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Sensitivity analysis can be used to quantify the magnitude of the dependency of model
predictions on certain modelling assumptions, e.g. parameter values, initial conditions or
inputs. The finite difference method, a local sensitivity analysis technique, is discussed in detail
and situated among other methods. A lot of attention is paid to the practical issues concerning
the implementation of this technique, more specifically the effect of nonlinearities of the model
and numerical problems. The influence of the perturbation factor on the sensitivity calculations
is investigated and different criteria are proposed to assess the quality of the sensitivity
functions. A threshold value with good probability of detecting faulty sensitivity function
calculations was found for one of these criteria, implying that the method can be automated.
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1. Introduction

Sensitivity analysis studies the ‘sensitivity’ of the outputs of a system to changes in the
parameters, inputs or initial conditions which are often poorly known. Sensitivity
analysis can be divided into two large categories: local and global sensitivity analysis.
Local sensitivity analysis methods refer to small changes of parameters, while global
methods refer to the effect of simultaneous, possibly orders-of-magnitude parameter
changes. Both categories will be described in section 2 of this paper, with the focus on
local sensitivity analysis techniques. One of these sensitivity analysis techniques, the
finite difference method, will be discussed in section 4 and illustrated for models
described in section 3. The finite difference technique is often used to obtain a
sensitivity measure, most of the time without considering the nonlinearity of the model
or the round-off error introduced by the output calculations. These influences will be
analysed and discussed in detail.
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2. Sensitivity analysis

The general form of the systems that will be discussed is given by following equation:

dy

dt
¼ fðy; yÞ; ð1Þ

where y is an n-dimensional vector of state variables, y is the p-dimensional vector of
system parameters (which can include the initial conditions y0 and input variables) and
t is the independent variable.
The sensitivity of a state variable y to a parameter y can be expressed as a sensitivity

function (equation (2)). A state variable y is called sensitive to y if small changes in y
produce significant changes in y. On the other hand, a variable y is called insensitive to
y if changes in y produce insignificant changes in y.

SðtÞ ¼ @yðtÞ
@y

: ð2Þ

This partial derivative can be analytically solved if the analytical solution of equation (1)
is known. Unfortunately, this is rarely the case and numerical methods have to be used in
order to approximate the sensitivity function (equation (2)). Since sensitivity functions are
used in several applications like optimal experimental design, model reduction, etc., it is of
great importance that a correct approximation of the sensitivity function is calculated in
order for the applications, in which the sensitivity functions are used, to produce
accurate results. Local sensitivity analysis techniques evaluate this partial derivative at one
specific set of parameter values, also called the nominal parameter set. On the other hand
global techniques evaluate this partial derivative in various points of the parametric
domain. Both local and global analysis are useful in studying the behaviour of a system
since each has advantages and disadvantages. For detailed reviews of existing sensitivity
techniques reference is made to Turanyi [1] and Rabitz et al. [2]. The main focus of this
paper will be the local sensitivity analysis techniques.
Various techniques for local sensitivity analysis will be described here, which are (a)

the finite difference method, (b) the direct differential method, (c) the Green’s function
method, (d) the polynomial approximation method and (e) automatic differentiation.
The simplest way of calculating local sensitivities is to use the finite difference

approximation. This technique is also called the brute force method or indirect
method. It is very easy to implement because it requires no extra code beyond the
original model solver. The partial derivative defined in equation (2) can be
mathematically formulated by the equation given below (forward difference):

@yi
@yj
¼ lim

Dyj!0

yiðt; yj þ DyjÞ � yiðt; yjÞ
Dyj

: ð3Þ

This equation is only valid if an infinitesimal variation (perturbation) of the para-
meters is considered, inputs or initial conditions y(Dyj ! 0). Equation (3) shows that
the application of the finite difference method requires the solution of the model
(equation (1)) using the nominal value of the parameters yi(t, yj) and p solutions of the
equations using perturbed parameters yi(t, yjþDyj). It should be noted that only one
parameter is perturbed at a time while all others are kept at their nominal value.
The sensitivities obtained actually belong to the (yþDy/2) parameter set because
equation (3) can also be seen as the average of the sensitivities of the model output yi
at yj and yjþDyj. If the sensitivity coefficients associated with the nominal values yj
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are required, equation (3) should be modified into the central difference formula
(equation (4)) which requires 2p solutions.

