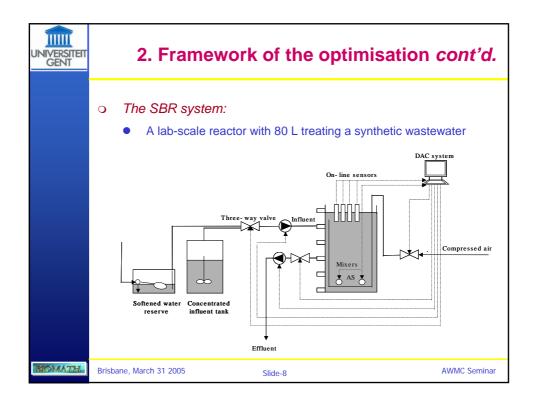
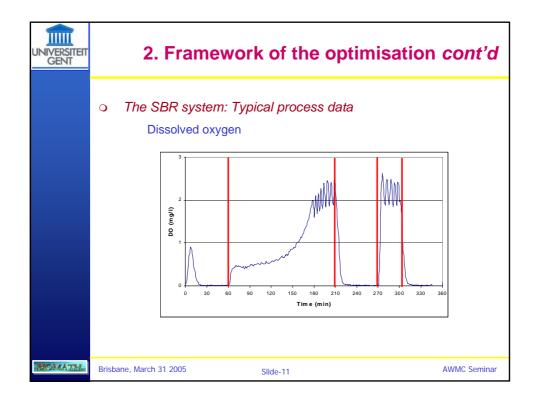
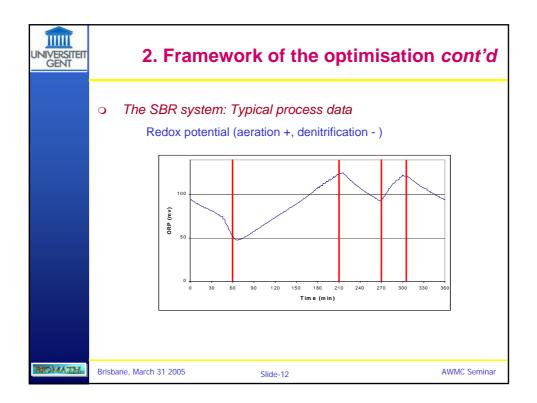
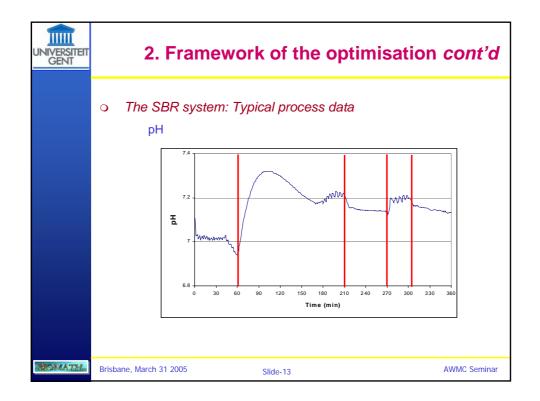

UNIVERSITEIT	Outline
	• Introduction
	 Systematic optimisation protocol
	 Evaluation of the protocol
	Definition of objective(s)
	Framework of the optimisation
	Model selection and calibration
	Scenario analysis
	Evaluation of the scenario analysis
	 Limitations of the model-based optimisation
	 Conclusions & perspectives
HIDMATH	Brisbane, March 31 2005 Slide-2 AWMC Seminar

