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Abstract

Within the context and scope of the forthcoming European Union chemical regulations (REACH), there is a need to

be able to prioritise the chemicals for evaluation. Therefore, a simple, pragmatic and adequately conservative approach

for the identification of substances of very low or no immediate concern at an early stage is presented. The fundamental

principles and basic concepts are derived from the EU Technical Guidance Document and EUSES, and are translated

into an easy-to-use rule-based system. For this development, the effect on risk characterisation ratios (RCRs) of the key

environmental parameters in EUSES was quantified (taking into account several standardised chemical release scenar-

ios). Using statistical analysis, ranges were identified for each key parameter, within which the end result of the assess-

ment was not significantly affected. This information was then translated into a lookup table from which environmental

risk characterisation ratios can be directly read as a function of a few parameters.
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1. Introduction

Increasing concern that current EU chemicals policy

does not provide sufficient protection and that less than

50 high priority substances underwent a risk assessment

in the past 10 years (Bodar et al., 2003) led to an EU
ed.
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Commission review of the current policy on chemicals.

A new system called REACH (Registration, Evalua-

tion, Authorization of CHemicals) has now been

proposed (CEC, 2003). The aim of REACH is �to estab-

lish a single coherent system focusing public resources

on those substances where, according to experience,

the involvement of authorities is indispensable and

the added value in terms of provision of safety is

substantial�.
Within the context and scope of the forthcoming

chemical regulations (REACH), there is a need to be

able to perform risk assessments on 30000 chemicals

manufactured in or imported into Europe. Currently

when the environmental exposure assessment is per-

formed in accordance with the EU Technical Guidance

Document (TGD) or via EUSES software requires

many data acquisitions and consequently can absorb

considerable time and resource allocation. Therefore,

there is a need for a pragmatic and adequately conserva-

tive (i.e. no false negatives) approach, that shares the

same fundamental principles and basic concepts and

methodology as the TGD (and EUSES) but allows for

a ready identification of substances of very low or no

immediate concern. The goal of this paper is to quantify

the effect that key environmental parameters in the

EUSES model have on risk characterisation ratios

(RCRs) of the compartment of concern, taking into ac-

count several standardised chemical release scenarios.

Further, the paper will describe how this information

was used to develop a pragmatic approach in the format

of a simple lookup table with RCRs.
2. Methodology

2.1. Key drivers of EUSES risk assessment

2.1.1. Complexity of EUSES model

The fundamental principles and methodology of the

EU Technical Guidance Document (TGD) for risk

assessment of new and existing substances (EC, 1996b;

ECB, 2003b) is implemented in the computer program

EUSES (European Union System for the Evaluation

of Substances). This was designed to be a decision-sup-

port system for the evaluation of the risks of substances

to man and the environment. The documentation and

program can be obtained from the European Chemicals

Bureau, Ispra, Italy (EC, 1996a).

The main outputs of EUSES are local and regional

risk characterisation ratios (RCRs) for several environ-

mental compartments (air, surface water, sediment, soil,

biota). A RCR is the ratio of the predicted environmen-

tal concentration (PEC) and the predicted no effect con-

centration (PNEC). A substance is potentially of

concern when the RCR is larger than 1. The core

EUSES model (without the embedded models Simple
Treat, Simple Box and the effect and risk characterisa-

tion) requires 466 input parameters, 961 connections be-

tween parameters and 132 defaults (Berding et al., 1999).

In addition, the number of emission scenarios is large

because an emission scenario is determined by a combi-

nation of one of the four main categories (MC), one of

the 15 industry categories (IC) and one of the 55 use cat-

egories (UC). The MCs were intended originally to pro-

vide a general impression of the relevance of the

exposure during the whole life-cycle of the chemical.

In the context of environmental risk assessment, MCs

are often used to characterise release scenarios for the

estimation of emissions to the environment at individual

stages of the life-cycle, i.e. at production, formulation

and industrial/professional use. They can therefore be

allocated to release fractions, which are used as default

values where specific information is lacking. The four

MCs are (I) ‘‘Use in closed systems’’, (II) ‘‘Use resulting

in inclusion into or onto a matrix’’, (III) ‘‘Non-disper-

sive use’’ and (IV) ‘‘Wide dispersive use’’ (EC, 1996b;

ECB, 2003b). The ICs (Industrial Categories) specify

the branch of industry (including personal and domestic

use, and use in the public domain) where considerable

emissions occur by application of the substance as such,

or by the application and use of preparations and prod-

ucts containing the substance. The UC (Use Category)

specifies the specific function of the substance.