@yi
@yj
� yiðt; yj þ DyjÞ � yiðt; yj � DyjÞ

2Dyj
: ð4Þ

The finite difference technique was found to be too calculation intensive, especially in
cases where sensitivities to many parameters were required. Therefore Atherton et al.
[3] developed the direct method for sensitivity analysis. Differentiation of equation (1)
with respect to yj yields the following set of sensitivity differential equations.
The solution of these equations results in the sensitivity functions:

d

dt

@y

@yj
¼ @f

@y

@y

@yj
þ @f

@yj
: ð5Þ

The term @f/@y of equation (5) is recognized as the Jacobian J of the original system
given by equation (1). Equations (1) and (5) are coupled through @f/@y and @f/@y. This
means that the solution of equation (5) requires the knowledge of the solution of
equation (1) in all points where the ODE (ordinary differential equation) solver
calculates the right-hand side of equation (5). A link between these two sets of
equations can be made in one of the following ways.

(i) Solve equations (1) and (5) for every parameter y simultaneously, which
requires the solution of (pþ 1)n ODEs. The direct solution of this large system
is inefficient. Although a solver has been built for these systems, based on the
decomposed direct method [4], it is not used very often.

(ii) Solve the couple of equations (1) and (5), which requires the solution of 2n
ODEs p times (for every parameter) [5]. This version is the simplest to code,
but is the least economical and might cause numerical problems due to ill-
conditioned Jacobian matrices [6 – 8].

(iii) The solution of equations (1) and (5) can be decoupled. First, differential
equations (1) are solved and the results are stored in a table. Then equations (5)
are solved using the values stored in the table. If values are required at times
without tabulated values, they are computed by interpollation [3,6,8,9]. An
improved version of this decoupled method was introduced by Dunker [10,11].
His method made use of the fact that the Jacobian matrix of equations (1) and
(5) is the same and that it only has to be triangulated once every time step.

The difficulties of solving the large sets of differential equations led to the develop-
ment of the Green’s function method, also called the variational method [12]. This
method makes use of the fact that the sensitivities (equation (5)) can be expressed in
integral, rather than differential form.

@yðtÞ
@y
¼ Kðt; 0Þ @yðtÞ

@y
ð0Þ þ

Z t

0

Kðt; tÞ @fðtÞ
@y

dt: ð6Þ

In this equation, K(t, t) is an n6n Green’s function matrix or kernel, given by

d

dt
Kðt; tÞ � JðtÞKðt; tÞ ¼ 0; t > t; ð7aÞ

Kðt; tÞ ¼ I: ð7bÞ

There are a number of variations of the Green’s function method and they differ
among each other in the calculation of the matrix K. Probably the most used method is

Practical aspects of sensitivity function approximation 397



the GFM/AIM method (Analytically Integrated Magnus). This method approximates
K by a matrix exponential [8]. It is beyond the scope of this paper to go into more detail
on these solving techniques. In all Green’s function methods, the numerical effort is
proportional to the number of variables and not the number of parameters. So this
method should be preferred when the number of parameters is large compared to the
number of variables. When the number of variables is much larger than the number of
parameters, direct differential methods should be used.
In 1983, another local sensitivity analysis technique was developed by Hwang [13,14]

called the polynomial approximation method. The basic idea behind this method is
that the temporal behaviour of the solution of equation (1) is approximated by
Lagrange interpolation polynomials. From these polynomials the sensitivity coeffi-
cients can easily be calculated. However, to our knowledge, this method was never
applied to a real problem.
Recently, a technique called automatic differentiation has gained a lot of attention.

Automatic differentiation techniques are based on the fact that every function, no
matter how complicated, is executed on a computer as a sequence of elementary
functions. By applying the chain rule of differentiation repeatedly to the composition of
these elementary operations, one can compute the derivative information exactly and
in a completely automated fashion. This method produces compilable code that
evaluates derivatives up to machine precision with a minimum of human effort [15].
All the above techniques except for the finite difference technique have one thing in

common. They all require complex manipulations of the model equations. In many
studies this is not practically feasible because the models are too complicated or the
model equations are not directly accessible (e.g. because they are compiled in
executable commercial code). This is the basic reason why the finite difference method,
although inefficient, is still used very often. The practical issues concerning this
sensitivity analysis technique will be discussed in section 4.

