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Abstract

Parallel hybrid modeling methods are applied to a full-scale cokes wastewater treatment plant. Within the hybrid model
structure, a mechanistic model specifies the basic dynamics of the relevant process and a non-parametric model compensates for
the inaccuracy of the mechanistic model. First, a simplified mechanistic model is developed based on Activated Sludge Model
No. 1 and the specific process knowledge of the cokes wastewater treatment process. Then, the mechanistic model is combined
with five different non-parametric models – feedforward back-propagation neural network, radial basis function network, linear
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artial least squares (PLS), quadratic PLS and neural network PLS (NNPLS) – in parallel configuration. These m
dentified with the same data obtained from the plant operation to predict dynamic behavior of the process. The perfo
ach parallel hybrid model is compared based on their ease of model building, prediction accuracy and interpretabilit
pplication, the parallel hybrid model with NNPLS as non-parametric model gives better performance than other para
odels. In addition, the NNPLS model is used to analyze the behavior of the operation data in the reduced space and

ault detection and isolation.
2004 Elsevier B.V. All rights reserved.
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. Introduction

The activated sludge process is one of the most
idespread wastewater treatment techniques for both
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domestic and industrial wastewater. Dynamic ma
matical models enhance the understanding of th
ological phenomena and provide the basis for de
and operation of biological wastewater treatment
tems. To date, the Activated Sludge Model No.1
ASM1 (Henze et al., 1987), is accepted to be one
the most successful models for carbonaceous sub
and nitrogen removal processes in many applicat
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However, the high complexity of the ASM1 with its
numerous processes and parameters often gives rise to
identification problems. Furthermore, since the model
is designed for domestic wastewater treatment only,
there is a significant limitation in its application to in-
dustrial wastewater treatment processes. It is not easy
or worthwhile to spend too much time and effort to
simulate peculiarities and non-idealities of an indus-
trial process using ASM1.

In recent years, hybrid neural network model-
ing approaches have received considerable attention
(Psichogios and Ungar, 1992; Thompson and Kramer,
1994; van Can et al., 1997; Lee et al., 2002). These ap-
proaches are potentially very efficient to obtain more
accurate predictions of process dynamics by taking the
advantages of both the mechanistic model and the neu-
ral network model. Within the hybrid model structure,
the mechanistic model specifies the basic dynamics
of the relevant process variables. The neural network
model, combined with the mechanistic model either
in parallel or in serial configuration, accounts for un-
known and non-linear parts of the mechanistic model.
In case, the mechanistic model has a reasonably accu-
rate structure, thereby reducing the identification prob-
lem to that of estimating unmeasured process parame-
ters, the serial hybrid neural model gives good perfor-
mance (Psichogios and Ungar, 1992). However, when
the mechanistic model’s structure is highly uncertain,
or contains a large number of very complex process pa-
rameters like biological wastewater treatment process,
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configuration. The non-parametric models were iden-
tified on the residuals between the mechanistic model
and the operation data to compensate for non-linearity
and uncertainty that arise from the inherent process
complexity. The parallel hybrid models were tested on
their prediction capability and compared based on their
ease of model building, prediction accuracy and inter-
pretability.

2. Materials and methods

2.1. Cokes wastewater treatment plant

The cokes wastewater treatment process (CWTP)
at a steel-making company in Korea is a conventional
activated sludge unit as shown inFig. 1. It was de-
signed for the removal of toxic organic pollutants from
the plant. Most of the chemical oxygen demand (COD)
originates from phenol, which is a toxic inhibitory sub-
strate but is also a carbon source for acclimatized mi-
croorganisms (Richards and Shieh, 1989). In addition
to phenol, cyanides and other toxic aromatic hydro-
carbons such as cresol, indole and toluene contribute
to the wastewater COD. Since a high concentration of
nitrogen compounds was found inhibitory to biodegra-
dation, pre-treatment steps such as ammonia stripping
were employed to render the wastewater more amend-
able to biodegradation. To alleviate the impact of high
concentrations of deleterious substances on the biolog-
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hen the parallel hybrid model provide a significant
antage over both the mechanistic model and the n
etwork model (Lee et al., 2002).