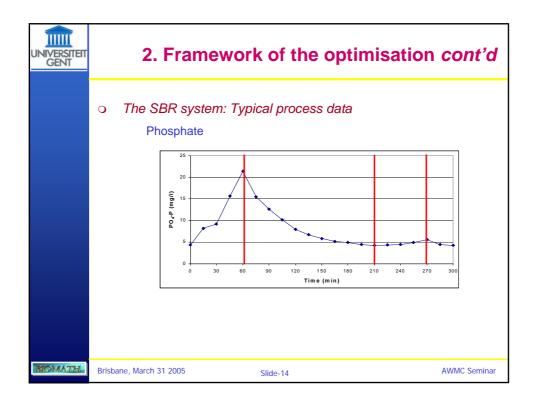

UNIVERSITEIT	Introdu	uction
	 Both N & P removal successfully demonstrated at lab- a full-scale SBR installations. 	and
	 SBR offers more flexibility in operation (compared to continuous systems) – a key aspect in process optimisation 	ation.
	• Many possible operating strategies to optimise nutrient removal performance in SBRs.	
	 Usually process developed at lab- or pilot-scale & only comparison of a few operating scenarios 	
	 Increasingly, mathematical models are used to search f the optimal operating scenario (e.g. ASM1 for N-remova and ASM2d for N- & P- removal) 	
BIOMATH	Brisbane, March 31 2005 Slide-3 A	WMC Seminar

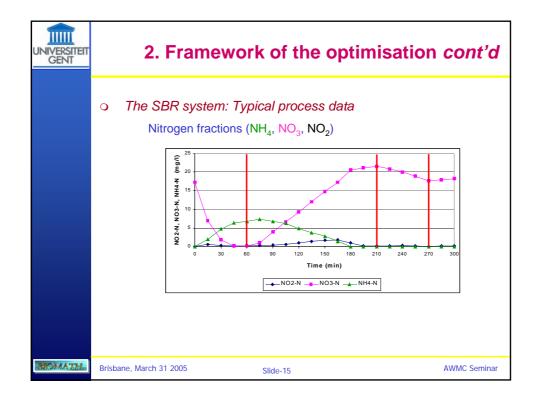

UNIVERSITEIT	Statement of Objective	
	 Systematize and standardize the model-based optimisation of SBRs. Important: i. to ensure an objective and detailed search for an optimal operating strategy ii. for internal quality check iii. to compare different optimisation studies 	
BROMATH	Brisbane, March 31 2005 Slide-4 AWMC Seminar	

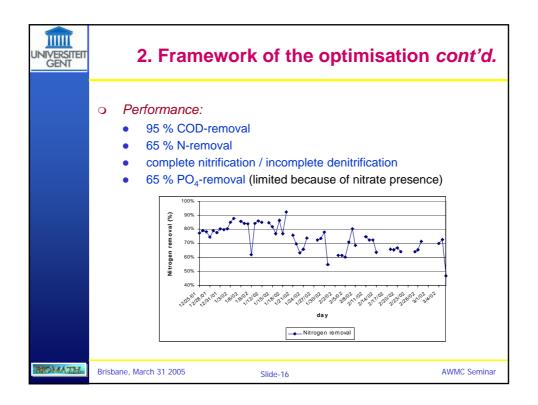

UNIVERSITEIT	Eva	aluation of the systematic p 1. Ob	rotocol jective
	o Im	proved and robust N and P remova in a nutrient removing SBR	I
BROMATH	Brisbane, March 31 2005	Slide-6	AWMC Seminar