3. Models under study

In order to illustrate some practical issues concerning the finite difference method, four
different models will be used ranging from a very simple model to more complicated
models. All models were implemented in the modelling and simulation tool WEST [16]
which was also used to perform the sensitivity analysis.

3.1 Monod model

Monod kinetics were used in a simple model (equations (8) and (9)).

dS

dt
¼ � 1

Y

mmaxS

KS þ S
X; ð8Þ

dX

dt
¼ mmaxS

KS þ S
X� KdX: ð9Þ

S and X represent the substrate and the biomass concentration respectively, both
expressed as mgCOD l71. mmax (h

71) is the maximum specific growth rate, Y (7) is the
yield coefficient, Kd (h71) is a decay coefficient and KS (mgCOD l71) is the half
saturation concentration of the substrate at which the biomass grows at half the growth
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rate. The nominal parameter values and initial conditions are listed in table 1. Figures 1
and 2 show simulation results of the substrate S and biomass X concentration. For this
model the sensitivity of both variables (S and X) to the four parameters is investigated
(8 sensitivity functions).

3.2 Anaerobic digestion model

A more complex anaerobic digestion model was also considered [17]. This model is a
two-step (acidogenesis–methanization) mass-balance model describing the growth of
two biomass species: acidogenic bacteria (X1, g l

71) and methanogenic bacteria (X2,
g l71). In a first step, the acidogenic bacteria consume organic substrate (S1, g l

71) and
produce CO2 (m3 d71) and volatile fatty acids (S2, mmol l71). The methanogenic
bacteria use the volatile fatty acids in a second step for growth and produce CO2 and
methane (CH4, m

3 d71). Alkalinity and pH (7) are also modelled because of their
importance in anaerobic digestion processes. Overall this model consists of 6
differential equations and 19 parameters. Figures 3 and 4 show the dynamics of
the model for the volatile fatty acid concentration S2 and the total gas production
QT (m3 d71) (sum of CO2 and CH4 production rates).

For the sensitivity analysis study, 3 variables were selected: the volatile fatty acids
concentration S2, the total gas production QT and the pH. The sensitivity of these
variables to 6 parameters was investigated: three kinetic parameters related to the
volatile fatty acids (k1 (7), k2 (mmol g71) and k3 (mmol g71)), the growth rate of
the methanogenic bacteria (m2max

, d71), the half saturation constant of the volatile fatty
acids (KS2

, mmol l71) and the fraction of biomass in the liquid phase (a, 7).
Combining the 3 variables and the 6 parameters resulted in 18 sensitivity functions.

3.3 SBR model

The third model used was a sequencing batch reactor (SBR) model describing nitrogen
and phosphorous removal [18]. This activated sludge model was built on the basis of
Activated Sludge Model No. 1 and 2d [19,20]. Nitrogen transformations were
incorporated as an integral module following an approach similar to ASM1. The
particulate nitrogen is first hydrolysed to soluble organic nitrogen and then
ammonified to ammonia by heterotrophic biomass. The model consists of 89
parameters and 22 differential equations. The oxygen and phosphate dynamics in the
SBR for a complete cycle with anaerobic/aerobic/anoxic/aerobic phases are illustrated
in figures 5 and 6.

Table 1. Nominal parameters and initial conditions for the Monod model.

Name Unit Value

mmax h71 0.5
KS mgCOD l71 20
Y – 0.5
Kd h71 0.03
S0 mgCOD l71 10
X0 mgCOD l71 0.1
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Figure 1. Simulated substrate concentration for the Monod model using the nominal parameters.

Figure 2. Simulated biomass concentration for the Monod model using the nominal parameters.

Figure 3. Simulated volatile fatty acid concentration S2 for the anaerobic digestion model.
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Figure 4. Simulated total gas production QT for the anaerobic digestion model.

Figure 5. Simulated oxygen concentration in the SBR reactor.