There has been a great preference in ne
etworks, especially feedforward back-propaga
eural networks (FBNN) and radial basis function n
ork (RBFN), as non-parametric model (Thompson
nd Kramer, 1994; Zhao et al., 1999). However, the
pproach is applicable to other non-parametric m
ls available, each varying in complexity and eas
evelopment. Alternative non-parametric models
lude linear partial least squares (PLS), quadratic
QPLS) and neural network PLS (NNPLS).

In this study, a simplified mechanistic model was
eloped to simulate the dynamic behavior of a full-sc
okes wastewater treatment plant. Then, the a
entioned five different non-parametric methods w

ncorporated into the mechanistic model in para
cal treatment, an equalization tank was installed a
he preliminary treatment stage and before the aer
anks of the activated sludge process. The hydraul
ention time of the CWTP was approximately 2.7 da
xygen was introduced by submerged mechanica
tors. Concentrated sludge from the bottom of the

fier was split into two streams: the first was recyc
o the beginning of the first two aeration tanks and
ther was treated in view of incineration of the wa
ludge. The effluent from the settler was passed thr
hemical treatment units to remove hazardous h
etal ions and to reduce the level of suspended s
nd organic matter. Operational data of five mo
ere collected at 8 h intervals. All samples were a

yzed for mixed liquor suspended solids (MLSS), CO
uspended solids (SS), cyanide (CN) and pheno
ording to the Standard Methods (APHA, 1995). Dis-
olved oxygen concentration, pH, influent flow rate
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Fig. 1. Schematic diagram of full-scale cokes wastewater treatment plant.

recycle flow rate were also measured at each sampling
time. This measuring campaign resulted in 466 opera-
tional data sets in total. The first 240 sets of data were
used for training and the remaining 226 data sets for
the validation of the developed models.

2.2. Simplified mechanistic model

A mechanistic model for the CWTP was developed
on the basis of ASM1. For the reactor system shown
in Fig. 1, the mass balances for process variables in
the reactor were established to predict the concentra-
tions of effluent components. For practical reasons, mi-
nor mechanisms were neglected and only known major
mechanisms were taken into account. Therefore, the
following assumptions and simplifications were made
based on the process knowledge and understanding of
the CWTP.

(a) All reactors were assumed to be well-agitated and
aerated continuous-flow reactors. The kinetics of
microorganisms were assumed to be the same in
all reactors.

(b) Active biomass was divided into two types
of organisms: heterotrophic (XH) and cyanide-
degrading organisms (XCN).

(c) Biodegradable carbonaceous material was classi-
fied as readily biodegradable substrate (SS), slowly
biodegradable substrate (XS) and cyanide com-
pounds (SCN). Phenolic compounds in the influent

anic

( ni-
sev-

eral reports that nitrification is inhibited by phenol,
most of the poly-nuclear aromatic hydrocarbons
and cyanide, all of which were present as carbona-
ceous compounds in the cokes wastewater (Lee and
Park, 1998).

(e) Since the dissolved oxygen concentration was
maintained at 1.5 mg O2/l, oxygen transfer was as-
sumed not to be rate-limiting.

(f) Cyanide compounds are toxic to heterotrophs. The
shock loading of cyanide during the measuring
campaign caused a deterioration of the biological
wastewater treatment process. To describe cyanide
inhibition upon the growth rate of heterotrophs, the
following rate expression was used:

µ = µ̂H

(
SS

KS + SS

)(
KI

KI + SCN

)
(1)

(g) No reaction was assumed during the clarification
and, therefore, the secondary settler was consid-
ered to be a simple separating point.