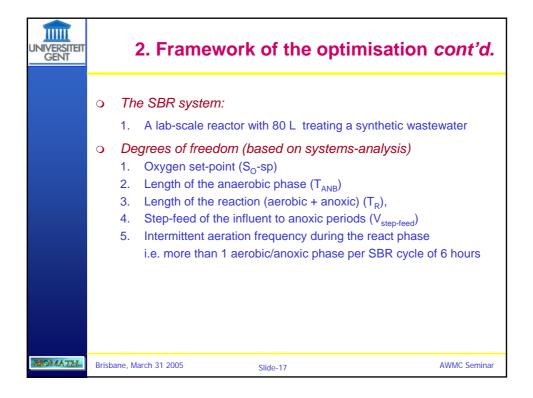


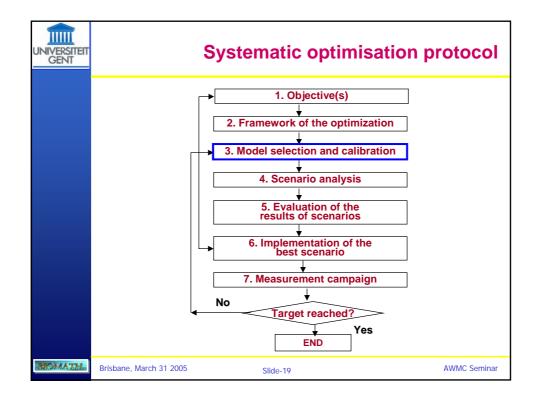


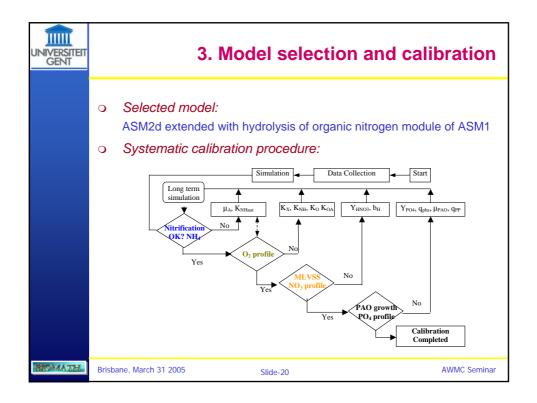


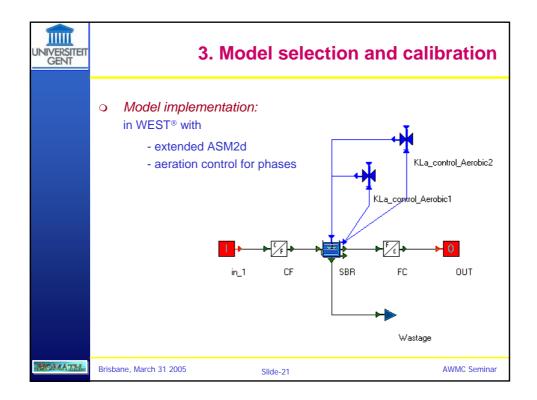

	2. Fra	new	ork of	the c	ptimi	satio	n <i>cont'd.</i>	
	• V= 80 I							
	• SRT= 10	d, HR	Г = 12h					
	 synthetic similar to 	influen munici	t (COD/N/ pal waste	P = 100/ water	/13,7/2,14)		
	 4 cycles 	per day	(6 hours)					
	Anaero	Dic A	erobic 1	Anoxic	Aerobic 2	Settling	Draw	
	60 mi	1	150 min	60 min	30 min	45 min	15 min	
	• Measurem	ents						
	 DO, pH, 	ORP, c	onductivity	/, weight	t (on-line -	 minute) 		
	• COD, C	DDsol, 1	Fotal-N, N	H ₄ , NO ₃ ,	NO ₂ , PO	4 (off-line	e - daily)	
	 MLSS (2 	2-3 g/l),	SVI (80-12	20 ml/g)	(off-line -	daily)		
	 DGGE (microbial community) (off-line - weekly) 							
BROMATH	Brisbane, March 31 2005		Slide-1	0			AWMC Seminar	

