as a ratio to the initial concentration. In this figure one can
see that between 0 and 0.17 d, the growth rate increases faster
than the EG component, indicating that the [mR] variable has

an influence on the growth rate. Between 0.17 and 0.27 d the
growth rate increases at the same rate as EG, indicating that EG
is rate limiting according to the RNA-limiting theory (Daig-
ger and Grady 1982b). After 0.27 d the growth rate increases
slower than EG, indicating that another process has become
rate-limiting. The exogenous substrate concentration becomes
rate-limiting (SS < 2KS(2)) only after 0.37 d, and according to
the calibration procedure, in such circumstances the substrate
uptake is rate limiting. This analysis is in agreement with the
analysis done by Daigger and Grady (1982b) on RNA, proteins,
and DNA production rates in similar experiments. Hence, the
use of the proposed model could help in the understanding of
transients behaviours occurring in activated sludge under or-
ganic shock loads, for instance. Obviously this should be done
with care, and several validation steps of the model on appro-
priate data remain to be performed.

6. Conclusion

The proposed model gives a more realistic picture of ac-
tive biomass and of its specific activity, but further research
is required to support the model with experimental data. This
model allows fitting of several data sets found in the litera-
ture with a single set of parameters. It therefore improves the
quality of the kinetic information obtained by parameter esti-
mation. Also, through the use of DNA measurement to estimate
active biomass, it will be possible to assess the specific values
of parameters. This will help to increase our understanding of
processes occurring within cells under transients. If the specific
activity description of biomass gives a good description of the
real behaviour of the active biomass under transient, the pro-
posed formulation will make the kinetic constant evaluation a
procedure that is independent of sludge age and of the process
configuration. Thus, after substrate characterization, a single set
of values for kinetic parameters would fit the response of dif-
ferent processes. This will eventually make the model a helpful
tool for research and understanding of treatment processes.

The formulation of the proposed model opens several topics
of further research. Thus, considerable work is still to be done to
explore these new areas. Several validation steps of the model
on appropriate data remain to be performed.
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List of symbols

bMF death rate coefficient of micro fauna (d−1)
bmax

XT
maximum death rate coefficient of biomass related to

toxin XT (d−1)
BS concentration of endogenous substrate BS (COD,

mg L−1)
BSTO concentration of stored endogenous substrate BSTO (COD,

mg L−1)
EA concentration of antitoxin enzyme EA (unit L−1)
EBS concentration of transport enzyme EBS (unit L−1)
EG concentration of growth enzyme EG (unit L−1)
Eh concentration of hydrolysis enzyme Eh (unit L−1)

ESTO concentration of storage enzyme ESTO (unit L−1)
ET concentration of toxin enzyme ET (unit L−1)
fu non-biodegradable fraction of particulate material (COD,

mg mg−1)
iXB nitrogen fraction of active biomass (XH) and growth

enzyme (EG) (mg N per (mg COD))
kmax

BS
maximum specific activity of uptake enzyme EBS (d−1)

kh specific activity of hydrolysis enzyme (Eh) (d−1)
kmax

h maximum specific activity of hydrolysis enzyme (Eh)
(d−1)

kmax
RBS

maximum release rate of endogenous substrate BS (d−1)
kmax

STO maximum specific activity of storage process enzyme
ESTO (d−1)

KBS affinity constant for endogenous substrate (COD,
mg mg−1)

KiT half saturation coefficient of toxin inhibition for the
antitoxin (unit mg−1)

KMFO affinity constant of microfauna for dissolved oxygen (O2,
mg L−1)
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KmR affinity constant for mR (unit mg−1)
KNH affinity constant for ammonia (N, mg L−1)
KO affinity constant for dissolved oxygen (O2,

mg L−1)
KRBS affinity constant of substrate release process for

endogenous substrate (COD, mg mg−1)
KS(1or2) affinity constant of transport process 1 or 2 for

soluble substrate (COD, mg L−1)
KSTO affinity constant for stored product (mg COD per

(mg COD of XH))
KX/MF affinity constant of growth of protozoa for biomass

(COD, mg L−1)
KXS affinity constant for particulate substrate (COD,

mg L−1)
[mR] concentration of mR, the short half life component

of the PSS (unit L−1)
rO2 maintenance respiration rate related to maintenance

(O2 mg L−1 d−1)
S0 initial concentration of substrate (COD, mg L−1)

SNH concentration of ammonia (N, mg L−1)
SO concentration of dissolved oxygen (O2, mg L−1)
SS concentration of soluble substrate (COD, mg L−1)
X0 initial concentration of biomass (COD, mg L−1)
XH concentration of heterotrophic organisms (COD,

mg L−1)
XMF concentration of microfauna, including protozoa

and metazoa (COD, mg L−1)
YBS yield coefficient of endogenous substrate on

exogenous substrate (mg COD of BS per (mg
COD of SS))

YBSTO/BS yield coefficient of storage product on endogenous
substrate (mg COD of BSTO per (mg COD of
BS))

YH yield coefficient of biomass on stored product (mg
COD of cell per (mg COD of BSTO))

YMF yield coefficient of microfauna on bacteria (mg
COD of protozoa per (mg COD of XH))

αEA production rate of antitoxin enzyme EA (d−1)
αEBS(1or2)

production rate of uptake enzyme EBS(1or2)
(d−1)

αEh inductive production rate of hydrolysis enzyme
Eh(d−1)

αESTO production rate of storage enzyme ESTO (d−1)
αET production rate of toxin enzyme ET (d−1)
αmR production rate of mR (d−1)
βEA decay rate of antitoxin enzyme EA (d−1)
βEBS decay rate of of uptake enzyme EBS(1or2)

(d−1)
βEG decay rate of growth enzyme EG (d−1)
βEh decay rate of hydrolysis enzyme Eh (d−1)

βESTO decay rate of transportation enzyme ESTO (d−1)
βET decay rate of toxin enzyme ET (d−1)
βmR decay rate of mR (d−1)

δkmax
STO maximal specific activity of degradation enzyme

of storage product (d−1)
µH growth rate of heterotrophic organisms (d−1)

µint
H max[d−1] intrinsic maximum value of growth rate of

biomass (d−1)
µMF max[d−1] the maximum growth rate of micro fauna (d−1)

ϕEG ratio of production rate of growth enzyme EG and
growth rate (mg/mg)
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