Figure 6. Simulated phosphate concentration in the SBR reactor.
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From this model 4 variables and 6 parameters were selected to form 24 sensitivity
functions. The selected variables were important nutrients measured in the reactor:
ammonia (SNH, mg l71), nitrate (SNO3

, mg l71), phosphate (SPO4
, mg l71) and

oxygen (SO, mg l71). The parameters were: the yield for heterotrophic biomass
(YH, 7), the hydrolysis rate constant (kh, d71), the anoxic yield coefficient for
heterotrophs (YHNO3

, 7), the autotrophic yield coefficient (YNH, 7), the rate
constant of polyphosphate storage (QPP, d

71) and the yield coefficient for phosphate
release (YPO4

, 7).

3.4 Benchmark model

Finally, the complex COST Simulation Benchmark model [21] was used. It is a
wastewater treatment model that was designed to provide an unbiased basis for
comparison of control strategies without reference to a particular wastewater treatment
facility. It was also successfully used for comparing different simulation packages in the
wastewater community.
The Simulation Benchmark has five biological tanks in series and a secondary

settling tank. The biological tanks are modelled by the Activated Sludge Model No. 1
(ASM1) [19]. ASM1 has 13 components and 8 processes describing growth and decay
of biomass, hydrolysis of organic compounds and ammonification. The secondary
settler is modelled using the 1D settling model of Takacs et al. [22]. The model consists
of 145 (5613þ 80) differential equations. The plant layout is shown in figure 7.
Figures 8 and 9 show the typical dynamics of the treatment plant for the effluent
concentrations of nitrate and readily biodegradable substrate.
From this model, 5 variables and 8 parameters were selected for the sensitivity

analysis study. Three effluent variables were selected: ammonia (SNH, mg l71),
nitrate (SNO3

, mg l71) and readily biodegradable substrate (SS, mg l71). In reactor 3
of the system, two biomass components were also selected: active heterotrophic
biomass (XB,H, mg l71) and active autotrophic biomass (XB,A, mg l71). Four
biological parameters were selected: the maximum heterotrophic growth rate
(mmH, d71), maximum autotrophic growth rate (mmA, d71), heterotrophic yield
(YH, 7) and autotrophic yield (YA, 7). Besides these, four physical parameters of
the clarifier model were also evaluated: the clarifier surface (A, m2), the clarifier
height (H, m), the maximum settling velocity (v0, md71) and the non-settleable
fraction (fns, 7). The sensitivity functions of each of these variables to each of these
parameter were calculated (for days 117 – 120), resulting in a total of 40 sensitivity
functions.

Figure 7. The plant layout of the Benchmark model.
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4. Practical aspects of the finite difference method

4.1 Theoretical background

Equation (3), which forms the basis of the finite difference method, was implemented as
follows:

@y

@yj
� yðt; yj þ DyjÞ � yðt; yjÞ

Dyj
; ð10Þ

where Dyj is the change of the parameter value. Practically Dyj was implemented as the
nominal parameter value yj multiplied by a user-defined perturbation factor x. As will
be shown below, the choice of this perturbation factor will determine the quality of the
sensitivity function. Equation (10) is only equivalent to equation (3) if the perturbation

Figure 8. Simulated effluent nitrate concentration of the Benchmark treatment plant.

Figure 9. Simulated effluent readily biodegradable substrate concentration of the Benchmark treatment plant.
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factor approaches 0. From a theoretical point of view this is correct but numerically
this can never be achieved because of the limited precision of the calculations. If the
perturbation factor is taken too small it will result in numerical inaccuracies. On the
other hand, xyj should not become too large because then the nonlinearity of the model
will start to play an important role in the sensitivity calculations. Example sensitivity
functions for each model are shown in figures 10 to 13.
The practical implementation of equation (10) has two major drawbacks. The

resulting sensitivity function relates to the (yjþ xyj/2) parameter set and it does not
provide any information on the quality of the sensitivity function. As already
mentioned in section 2, if sensitivities are required around the nominal values of the
parameters then the central difference formula should be used (equation (4)). Although
this method requires 2p model evaluations, it also provides additional information
concerning the quality of the sensitivity function. Rather than just making two

Figure 10. Sensitivity of the substrate concentration (S) of the Monod model to the maximum growth rate
(mmax) calculated for a perturbation factor of 1E-07.