As a result, the mechanistic model consisted of eight
components and five rate equations, as listed inTable 1.
The parameter values used in the model were initially
based on literature values. For heterotrophs, most de-
fault parameters provided by ASM1 were used. Kinetic
parameters suggested byGaudy et al. (1982)were used
f ts of
s
Y der
t val-
u

were assumed to be readily biodegradable org
matter (SS). Inert particulate products (XP) arising
from biomass decay were also included.

d) Nitrification reactions were neglected, since no
trate or nitrite was detected. There have been
or cyanide-degrading organisms. From the resul
ensitivity analysis, only three parametersµH,µCN and
H were optimized using the simplex method in or

o minimize the deviations between the simulation
es and the corresponding operational data.



320 D.S. Lee et al. / Journal of Biotechnology 115 (2005) 317–328

Table 1
Simplified mechanistic model for the cokes wastewater treatment plant

j Process Componenti Process Rate�j (ML−3 T−1)

1 2 3 4 5 6 7 8
SI SS SCN XI XS XH XCN XP

1 Aerobic growth of heterotrophs − 1
YH

1 µ̂H

(
SS

KS+SS

) (
KI

KI+SCN

)
XH

2 Aerobic growth of cyanide-degrading microorganisms − 1
YCN

1 µ̂CN

(
SCN

KCN+SCN

)
XCN

3 Decay of heterotrophs 1−fP −1 fP bHXH

4 Decay of cyanide-degrading microorganisms 1−fP −1 fP bCNXCN

5 Hydrolysis of entrapped organics 1 −1 kh
XS/XH

KX+XS/XH
XH

Observed conversion rates (ML−3 T−1) ri = ∑
j νijρj

Stoichiometric papameters
Heterotrophic yield:YH

Cyanide-degrading microorganisms’ yield:YCN

Fraction of biomass yielding particulate products:fP

Kinetic parameters
Heterotrophic growth and decay: ˆµH, KS, KI , bH

Cyanide-degrading microorganisms’ growth and decay: ˆµCN, KCN, bCN

Hydrolysis:kH, KX

Fig. 2. Parallel hybrid modeling approaches.

2.3. Parallel hybrid model

In the parallel hybrid model structure, non-
parametric models described below are combined with
the mechanistic model in parallel configuration as
shown in Fig. 2. The non-parametric models were
used to estimate the difference between the mecha-
nistic model predictions and the corresponding oper-
ational data (i.e., the residuals). The key to success in

developing parallel hybrid models lies in the informa-
tion content of the residuals. If non-parametric mod-
els are trained to extract some useful information from
the residuals, the accuracy of the model would be im-
proved. Since the mechanistic model was developed
by making several assumptions and simplifications,
we expected that the residuals would have dynamic
information that was not contained in the mechanis-
tic model. In addition, external disturbances such as
composition variation, shock loadings of toxic com-
pounds and temperature variation were fed into the
non-parametric model so that it could capture the ef-
fects of these disturbances. The inputs fed to both the
non-parametric model and the mechanistic model in-
clude influent flow rateQ(t−1), sludge recirculation
rateQR(t−1), MLSS(t−1) in the reactor and the influ-
ent concentrations of CODin(t−1) and CNin(t−1). The
effluent concentrations of CODeff(t−1), SSeff (t−1)
and CNeff (t−1); pH(t−1) in the reactor; and the resid-
uals e(t−1) of MLSS, SS, COD and CN were only
fed to the non-parametric models. The non-parametric
outputs were the residualse(t) of MLSS, SS, COD and
CN. All programs used in this work were implemented
in MATLAB by using the Neural Network Toolbox
(Demuth and Deale, 2001) and the PLS Toolbox (Wise
and Gallagher, 2000).
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2.4. Feedforward Back-propagation neural
network

Neural networks have been successfully applied to
various biochemical processes (Montague and Morris,
1994; Zhang et al., 1994; Lee and Park, 1999). They
have a distinct ability to model non-linear dynamic sys-
tems without requiring a structural knowledge of the
process to be modeled. Neural networks can map a
set of input patterns onto a corresponding set of out-
put patterns on the basis of historical data from any
given system. However, neural network models have
also been criticized for a lack of dependence upon
physical relationships and a poor capacity for extra-
polation.