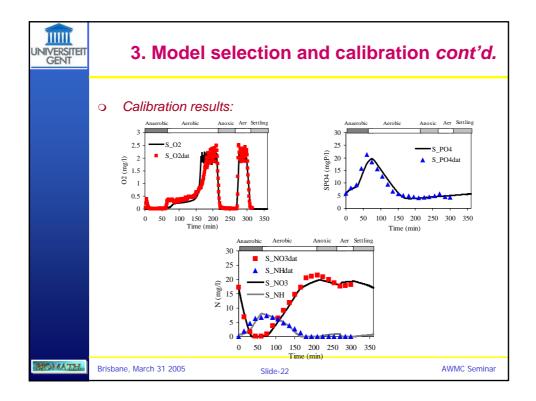


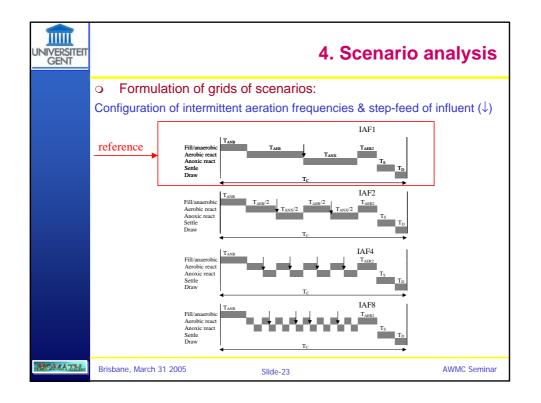


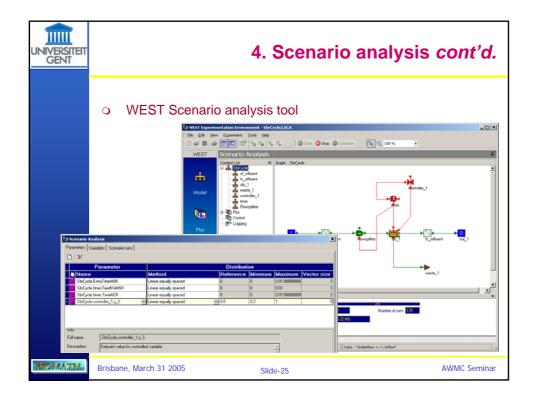






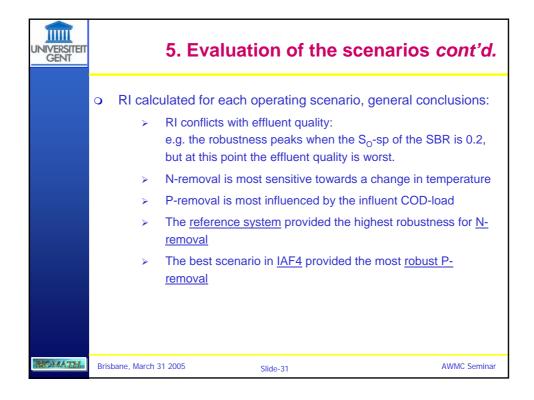



UNIVERSITEIT	2. Framework of the optimisation co	nťd.
	 Constraints Total volume (80 L) The volumetric exchange ratio, V_{initial}/V_{total} (0.5) SRT (10 d) & HRT (12 h) The total cycle length (360 min) The K_La is sufficiently high <i>to ensure oxygen at set-point</i> w The settling/draw phase fixed (60 min) 	value
BIOMATH	Brisbane, March 31 2005 Slide-18 AWM	MC Seminar