Figure 11. Sensitivity of the volatile fatty acid concentration (S2) of the anaerobic digestion model to the half
saturation constant of the volatile fatty acids (KS2

) calculated for a perturbation factor of 1E-03.
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evaluations of y(t, y) and applying equation (4), the central difference is obtained by
calculating (and averaging) two sensitivity functions. The first sensitivity function is
calculated by increasing the nominal parameter value by xyj, the second sensitivity
function is calculated by decreasing the nominal parameter value by xyj.

@y

@yjþ
¼ yðt; yj þ xyjÞ � yðt; yjÞ

xyj
; ð11aÞ

@y

@yj�
¼ yðt; yjÞ � yðt; y� xyjÞ

xyj
: ð11bÞ

To calculate the centralized sensitivity function the average of both sensitivity
functions is taken.

Figure 12. Sensitivity of the phosphate concentration (SPO4
) of the SBR model to the heterotrophic yield (YH)

calculated for a perturbation factor of 1E-04.

Figure 13. Sensitivity of the nitrate concentration (SNO3
) of the Benchmark model to the maximum

autotrophic growth rate (mmA) calculated for a perturbation factor of 1E-03.
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4.2 Quantifying the sensitivity calculations quality

To make the numerical error and the error introduced by the nonlinearity of the model
as small as possible the difference between the two sensitivity functions (equations (11a)
and (11b)) should be minimal and this can be used to select the proper perturbation
factor. Several criteria can be used to quantify this difference.

(i) Sum of squared errors (SSE).

P @y
@yþ �

@y
@y�

� �2
N

: ð12Þ

For this criterion, the squared error between both sensitivity functions is
calculated and summed over all times where the sensitivity is desired (N).

(ii) Sum of absolute errors (SAE).

P
j @y@yþ �

@y
@y� j

N
: ð13Þ

For this criterion, the absolute error between both sensitivity functions is
calculated and summed over all times where the sensitivity is desired (N).

(iii) Maximum relative error (MRE).

@y
@yþ �

@y
@y�

@y
@yþ

�����
�����
MAX

: ð14Þ

This criterion returns the maximum value of the relative difference between
both sensitivity functions. One should be careful with this criterion because
@y/@yþ or @y/@y7 may become 0. In these special cases the criterion returns 0.

(iv) Sum of relative errors (SRE).

P
1�

@y
@y�
@y
@yþ

����
����

N
: ð15Þ

This criterion is also based on the ratio of the sensitivity functions. The ideal
case is when this ratio equals 1, because then both sensitivity functions are
equal. The criterion returns the sum of deviations from this ideal situation over
all times where the sensitivity is desired (N). Like the MRE criterion one
should be careful if @y/@yþ becomes 0. In this special case no contribution is
made to the total sum.

Figure 14 illustrates the use of these criteria for the sensitivity of the Benchmark
autotrophic biomass (XB,A) to the maximum autotrophic growth rate (mmA) for
perturbation factors (x) ranging from 1E-01 to 1E-07. The optimal perturbation factor
can be found when the criteria reach their minimum, in this case 1E-04. For larger
perturbation factors (41E-04) the nonlinearity effect of the model influences the
sensitivity calculations. This is illustrated in figure 15 for sensitivities calculated with a
perturbation factor 1E-02 (1% parameter change). For comparison, the sensitivity
function calculated with the optimal perturbation factor 1E-04 is also given. It is clear
that @y/@y7 differs significantly from @y/@yþ. Figure 14 also illustrates the effect of
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numerical errors when perturbation factors lower than 1E-04 are selected. An example
of this is given in figure 16 for a perturbation factor of 1E-06.

The problem of sensitivity evaluation would be quite easy if a fixed perturbation
factor could be used. Let us therefore investigate whether the optimal perturbation
factor is the same for other variables and parameters. For each model, table 2 gives the
optimal perturbation factor ranges for all variables for a particular parameter. This
table clearly shows that optimal perturbation factors are parameter dependent: some
parameters have an optimal perturbation factor of 1E-01 others 1E-08. Applying a
fixed perturbation factor to all parameters is not advisable. In the literature, however,
this is frequently done [23 – 26].