A feedforward back-propagation neural network
(FBNN) was employed in this study. The FBNN struc-
ture consists of one input layer, one hidden layer and
one output layer. Each layer can have a number of
neurons (processing elements), which are connected
linearly by weights to the neurons in the neighboring
layers. The number of neurons in the input and out-
put layers are predetermined by the number of input
and output variables. The hidden layer has the hyper-
bolic tangent as activation function and the output layer
the linear function. Prior to training, all variables were
scaled to the range−1 to 1. The Levenberg–Marquardt
algorithm was used for the training process. The train-
ing process adjusts weights to minimize the error be-
tween the measured output and the output produced by
t net-
w em.
T ter-
m id-
d ork
c cess
( n
l

2

rk
s orm
f t
v hid-
d nse
a eu-
r dial

basis function is the Gaussian activation function:

Ψj(x) = exp

(
−
∥∥x− uj

∥∥2

2σ2
j

)
(2)

wherex is an input vector,uj is a weight vector andσ j
is the spread of thejth basis function. The output of the
RBFN is the weighted average of the output associated
with each hidden unit:

yk(x) =
∑

j wjkΨj(x)∑
j Ψj(x)

(3)

whereyk(x) is thekth output andwjk are the weights be-
tween the hidden and output layers. A gradient descent
algorithm was used for training the network parame-
ters. The RBFN was designed by creating neurons one
at a time. Initially, the hidden layer had no neurons.
At each iteration, the input vector with the greatest er-
ror was used to create a neuron. The training algorithm
continued until the new network met the specified error
goal or the maximum number of neurons was reached.
The spread parameterσ and the number of neurons in
the hidden layer were optimized as 1.8 and 15, respec-
tively, using the response surface methodology (Box
and Draper, 1987; Draper and Lin, 1990).

2.6. Partial least squares

The partial least squares (PLS) method is a linear
multivariate method for relating the process variables
X gly
c
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w ner
r st
he network. Through this adjustment, the neural
ork learns the input–output behavior of the syst
he optimal structure of the neural network was de
ined by varying the number of neurons in the h
en layer. By comparing the performance of netw
onfigurations in the recall and generalization pro
Baughman and Liu, 1995), we found that the hidde
ayer with six neurons gave the best results.

.5. Radial basis function

A radial basis function network (RBFN) is a netwo
tructure that employs local receptive fields to perf
unctional mappings (Haykin, 1999). When an inpu
ector is applied to the RBFN, each neuron in the
en layer will output a significant non-zero respo
ccording to how close the input vector is to each n
on’s weight vector. The most frequently used ra
with responsesY. PLS can analyze data with stron
ollinear, noisy and numerous variables in bothX and
(Wold et al., 2001). PLS reduces the dimension

he predictor variables by extracting factors or la
ariables, which are correlated withY while capturing
large amount of the variations inX. This means tha
LS maximizes the covariance between matricesX and
.
In PLS, the scaled matricesX andY are decompose

nto score vectors (t andu), loading vectors (p andq)
nd residual error matrices (E andF):

X =
a∑

i=1
tipT

i + E

Y =
a∑

i=1
uiqT

i + F
(4)

herea is the number of latent variables. In an in
elation, the score vectort is linearly regressed again
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the score vectoru.

ui = biti + hi (5)

whereb is a regression coefficient which is determined
by minimizing the residualh. There are several algo-
rithms to calculate the PLS model parameters. In this
work, the non-linear Iterative Partial Least Squares (NI-
PALS) algorithm was used with the exchange of scores
(Geladi and Kowalski, 1986). It is crucial to deter-
mine the optimal number of latent variables and cross-
validation is a practical and reliable way to test the
predictive significance of each PLS component. Based
on the cross-validation results, six latent variables were
included into the PLS model. It explained 87.70% of
the variance of matrixX and 76.36% of matrixY.