It can be concluded that EUSES is a highly complex

model. Running this model appropriately requires a sig-

nificant amount of substance-specific data as well as a

thorough understanding of release and emissions scenar-

ios. As such, in practice the EUSES model is only use-

able for priority substances (for which a large and

complete data set is available), and can only be handled

by experienced risk assessors.

2.1.2. Key drivers of EUSES model

Some input parameters in EUSES have a more

important contribution to the RCRs than others. Thus

in attempting to simplify the exposure assessment these

key drivers need to be identified. In literature, some sen-

sitivity analysis on EUSES has already been performed

to identify these key parameters.

In Jager et al. (1997, 1998, 2000), tonnage and the re-

lease fraction (based on the release scenario) were iden-

tified as important input parameters for the exposure

assessment of the aquatic compartment (water and sed-

iment), the sewage treatment plant and the atmospheric

exposure. Biodegradability can be important in almost

every compartment. The organic carbon–water partition

coefficient (Koc) and the bioconcentration factor (BCF)

are important in respectively the terrestrial compartment

and the fish and worm eating predators. Both Koc and

BCF are highly correlated with the octanol–water parti-

tioning coefficient (Kow) (Schrap and Opperhuizen,

1990).



Table 1

Parameters of the production and wide dispersive use scenario

Local Point source or production scenario Wide dispersive or private use scenario Unit

Local direct emission to air 6.85E�3 0 kg/d

Local emission to wastewater 266.8E�3 0.542E�3 kg/d

Number of days for emission 365 365 d

Fraction to air 0.025 0 [–]

Fraction to wastewater 0.974 0.99 [–]

Fraction to industrial soil 0.001 0.01 [–]

Fraction of the main local sourcea 1 0.002 [–]

a Conversion factor from regional to local emission.
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Berding (2000) carried out a local sensitivity analysis

on the estimation of regional background concentra-

tions for a number of substances. It was not possible

to link classes of substances with particular physico-

chemical and biodegradation properties to sensitivities

of input parameters. Nevertheless, some correlations be-

tween model parameters and sensitivities could be estab-

lished (Berding, 2000). The lower the degradation rate in

a compartment, the higher the sensitivity to the physico-

chemical data. The sewage treatment plant model plays

only a minor part in calculating regional background

concentrations. A sensitivity analysis on the local PEC,

which is always higher and therefore more relevant than

the regional PEC, was not performed.

Further, volatility is a critical parameter for the expo-

sure assessment in case of highly volatile substances (as

these substances will eventually end up in the atmo-

spheric compartment rather than the aquatic or

terrestrial).

Consequently, the key parameters for an environ-

mental risk assessment are: on the exposure side: ton-

nage, release scenario, biodegradability, lipophilicity

(octanol/water partitioning) and volatility; and on the

effects side: ecotoxicity. Release scenario and biodegrad-

ability are specified in EUSES as categorical (respec-

tively nominal and ordinal) parameters. All other key

parameters are continuous variables.

2.2. Effect of key parameters on EUSES output

2.2.1. Release scenarios

In EUSES (and the TGD), a large number of release

scenarios are defined (A/B Tables in the TGD, dealing

with emissions at different life cycle stages, depending

on a chemical�s industry and use category). Essentially,

these scenarios can be reduced to two distinct release op-

tions: point source and wide dispersive release. All re-

lease scenarios are effectively linear combinations of

these 2 basic options, with a different weighting of the

two (EC, 1996b; ECB, 2003b).

In this exercise, the two options for release were pro-

duction (point source emission assuming 100% release)

and wide dispersive use (private use, based on the
TGD detergent scenario IC5/UC9). The parameters of

the two scenarios can be found in Table 1.