We can also see that the optimal perturbation factor depends on the variable
considered. For example, the optimal perturbation factors for the Benchmark mmH are
within the range of 1E-02 to 1E-04 for the SSE criterion. This means that the sensitivity
of different variables to the same parameter (mmH) resulted in different optimal

Figure 14. Criterion values for the sensitivity of the Benchmark autotrophic biomass (XB,A) to the maximum
autotrophic growth rate (mmA) calculated with perturbation factors ranging from 1E-01 to 1E-07.

Figure 15. Nonlinear effect: sensitivity of the Benchmark autotrophic biomass (XB,A) to the maximum
autotrophic growth rate (mmA) calculated with perturbation factors +1E-02 and 1E-04.
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perturbation factors for that parameter. However, taking the average of the indicated
range as the perturbation factor results in acceptable sensitivity functions for all
variables.
From table 2, it can also be concluded that the different criteria indicate roughly the

same optimal perturbation factors (also shown in figure 14). However, the ranges for

Table 2. Ranges of optimal perturbation factors for all variables to the given parameters.

SSE SAE MRE SRE

Monod

mmax 1E-08 1E-08 1E-07 – 1E-08 1E-08
KS 1E-08 1E-07 – 1E-08 1E-07 – 1E-08 1E-08
Y 1E-07 1E-07 1E-06 – 1E-07 1E-07
Kd 1E-07 1E-07 1E-06 – 1E-07 1E-07

Anaerobic

k1 1E-01 – 1E-02 1E-02 – 1E-03 1E-01 – 1E-02 1E-02 – 1E-03
k2 1E-01 – 1E-02 1E-02 – 1E-03 1E-01 – 1E-02 1E-01 – 1E-02
k3 1E-02 – 1E-03 1E-03 1E-01 – 1E-02 1E-01 – 1E-03
m2max

1E-03 1E-03 1E-02 – 1E-03 1E-03
KS2

1E-02 – 1E-03 1E-03 1E-02 – 1E-03 1E-03
a 1E-03 1E-03 1E-03 1E-03

SBR

YH 1E-04 1E-04 1E-03 – 1E-04 1E-04
kh 1E-04 1E-04 1E-03 – 1E-04 1E-04
YHNO3

1E-04 1E-04 1E-03 – 1E-04 1E-03 – 1E-04
mNH 1E-04 1E-04 1E-02 – 1E-05 1E-04
QPP 1E-02 – 1E-03 1E-02 – 1E-04 1E-02 – 1E-03 1E-02 – 1E-04
YPO4

1E-02 – 1E-03 1E-02 – 1E-03 1E-01 – 1E-02 1E-01 – 1E-03

Benchmark

mmH 1E-02 – 1E-04 1E-03 – 1E-04 1E-02 – 1E-04 1E-02 – 1E-04
mmA 1E-03 – 1E-04 1E-03 – 1E-04 1E-03 – 1E-04 1E-03 – 1E-04
YH 1E-04 1E-04 1E-03 – 1E-04 1E-04
YA 1E-03 – 1E-04 1E-03 – 1E-04 1E-02 – 1E-04 1E-03 – 1E-04
A 1E-03 – 1E-04 1E-03 – 1E-04 1E-03 – 1E-04 1E-03 – 1E-04
H 1E-02 – 1E-04 1E-03 – 1E-04 1E-02 – 1E-04 1E-02 – 1E-04
v0 1E-03 1E-03 1E-02 – 1E-04 1E-03
fns 1E-02 1E-02 – 1E-03 1E-02 1E-02 – 1E-03

Figure 16. Numerical error effect: sensitivity of the Benchmark autotrophic biomass (XB,A) to the maximum
autotrophic growth rate (mmA) calculated with perturbation factors +1E-06 and 1E-04.
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the MRE criterion are often different from the other criteria because this criterion is
based on a maximum value while all other criteria are based on averaging.

4.3 Comparing different criteria

In order to investigate whether the value of a criterion obtained for a sensitivity
calculation can be directly used to predict whether the sensitivity function calculation is
valid, a closer look has to be taken at the criterion values obtained in the four case
studies. Table 3 lists the minimum and maximum values of the different criteria for all
calculated sensitivity functions and the minimum and maximum values of the different
criteria at the optimal perturbation factors. In total, the criterion values of 634
sensitivity functions were calculated: for the Monod model, 8 sensitivity functions at 15
different perturbation factors (1E-01 to 1E-15); for the anaerobic digestion model, 18
sensitivity functions at 5 different perturbation factors (1E-01 to 1E-5); for the SBR
model, 24 sensitivity functions at 6 different perturbation factors (1E-01 to 1E-6);
for the Benchmark model, 40 sensitivity functions at 7 different perturbation factors
(1E-01 to 1E-7).