2.7. Non-linear partial least squares

In order to capture non-linear structures between the
predictor block and the responses, the PLS model can
be extended to non-linear partial least squares models
(Baffi et al., 2000). Major approaches have been to in-
corporate non-linear functions within the linear PLS
framework. Especially, quadratic functions and neu-
ral networks have been used to identify the non-linear
inner mapping between the input and the output la-
tent variables.Wold et al. (1989)proposed the QPLS
method to make a polynomial fit for the PLS inner re-
lation. QPLS works just like PLS and uses the NIPALS
a pair
o ons
a een
t e of
t f la-
t asis
o ned
8 f
m
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c
T the
l h la-
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o

u

Fig. 3. Simulation results of the simplified mechanistic model.

whereF(·) stands for the inner relation represented by
a neural network andv is the residuals. The neural net-
work is trained to capture the non-linearity in the pro-
jected latent space. The major advantage of NNPLS
method is that it decomposes a multivariate regression
problem into a number of univariate regressors so that it
can circumvent the over-parameterization problem. In
this application, a FBNN with sigmoid functions was
used to identify the non-linear inner regression models
for each of the six latent variables. The model explained
88.15% ofX-variance and 78.33% of theY-variance.

3. Results and discussion

3.1. Model identification results

Simulation results of the simplified mechanistic
model are shown inFig. 3. To maintain industrial con-
fidentiality, the ordinates of all time-series simulation
results were normalized to that of the variables of the
CWTP. As can be seen inFig. 3, the mechanistic model
predicted some of the general characteristics of pro-
cess behaviors, but there was a significant mismatch
between the model prediction and actual plant data.
lgorithm to calculate the latent variables. Once a
f latent variables is calculated, polynomial functi
re used to model the functional relationship betw

he pair of latent variables. In this study, the degre
he polynomial used was two and the number o
ent variables in the model was set to six on the b
f the cross-validation analysis, which then explai
7.57% of the variance of matrixX and 76.53% o
atrixY.
Neural network PLS (NNPLS) is an integration

eural networks with PLS to model non-linear p
esses with input co-linearity (Qin and McAvoy, 1992).
he input and output variables are projected onto

atent space to remove collinearity and then eac
ent variable pair is mapped with a single-input–sin
utput (SISO) neural network as follows:

i = F (ti) + vi (6)
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Table 2
Comparison of different parallel hybrid models

Non-parametric model Structure TNPc RSSEtraining RSSEvalidation BIC

– Only mechanistic model 12 0.143 0.201 −1591.6
FBNN 13-6-4 112 0.018 0.163 −1571.0
RBFN 13-15-4, sca = 1.8 257 0.012 0.130 −1963.9
PLS lvb = 6 80 0.056 0.184 −1640.5
QPLS lvb = 6, order of polynomial = 2 98 0.021 0.045 −1483.7
NNPLS lvb = 6, SISO FBNN 122 0.019 0.038 −1474.3

a Spread constant.
b Number of latent variables.
c Total number of parameters.

This discrepancy was especially severe when the pro-
cess experienced the shock loading of toxic cyanide
(from operation data 250 to 279) as described in detail
in the next section. Normal cyanide concentration in
the influent was about 12 mg l−1, but during the upset
period it increased abruptly up to 26 mg l−1 between
days 84 and 87 (corresponding to data points 250 and
258). The system took the shock of the adverse load-
ing with a leakage of organic carbon into the effluent
and a rather severe decrease in biomass concentration
(Fig. 3). After this shock loading period, the mecha-
nistic model gave even poorer predictions than it did
before the process damage. This can be attributed to
changes in the activities of microorganisms or changes
of kinetic parameters.

All parallel hybrid models were identified with the
same operation data obtained from the plant. With the
respective optimal parallel hybrid models, the results
of the validation stage enabled the different modeling
approach to be evaluated and compared. The perfor-
mance of each model was evaluated in terms of the rel-
ative sum of squared error (RSSE) criterion. The RSSE
performance index was defined as:

RSSE=
∑∥∥tij − yij

∥∥2

∑∥∥yij

∥∥2
(7)

where yij denotes theith value of the outputj and
tij the associated prediction value.Table 2 shows
the RSSE values of the training and validation data
s es.
A a-
t ared
w ca-
t ant
i ys-

tem, but which was not considered in the mechanistic
model.