The release fractions presented in Table 1 can be

overly conservative especially for particular uses such

as intermediate chemicals for which emissions are extre-

mely low. The release scenarios could therefore be more

refined based on the Main Category (MC). In order to

determine a conservative and representative release frac-

tion for each MC, a quantification of all possible release

fractions (defined in the A tables of the TGD) is needed.

In Verdonck et al. (2003), an attempt was made to cha-

racterise the probability distribution of release fractions

per MC. However, no information about the frequency

of occurrence of specific scenarios (industry and use cat-

egories, tonnage, classes of physico-chemical properties)

in the overall chemical universe was available. It was

concluded that an extensive database of chemicals and

their use scenarios would be needed to successfully con-

duct this analysis.
2.2.2. Parameters with linear effect

The effect of tonnage and ecotoxicity on RCR is eas-

ily predictable because the tonnage is linearly related to

the RCR and the PNEC is inversely related to the RCR.

If, for example, tonnage is doubled, RCR is also dou-

bled. Similarly, if the predicted no effects concentration

(PNEC) is decreased twofold, the RCR will be doubled.

As the effect of these parameters is highly transparent, it

was not further assessed in this paper. The PNEC for the

aquatic compartment was set to 1 lg/l. PNECs for other

compartments were calculated based on the partition

distribution theory as described in the TGD. In this

way, the PEC was always compared to its proper PNEC

for each compartment.
2.2.3. Parameters with non-linear effect

The lipophilicity (expressed in the octanol/water par-

titioning coefficient or in short Kow) is a continuous var-

iable, ranging for the log transformed value from less

than 0 (highly hydrophilic) to larger than 6–7 (highly

hydrophobic). logKow has a continuous effect on the

RCR except for a step-increase in the RCR where
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logKow equals 5 due to specific correction factors in the

EUSES model that are activated if logKow is larger than

or equal to 5 (EC, 1996b; ECB, 2003b).

Volatility (expressed as the air/water partition coeffi-

cient (Kaw) or dimensionless Henry�s Law Constant (H))

is a continuous variable that ranges from very low (close

to 0) to very high (order of magnitude 10E+6). The effect

of H on the RCR is especially meaningful when the envi-

ronmental compartment of concern is changed due to H.

Henry�s law constant is equal to the ratio of the vapour

pressure and the water solubility (SOL). In the EUSES

model the Vapour Pressure (VP) is used instead of the

Henry�s law constant.

The dependence of the water solubility (SOL) on the

octanol–water partition coefficient (logKow) was taken

into account by using the QSAR of Hansch et al.

(1968) to calculate solubility from Kow:

logðSOLÞ ¼ �1:214 � logKow þ 0:85

where SOL is the water solubility in mol/l.

This way, unrealistic combinations of logKow and

SOL were avoided.

For biodegradability, four standard options are

available in EUSES: non-biodegradable, ultimately

(inherently) biodegradable, readily biodegradable failing

the 10-day window, and readily biodegradable. The ef-

fect of these four options was examined, and a first

screening indicated that only two options really needed

to be considered: readily biodegradable and non-biode-

gradable. The other two options are intermediates of

these two extremes, with results closest to the �non-bio-

degradable� option.

2.2.4. Other (fixed) EUSES input parameters

The properties of the hypothetical substance �hypo-

theticum� (as described in the publications on the Sim-

pleTreat model, Struijs et al., 1991) were used. The

EUSES default parameters were used as much as possi-

ble. The physico-chemical properties of hypotheticum,

can be found in Table 2.
Table 2

Physico-chemical properties of hypotheticum

Physico-chemical properties Symbol Value Unit

Melting point �35 �C
Molecular weight 200 g/mol

Octanol–water logKow Variable [–]

Water solubility SOL Dep on Kow mg/l

Vapour pressure VP Variable Pa

Predicted no effect

concentration (aquatic)a

PNEC 0.000001 kg/m3

a PNECs for other compartments are calculated according

to the partition distribution theory.
3. Response analysis

3.1. Response plots

Based on the identification of the EUSES key para-

meters, it was decided to investigate the effect of two re-

lease scenarios (wide dispersive use and point source),

two biodegradation options (readily and non-biodegrad-

able), the continuum of logKow and the continuum of

logVP on the RCRmax. RCRmax is the maximum local

RCR found for either the aquatic, the terrestrial or the

sediment compartment, i.e. the compartment of most

concern.