From the table, it can be seen that the SSE and SAE criteria have a very broad range.
This is caused by the use of the absolute values of the sensitivity functions. Sensitivity
functions which are small in value result in small SSE and SAE values, while
sensitivities which are large result in large SSE and SAE values. For the MRE and SRE
criteria much narrower ranges are observed. This is because these criteria are based on
relative differences between the sensitivity functions.

We can also see that the values of the criteria at the optimal perturbation factors
show significant fluctuations. We might be tempted to use the upper bound of these
ranges as the threshold value to decide if a sensitivity calculation is correct or not but
the next section will show that this is not the optimal choice.

4.4 Selection of a usefull threshold value

As a next step, expert knowledge was used to classify all 634 sensitivity functions in two
categories: ‘good’ and ‘bad’. This was done based on visual inspection of both @y/@y7
and @y/@yþ (equation (11)). When @y/@y7 and @y/@yþ looked identical, the sensitivity
function was classified as ‘good’ and when clear differences were noticed between
@y/@y7 and @y/@yþ it was classified as ‘bad’. From this classification it became clear
that not only sensitivity functions calculated with an optimal perturbation factor were
‘good’, but also some sensitivity functions which were calculated with a perturbation
factor close to the optimal one.

Table 3. Ranges of criterion values for all calculated sensitivity functions and ranges of criterion values at the
optimal perturbation factors.

Criterion Values for all sensitivity functions Values at optimal perturbation factors

SSE 1.93E-16 – 1.72Eþ 11 1.93E-16 – 7.96Eþ 02
SAE 8.19E-09 – 2.21Eþ 05 8.19E-09 – 2.02Eþ 01
MRE 3.41E-07 – 7.20Eþ 03 3.41E-07 – 1.94Eþ 01
SRE 1.57E-07 – 5.23Eþ 01 1.57E-07 – 3.99E-01
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Next, it was investigated whether a certain criterion value could be used as a
threshold for automatic detection of ‘good’ and ‘bad’ sensitivity functions. Sensitivity
functions with a criterion value lower than the threshold value are regarded as ‘good’,
sensitivity functions with a criterion value higher than the threshold value are regarded
as ‘bad’. Figures 17 to 20 show the percentages of ‘good’ and ‘bad’ sensitivity functions
that were detected when imposing a certain threshold value for the different criteria.
These percentages thus show which fraction of the ‘good’ and ‘bad’ sensitivity
functions judged by expert knowledge was also detected by using the threshold value.
By means of example one can consider a threshold value of 1.0E-01 for the SRE

criterion (figure 20). From the figure it can be seen that with this threshold value 95%
of the ‘good’ sensitivity functions can be detected and only 65% of the ‘bad’ sensitivity
functions. Similar conclusions can be drawn if the upper bound of the criterion values
found at the optimal perturbation factors are considered (table 3).

Figure 17. Percentages of ‘good’ and ‘bad’ sensitivity functions that were detected as a function of the
threshold value for the SSE criterion.

Figure 18. Percentages of ‘good’ and ‘bad’ sensitivity functions that were detected as a function of the
threshold value for the SAE criterion.
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The intersection of both curves on the graph corresponds with the threshold value at
which a maximum amount of ‘good’ and ‘bad’ sensitivity functions are detected, e.g.
for the SSE criterion a threshold value of 2.35E-02 with 85% detection was found. In
other words, there is an 85% chance that a new sensitivity function with a SRE
criterion value smaller than 2.35E-02 is ‘good’ and an 85% chance that a new
sensitivity function with a SRE criterion value larger than 2.35E-02 is ‘bad’. This
threshold value could therefore be used to judge criterion values of future sensitivity
functions.