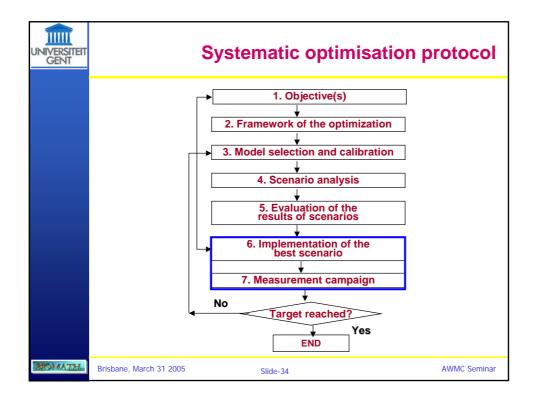


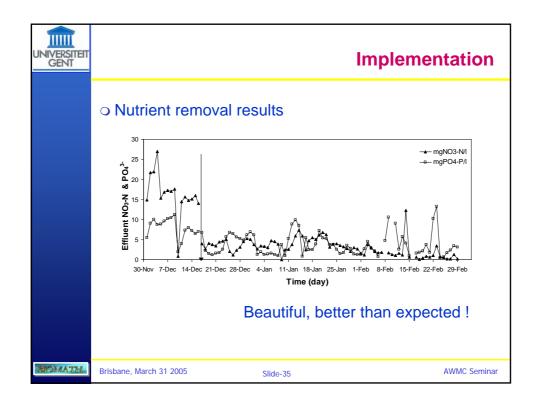


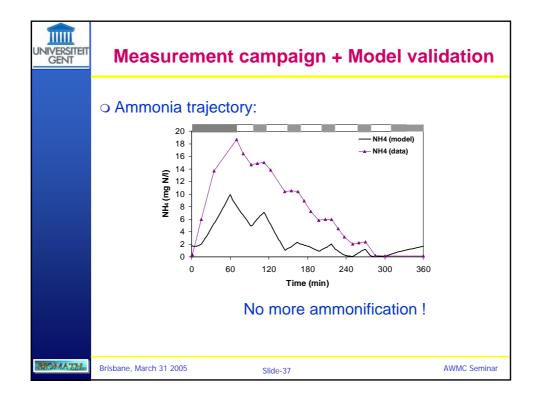
UNIVERSITEIT	4. Scenario analysis cont'd.
	 Construction of grids of scenarios Choose a range and interval for the degrees of freedoms S₀-sp: [0.2, 0.4, 0.6, 0.8, 1.0] V_{step-feed}: [0, 5, 10] T_{ANB}: [60, 70, 80] T_{AER}: [130, 140, 150] Intermittent aeration frequency:[1, 2, 4, 8] Full-factorial design of degrees of freedoms: total <u>648</u> scenarios Simulate each scenario for 3 X SRT, in this case 30 days
BIOMATH.	Brisbane, March 31 2005 Slide-24 AWMC Seminar

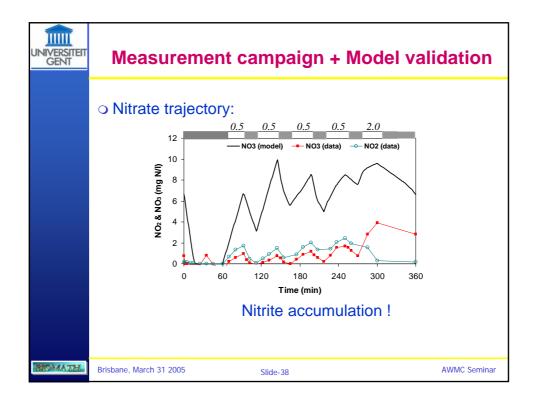

NIVERSITEIT			4. Sce	enario	analy	sis c	cont'd
	o WES	ST Scenai	rio analysis tool:	Scenario	genera	itor	
	A Scenario An	alvsis					×
	-	riables Scenario runs					
		nables Scenario rans					1
		Parameter		Distrib			
	Name		Method	Reference			Vector size
		ExtraTimeANB	Linear equally spaced	0	0	0.0138888888	
		imer.FeedVolANX	Linear equally spaced Linear equally spaced		0	0.01388888888	3
		controller_1.y_S	Linear equally spaced Linear equally spaced	0.5	0.2	1	5
	- Info Full name	.SbrCycle.timer.Feed		► S _o -sp	o: [0.2, 0.4	4, 0.6, 0.	8, 1.0]
	Description	Feed Volume to ano	xic period in one cycle (in m3)			<u>▲</u> ▼	
	Value	0.015	Initial value	Default value	0	_	
	Unit	m3	Lower bound	Upper bound	+INFINITE	_	
		,	,		,		
					<u> </u>	<u>СК Арр</u>	ly <u>C</u> ancel
HTAMOM	Brisbane, Marc	n 31 2005	Slide-26				AWMC Semina

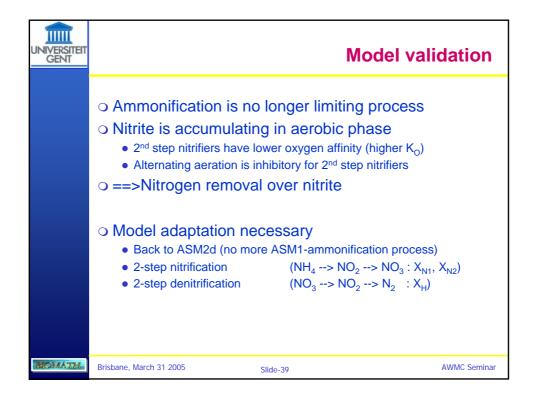
IVERSITEIT GENT		4. SCe	nario analys	IS CONT'C
	O WEST Sc	enario analysis tool:	Scenario results w	indow
	Scenario Analysis			×
	Parameters Variables Scen	ario runs		
		🛛 🚛 🖕 🐛 🔿 Cross Scenario 💿 Grid Sc	cenario	
	RUN		PARAMETERS	
		.SbrCycle.ExtraTimeANB		
				ycle.umer. InmeAre
	2	0.2	0	0.0069444444444
	3	0.2	0.0069444444444445	
	4	0.2	0.0069444444444445	0.0069444444444
	5	0.2	0	0.013888888888
	6	0.2	0.0138888888888888	
	7	0.2	0.0069444444444445	0.013888888888
	8	0.2	0.0138888888888888	0.0069444444444
	9	0.2	0.01388888888888888	0.013888888888
	10	0.4	0	
	11	0.4	0	0.0069444444444
	12	0.4	0.0069444444444445	
	13	0.4	0.00694444444444445	0.0069444444444
	14	0.4	0	0.013888888888
	15	0.4	0.0138888888888888	2000000000
	•			
			<u>0</u> K	Apply <u>C</u> ancel