Response plots are three-dimensional displays of a

response variable (RCRmax in this case) on the regular

grids of the explanatory variables (logKow and VP in

this case). A Monte Carlo type of analysis was used to

create response plots. Uniform distributions were as-

sumed for logKow and logVP with their respective

ranges 0–7 and �2 to 6. Independent random samples

are then taken from each distribution in several runs

(using the efficient sampling algorithm Latin Hypercube

(McKay, 1988)). In each run, RCRmax is calculated

using the EUSES model. The water solubility is also var-

ied based on logKow as described above. After many

runs, enough data is gathered to construct the response

plots.

The result of these four scenarios is represented as a

series of three-dimensional plots, representing the

RCRmax (for a given tonnage, ecotoxicity, release sce-

nario and biodegradability) in one axis as a function

of logKow and logVP in the remaining axis in so-called

response plots.

Next, based on the shape of the response plots, the

continuum of combinations of logKow and VP was di-

vided into a limited number of fields in the parameter

space, within which distinctive groups of the RCRmax

occur. This division was the basis for the creation of

the RCRmax lookup table.

The EUSES program is a so-called �closed software�
making it impossible to perform an automatic Monte

Carlo or sensitivity analysis (Berding, 2000) as the

EUSES software needs to be controlled in order to auto-

matically assign different values for logKow and logVP.

For this, an unofficial spreadsheet version of EUSES

was made available by RIVM for this research (RIVM,

2003) 1. This EUSES spreadsheet was benchmarked

against the official EUSES program, and was found to

be a sufficiently accurate surrogate. The @RISK pack-

age (Palisade, 2002) was used for the Monte Carlo anal-

ysis in Microsoft Excel. The sampled inputs together

with the simulated output (RCRmax) are stored and after
1 RIVM does not take responsibility on the performance of

the unofficial EUSES spreadsheet.
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the simulations those data were introduced in Tecplot

(Dundas Software, 2001) to obtain a three-dimensional

view of the results. The number of Monte Carlo simula-

tions was set at 1000. Fig. 1 shows 1000 combinations of

logKow and logVP are sufficient to be randomly distrib-

uted over the parameter space of logKow and logVP

while totally covering the range for all scenarios.

In Fig. 2, the effect of logKow and logVP on the

RCRmax is illustrated. On the basis of those figures a

division is made in 4 distinct groups of the RCRmax.

For logKow, two distinct groups can clearly be discrim-

inated: logKow larger and smaller than 5. For logVP,

two groups can also be distinguished: logVP larger

and smaller than 0, as for logVP larger than 0, the

RCRmax decreases significantly.

3.2. RCR lookup table

For each defined class of logKow, logVP, release sce-

nario and biodegradability, a distribution of RCRmax

values was found. The maximum, 95th percentile and

median were calculated for each class. The RCRmax

summary statistics for two release scenarios (production

and private use), two biodegradability classes (readily

and non-biodegradable), two classes of logVP and two

classes of logKow can be found in Table 3. Note that

the RCRmax values of the private use scenario differ

approximately a factor of 0.002 compared to the

RCRmax values of the production scenario. This corre-

sponds with the different fractions of the main local

source (respectively 0.002 and 1).

The RCRmaxs in the lookup table were determined

with a tonnage of 1 tonne/year and a PNEC of 1 lg/l.
But since the RCR is linearly related to tonnage and eco-

toxicity, the RCRmaxs from the lookup table can easily

be adjusted to other tonnages and PNECaquatics by using

the following simple transformation rule:

RCRmax ,tonnage,PNEC ¼ RCRmax ,lookuptable � 1 lg=l

1 tonne=year

� tonnage ðtonne=yearÞ
PNEC ðlg=lÞ :
3.3. Example

An example is given for the substance acrylaldehyde

(CAS No. 107-02-8). Substance specific information on

acrylaldehyde was downloaded from the EU Risk

Assessment Report at the ECB website (2003a) and

can be found in Table 4. The information needed for

application of the lookup table is also listed. The

RCRmax from the lookup table is 2.12 (95th percentile

is taken). Transforming this RCRmax to a tonnage of

100000 tonnes/year and PNECaquatic of 0.1 lg/l gives

an RCRmax of 2120000. This indicates that further

(more detailed) risk assessment is required. The example

demonstrates that only a limited amount of information

and only the simple lookup table and formula is needed

to calculate a worst case risk characterisation ratio.
4. Preliminary validation

A preliminary validation was performed in order to

explore the conservativeness of the developed lookup

table. The approach was applied on 41 chemicals which

were identified by the authorities as a priority for a

detailed and comprehensive risk assessment. The data

used were extracted from the current draft and finished

EU Risk Assessment Reports (RAR) on these chemicals

(downloaded from ECB, 2003a). The outcome was

then compared with the risk assessment outcome

based on the full EUSES assessment. The RARs indi-

cated that all chemicals had a RCRmax larger than

one. The screener, based on the proposed lookup table

(95th percentiles were used) indicated a potential con-

cern for all chemicals and therefore required further

assessment for all chemicals.

As such, the preliminary validation exercise has dem-

onstrated that the substances that were selected as prior-

ity chemicals within the EU existing substances work,

would also trigger further risk assessments when apply-

ing the lookup table approach. This indicates there may

be a low risk of false negatives.

Clearly, a more extended validation study is needed

based on a more diverse database of chemicals (with rep-

resentatives from all main, industry and use categories

and with different physico-chemical and biodegradation
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properties) in order to further assess both absence of

false negatives and the limited occurrence of false posi-
tives. In particular, the database should also contain

chemicals of no concern, with RCRmax smaller than



Table 3

RCRmax lookup table (median – 95th percentile – maximum) (based on 1000 shots, tonnage = 1 tonne/year, PNEC = 1 lg/l)

logKow logVP Production scenario Private use scenario

Readily biodegradable Non-biodegradable Readily biodegradable Non-biodegradable

0 ! 5 �2 ! 0 2.01 – 2.24 – 2.67 16.80 – 26.04 – 26.73 0.0040 – 0.0043 – 0.0050 0.034 – 0.052 – 0.054

0 ! 6 1.51 – 2.12 – 2.19 6.29 – 16.82 – 21.53 0.0034 – 0.0043 – 0.0050 0.019 – 0.034 – 0.046

5 ! 7 �2 ! 0 9.15 – 15.46 – 23.61 16.81 – 91.14 – 97.66 0.0177 – 0.0384 – 0.0488 0.048 – 0.181 – 0.215

0 ! 6 4.68 – 5.61 – 13.05 6.00 – 7.71 – 45.69 0.0096 – 0.0150 – 0.0276 0.011 – 0.017 – 0.061

Table 4

Key parameters of acrylaldehyde

Key parameter Description/value Lookup table information

Tonnage [tonne/year] 20000–100000 100000

Release scenario Chemical industry: used in syntheses Production scenario

Biodegradability Readily biodegradable Readily biodegradable

Log(octanol/water partitioning) �1.1 0–5

Log(vapour pressure [Pa]) 4.5 0–6

Ecotoxicity (PNECaquatic [lg/l]) 0.1 0.1
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one, in order to check whether the lookup table is not

overly conservative (and identifies a need for further

assessment for essentially all chemicals). The availability

of such database will also enable the determination of

conservative and representative release fractions for

each main category in order to further refine the lookup

table.
5. Conclusions

An easy-to-use, pragmatic and adequately conserva-

tive rule-based approach for the de-selection of sub-

stances of very low or no immediate environmental

concern at an early stage was developed based on the

principles and basic concepts from the EU Technical

Guidance Document and EUSES. A simple lookup

table gives environmental risk characterisation ratios

(RCRs) for two groups of standardised chemical release

scenarios, two biodegradability groups and two octa-

nol–water partition coefficient and two vapour pressure

groups. A simple transformation rule can then be used

to calculate the RCR for specific tonnages and ecotoxic-

ities (predicted no effect concentrations). The develop-

ment of the rule-based screener and a preliminary

validation, demonstrating its objectives, also indicated

the need for an extensive and representative list of chem-

icals to further improve and validate the tool.
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