From the figures it is also clear that the different criteria have different threshold
values that correspond with the maximum detection level. The maximum detection
levels are also different for each criterion: 72, 71, 77 and 85% for the SSE, SAE, MRE
and SRE criterion respectively. The SRE criterion should preferably be used since its
maximum detection level is the highest.

Figures 17 to 20 are based on the analysis of the combined sensitivity functions of all
models (634 sensitivity functions). In order to know if the threshold value can be used

Figure 19. Percentages of ‘good’ and ‘bad’ expert knowledge sensitivity functions that were detected as a
function of the threshold value for the MRE criterion.

Figure 20. Percentages of ‘good’ and ‘bad’ expert knowledge sensitivity functions that were detected as a
function of the threshold value for the SRE criterion.
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for other models, they need to be considered separately. In table 4 the threshold value
and the corresponding maximum detection level for each model and each criterion are
shown. The threshold values for the case in which all models are combined are also
listed. Looking at the different criteria, it can be concluded that only the SRE criterion
has an ‘optimal’ threshold value that is more or less constant for the different models.
The maximum detection limit for this criterion is also larger and more constant
compared to the other criteria. The only model that shows deviations is the Monod
model, probably due to the limited number of sensitivity functions that were
considered for this model. Based on these results, it can be concluded that the
threshold value of 2.35E-02 for the SRE criterion can be used to judge with a high
probability whether a sensitivity function calculation is ‘good’ or ‘bad’.

4.5 Influence of integrator accuracy

All model evaluations used to calculate the sensitivity functions were performed using a
Runge Kutta 4 Adaptive Stepsize Control integrator (RK4ASC) [27]. The adaptive
stepsize option allows the integrator to decrease or increase the stepsize during the
integration in order to maintain a user-defined accuracy between two successive
integration steps. The influence of this integrator accuracy on the calculated sensitivity
functions and optimal perturbation factors was investigated as well. Figure 21 shows
the optimal perturbation factor for the sensitivity of the Benchmark nitrate
concentration (SNO3

) to the heterotrophic yield coefficient (YH) for different integrator
settings. The left figure is the result of calculations with an integrator accuracy of 1E-09
and the right with an accuracy of 1E-06. An accuracy of 1E-09 has been used to
produce all results shown before.

Table 4. Threshold values and corresponding maximum detection level for each model and each criterion.

Threshold value % good and bad detected

SSE

Monod 6.20E-06 85
Anaerobic digestion 1.66E-03 57
SBR 3.00E-03 80
Benchmark 7.10E-04 67
All models 5.00E-04 72

SAE

Monod 1.10E-03 85
Anaerobic digestion 4.33E-03 56
SBR 2.10E-02 78
Benchmark 1.80E-02 66
All models 1.00E-02 71

MRE

Monod 3.00E-02 83
Anaerobic digestion 1.60Eþ 00 79
SBR 1.20Eþ 00 80
Benchmark 9.60E-01 74
All models 7.00E-01 77

SRE

Monod 3.00E-03 92
Anaerobic digestion 2.40E-02 82
SBR 4.70E-02 80
Benchmark 2.80E-02 84
All models 2.35E-02 85
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From both figures, it can be concluded that the accuracy has an influence on the
optimal perturbation factor, 1E-04 for an accuracy of 1E-09 and 1E-03 for an accuracy
of 1E-06. The accuracy also has an influence on the criterion values. All criterion values
are lower for the 1E-09 accuracy and thus result in better sensitivity functions. For
other models, parameters and variables this influence has also been demonstrated. It
should be noted that higher integrator accuracies result in longer calculation times.

5. Conclusions

In this paper the finite difference sensitivity analysis technique was discussed in detail.
Practically this technique was implemented using the central difference method. This
method produces sensitivity functions around the nominal parameter values y and at
the same time it allows one to assess the quality of the sensitivity function calculations.
Different criteria were used as a measure for this quality.

The perturbation factor used in the finite difference method was found to be
parameter dependent and to a lesser extent variable dependent. Among the proposed
criteria the SRE criterion was found useful to assess the quality of sensitivity function
calculations. A threshold value of 2.35E-02 for this criterion can be used to distinguish
with high probability between ‘good’ and ‘bad’ sensitivity functions. It was also found
that the integrator accuracy has a large influence on the calculated sensitivity functions
and the optimal perturbation factors.
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