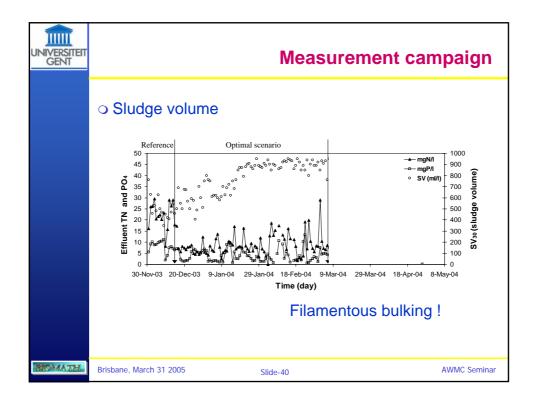

UNIVERSITEIT	5. Evaluation of the scenarios	
	 Effluent quality Effluent quality of 648 scenarios were analysed <u>Conclusions:</u> Increasing T_{ANB} improves P-removal but decreases N-removal Increasing T_{AER} slightly improves the nitrification 	
	 but has a negative effect on denitrification. The S₀-sp dictates the overall behaviour of the system. Step-feed has a positive effect on the denitrification. Increasing the intermittent aeration frequency (IAF) increases N & P removal 	
BROMATE.	Brisbane, March 31 2005 Slide-29 AWMC Semina	r

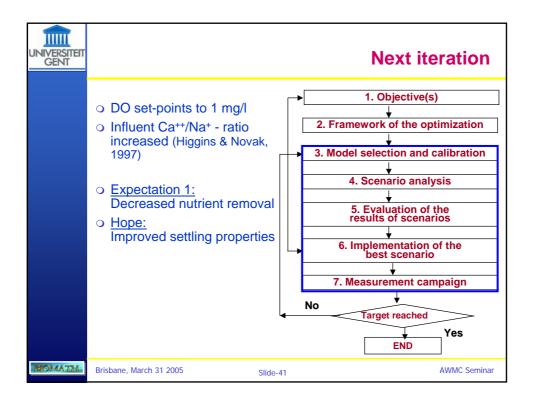

	5. Evaluation of the scenarios cont'd.
	 Robustness index (Vanrolleghem & Gillot, 2002) Inverse of sensitivity of a system towards a change in operating conditions. RI = ((√(1/p) p) s_i^p))^{-1} where S_i = dCost/dθ_i · Δθ_i/Cost i = 1p and Cost = [TN, PO₄] High value of RI (low sensitivity) means high robustness The following changes were manipulated in the SBR system: SRT (-10%) HRT (+10%) Influent COD load (-10%) Temperature (-33%)
RIOMATH	Brisbane, March 31 2005 Slide-30 AWMC Seminar

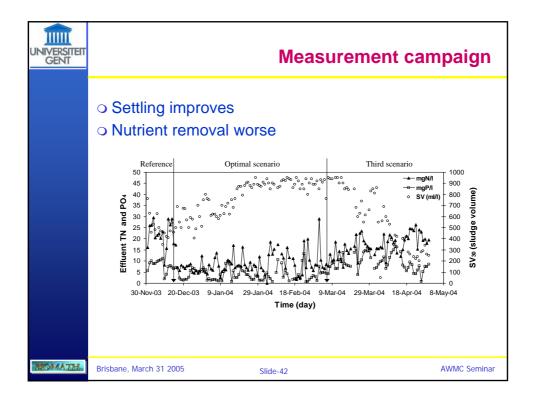

JNIVERSITEIT GENT	5. Evaluation of the scenarios of	cont'd.
	 Selection of the best scenario (BSC) Effluent quality and robustness criteria conflict A compromise is needed Optimal operation under IAF4 is chosen: provides effluent quality below discharge standards accompanied with good system stability. The N & P removal is improved by 54% and 74% respectively. 	
ROMATH	Brisbane, March 31 2005 Slide-32	AWMC Seminar