Both the FBNN and RBFN modeling structures pro-
vided a very good fit to the training data. However, the
hybrid FBNN model showed a relatively poor predict-
ing ability for the validation data set. One disadvantage
of such global methods like FBNN is that a new sample
may change the model everywhere. Local interpolation
methods like RBFN overcome this drawback by utiliz-
ing only the neighboring samples of the estimate at a
lookup point (Carlin et al., 1994). However, the RBFN
model required more neurons in the hidden layer than
the FBNN. When the inputs vary over a wide range,
the number of required neurons in the RBFN model
becomes high. Initialization of weights and bias in the
RBFN model is not a random process (Tettch et al.,
1996). Therefore it was possible to optimize the RBFN
model by a traditional factorial design for the spread
parameterσ and the number of neurons in the hidden
layer. For both the FBNN and the RBFN models, pa-
rameter optimization is an iterative process. Therefore,
the iterative methods might not reach a unique mini-
mum or be trapped in local minima. In addition, it is
a disadvantage that the weights and biases in the net-
work structures cannot be interpreted directly. These
methods always give the output as a coupled depen-
dency of all the input variables. Some researchers have
tried to interpret the transformation made by the hidden
layer, but the results are not very applicable for prac-
tical model interpretation (Garson, 1991; Gallinari et
a

el
w orst
p ling
a eak-
n hen
ets for five different hybrid modeling approach
ll models predict the dynamics of the wastew

er treatment process with good accuracy comp
ith the mechanistic model. This is a clear indi

ion that the residuals contained sufficient relev
nformation about the dynamic behavior of the s
l., 1991).
It is clear fromTable 2that the parallel hybrid mod

ith PLS as non-parametric model gave the w
rediction performance among the hybrid mode
pproaches. This exemplified the fundamental w
ess of the linear multivariate regression model. W
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non-linear regression methods were used for modeling
the inner relations in the PLS, the prediction capabil-
ities were largely improved. The hybrid QPLS model
gave a better prediction performance than the hybrid
PLS model. However, quadratic models are still linear
in their parameters and do not guarantee a proper solu-
tion for mapping non-linear relationships between the
input and output variables (Bro, 1995). In this study, the
parallel hybrid method with NNPLS as non-parametric
model gave the best prediction performance, based on
the RSSE of the validation data set (Table 2).

However, the goodness of fit for the parallel hybrid
modeling approaches with different numbers of de-
grees of freedom cannot be assessed only by the RSSE.
More complex models with larger numbers of parame-
ters will improve the model fit to the data, as it reduces
the RSSE of the residuals between the model predic-
tions and the corresponding operation data. It is, there-
fore, necessary to have quantitative measures of model
adequacy for deciding between competing model struc-
ture. For large data sets, the appropriate criterion to use
is the Bayesian information criterion (BIC) proposed
by Leonard and Hsu (1999):

BIC = L(
�
ϑ
∣∣yij ) − p

2
ln

N

2π
(8)

whereL is the likelihood function of the model,
�
ϑ de-

notes the maximum likelihood estimates of the vector
of unknown parameters,p the number of parameters
andN the number of measurements. For the likelihood
f m
a ters,
w

L

w
t
B d
M
m ny
o del
i ari-
s ybrid
N the
a

y-
b as

Fig. 4. Simulation results of the parallel hybrid model with NNPLS
as non-parametric model.

greatly improved for both training and validation data
sets, compared with the mechanistic model.Fig. 5
shows the first principal inner relations between the
X andY-block by both the PLS and NNPLS meth-
ods. It shows how the NNPLS method captures the
non-linearity and thus outperforms the linear PLS
model. This increased prediction performance can be

Fig. 5. Score plots of the first latent factor coefficients (dot: data
points, dotted line: PLS inner model, solid line: NNPLS inner model).
unctionL,Main et al. (1999)take the natural logarith
nd maximize with respect to the unknown parame
hich gives the maximized logarithmic likelihood:

(
�
ϑ
∣∣yij ) = −N

2
ln
{∑

[yij − f (
�
ϑ
∣∣xij )]2

}
(9)

heref (
�
ϑ
∣∣xij ) is the model output at theith value of

he inputxj . From Eq.(8) and (9)a model with a high
IC is preferable to one with a lower value (Seher an
ain, 2004). As shown inTable 2, the hybrid NNPLS
odel’s BIC was much higher than the BIC of a
ther models, implying that the hybrid NNPLS mo

s the best model in this direct quantitative comp
on. These results consistently showed that the h
NPLS model outperformed the other models in
spect of both model prediction and complexity.