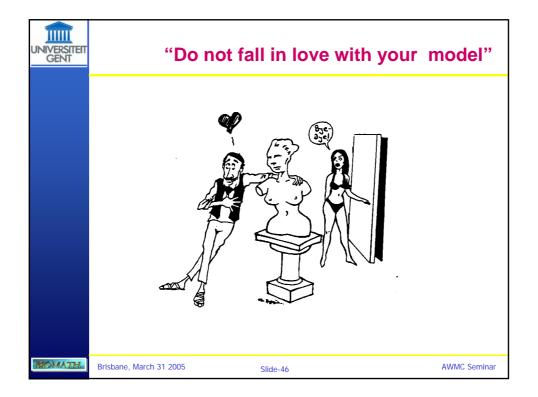


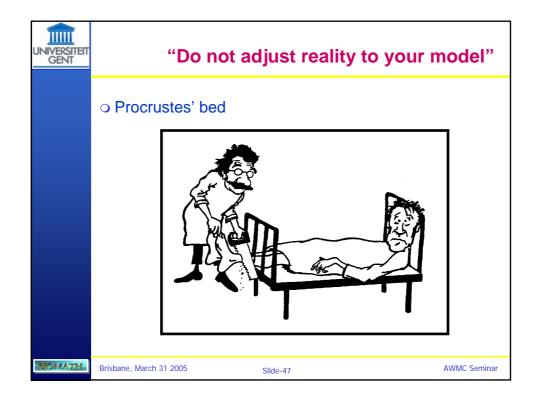





 Implementation (cont				
O Nutrient remov	al results			
	Total Nitrogen mgN/l	NH4-N mgN/l	NO ₃ -N mgN/l	PO ₄ -P mgP/l
Influent	60	5	0	11
Effluent concentration	ons			
Model prediction	8.4	1.7	6.7	1.5
Reference operation	18.1	0.1	12.5	6.6
Optimal operation	8.6	1.1	3.1	3.8
Removal efficiency				
Reference operation	70%	-	-	48%
Optimal operation	86%	-	-	65%
Improvement	+53%	_	+76%	+43%







Measurement campaign				
O Nutrient removal results:				
	COD mgCOD/l	Total nitrogen mgN/l	PO ₄ -P mg P/l	
Influent Demoval officiency	410	60	11	
Removal efficiency Reference operation (1 year average) Optimal Operation (2.5 months average)	91% 94%	56% 86%	18% 65%	
Third operation (2 months average)	92%	72%	20%	
No more Bio-P	removal	(NO ₃ -inhibit	ion)	
○ We're back to where we stand a standard stand Standard standard stan	arted			
o It's not always success sto	ries !			

UNIVERSITEIT	Limitations of model-based optimisation	۱
	 Settling properties of activated sludge are not predicted by the model 	
	 No unified mechanistic model available to predict filamentous bulking or pin-point settling issues in activated sludge. 	
	 However, expert knowledge may be incorporated at the decision making step to account for this unknown factor 	
	 Changing system operation may alter the microbial population thereby resulting in a change of the kinetic & stoichiometric parameters of the model + a change in model structure. 	
	• To account for this, iterate the systematic calibration protocol & re-calibrate the model and reconstruct the model if necessary until the objective of the optimisation is satisfied.	
ROMATH	Brisbane, March 31 2005 Slide-44 AWMC Semina	ar

UNIVERSITEIT		Conclusions & Perspectives	
	0	A systematic protocol for model-based optimisation of SBRs is developed and successfully (?) evaluated at a lab-scale SBR to achieve optimal N & P removal.	
	0	Step-feeding of influent improves denitrification => reduces negative NO ₃ -N effect on P-removal	
	0	Frequent intermittent aeration at low DO during react phase is positive for overall N & P-removal	
	0	Unmodelled phenomena should always be considered and require adaptive modelling (parameter + structure change)	
	0	The systematic protocol is made flexible and objective oriented which can be used for different activated sludge systems	
	0	Software support makes such scenario evaluation easy.	
RIOMATH	Bris	bane, March 31 2005 Slide-48 AWMC Seminar	