Fig. 4 shows the simulation results of the h
rid NNPLS model. The prediction performance w
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explained by the fact that the CWTP, in this application,
is an inherently non-linear system with time-varying
reactions of the microorganisms and large variations
in the incoming wastewater. The NNPLS could extract
non-linear information from the residuals to compen-
sate for the inaccuracy of the mechanistic model. The

measured data versus the predicted values from the hy-
brid NNPLS model are shown inFig. 6. Those plots
visualize the performance of the models in an obvious
way. Ther-squared value (r2) represents the fraction
of the variance explained in the operation data by the
model.
Fig. 6. Measured vs. predicted val
ues of the hybrid NNPLS model.
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Fig. 7. NNPLS score plot of operation data (dotted ellipse: 95%
confidence limit).

3.2. Process monitoring with NNPLS

PLS models have interesting capability of vi-
sualizing high-dimensional data through the lower-
dimensional projections defined by the small number
of latent variables. By examining the dynamic behavior
of the process data in the reduced space, it is often pos-
sible to extract very useful information.Fig. 7shows a
score plot of the collected data in the space of the result-
ing first two latent variables from the NNPLS model in
the parallel hybrid structure. The score plot provides an
adequate representation of the process behavior. Most
of the normal operating data were contained within
the control contour of 95% confidence limit. However,
when the process instability occurred, the correspond-

ing process data points (from operation data 250 to 279)
progressively moved outside the ellipsoidal boundary,
and then returned to the inside the confidence limit,
when the process was recovered from the damage. It
is also straightforward to determine how much each
of the input variables contributes to the variations in
the output variables.Fig. 8shows the contribution plot
to the operation data 250, which clearly identifies that
cyanide concentration in the influent contributed to the
disturbance. From operation data analysis, we found
that the process upset was caused by a shock loading
of cyanide in the influent (Lee et al., 2002). Therefore,
the additional advantage of the hybrid NNPLS model
is to allow process monitoring and easier interpretation
of process behavior, compared with the parallel hybrid
model with FBNN and RBFN as non-parametric mod-
els.

4. Conclusions

Five different parallel hybrid modeling strategies
were applied to a full-scale industrial wastewater treat-
ment plant and the prediction performance of each
model was evaluated and compared. First, a mech-
anistic model was developed based on ASM1 and
the specific process knowledge of the cokes wastew-
ater treatment plant. The mechanistic model could not
adequately account for the dynamics of the process,
b the
m etric
m tric

lot to o
Fig. 8. Contribution p
ut could predict only an approximation. Then,
echanistic model was combined with non-param
odels in parallel configuration. The non-parame

peration data point 250.
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models evaluated include FBNN, RBFN, PLS, QPLS
and NNPLS. All parallel hybrid models could improve
the mechanistic model’s prediction performance with
available operational data. The parallel hybrid models
with FBNN and RBFN method could fit the training
data very well, but could not adequately predict val-
idation data, compared with the hybrid models with
QPLS and NNPLS. The hybrid PLS model was not able
to sufficiently capture the inherently non-linear charac-
teristics of the cokes wastewater treatment plant. In this
study, the hybrid NNPLS model achieved the best pre-
diction performance benefiting from the inclusion of a
non-linear mapping between the input and output latent
variables. In addition, the hybrid NNPLS method could
analyze process behavior effectively and allow for fault
detection and isolation. The proposed parallel hybrid
modeling strategy is a cost-effective and accurate tool
that can be applied to biological wastewater treatment
processes in the absence of reasonably accurate process
models.
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