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The present contribution focuses on the mathematical techniques used to solve steady state
metabolic models for the case of an overdetermined system. Even when parts of the system are
underdetermined it is possible to solve the model partially and obtain statistically meaningful
results. This is illustrated with data gathered from a set ofE. coli W3110.shik1 phosphate- or
carbon-limited continuous cultures. It is shown that the low yield in shikimate for C-limited
cultures is not due to a lower flux going to the shikimate pathway but is caused by a high
secretion of byproducts. Carbon-limited cultures could be better for shikimate production than
carbon-abundant cultures provided the byproduct secretion is reduced. Finally, flux calculations
are compared with RNA expression data.

1. Introduction

Shikimic acid is an interesting starting material for the
production of many chemical compounds, with as major
example Tamiflu, used for treatment of influenza (1). As the
extraction of shikimate from the plantIllicium is expensive,
production strategies via fermentation are developed. One of
the strains that has been genetically modified to produce more
shikimate isE. coli W3110.shik1 (2). Shikimate production,
however, is very low under carbon-limiting conditions.

Metabolic flux analysis can be used to obtain more knowledge
about the flux distribution of intracellular reactions. MFA is
frequently applied on underdetermined systems when the
solution of the model can only be calculated under certain
assumptions, e.g., maximal biomass production (3). However,
metabolic models can also be used when the system is over-
determined, i.e., when there are more measurements available
than degrees of freedom (4). The statistical methods discussed
in this paper were initially developed for black box models (5,
6) but can easily be applied on metabolic models (7).

In the first part of this contribution, those methods are
reviewed. It will be clarified that one can still calculate some
fluxes and perform statistical tests to check whether the
measurement data are consistent even if parts of the model are
underdetermined (7). The methods explained here are more
general than what can be found in refs 8 and 9.

In a second part, those methodologies are applied to a set of
experiments aiming at finding differences in flux distribution
between carbon-limited and carbon-abundant (phosphate-
limited) cultures of theE. coli strain W3110.shik1 (2). This
strain was genetically modified to produce more shikimate (an
intermediate of the aromatic amino acid pathway). Under
carbon-limited conditions, more byproducts can be found, such
as dehydro shikimate and dehydro quinate, and a lot less

shikimate is produced (2, 10) than under carbon-abundance. It
is shown that this lower shikimate yield under carbon-limited
conditions is not due to a lower flux going to the aromatic
pathway. On the contrary there is an even higher flux going to
it.

The last part of this work compares flux balancing with RNA
expression level measurements. Although it is sometimes
attempted to solve the problem of parallel pathways with the
aid of RNA expression levels (11), this is not done here because
it is not expected to be possible (12). However, for some fluxes
the variations over different culture conditions correlates with
the RNA expression levels of the corresponding genes.

2. Materials and Methods

2.1. Experimental Setup.In the performed experiments the
E. coli W3110 strain was used. This strain was modified to
W3110.shik1, as described in ref 2.

Six phosphate-limited and four carbon-limited continuous
cultures with W3110.shik1 were run at dilution rates varying
from 0.05 to 0.3 h-1.

A second set of experiments consisted of phosphate- and
carbon-limited chemostats of the wild-type W3110 and the
shikimate-producing strain W3110.shik1 at a dilution rate of
0.2 h-1. Each combination was done in duplicate. Besides input
and output fluxes, RNA expression levels were determined too.

2.1.1. Inoculum Preparation.The medium used for inoculum
preparation (100 mL) was the same for carbon-limited and
phosphate-limited experiments. For W3110 (the wild-type
strain), the medium contained, per liter: 20 g of glucose (VWR
International, Stockholm, Sweden), 7.5 g of K2HPO4, 0.3 g of
NH4Fe(III)-citrate, 2.1 g of citric acid monohydrate, 0.1 mL
MgSO4‚7 H2O (1 M), 0.0037 g of (NH4)6(Mo7O24)‚4 H2O,
0.0029 g of ZnSO4‚7 H2O, 0.0247 g of H3BO3, 0.0025 g of
CuSO4‚5 H2O, 0.0158 g of MnCl2‚4 H2O, 0.055 mg of thiamine
(Sigma-Aldrich, Steinheim, Germany), and 1.2 mL of H2SO4

(96%) (VWR International). For W3110.shik1 the medium
additionally contained 0.010 g ofp-hydroxybenzoic acid, 0.010
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g of potassiump-amino benzoate, 0.010 g of 2,3-dihydroxy-
benzoic acid (vitamins), and 0.015 g of tetracycline hydrochlo-
ride (antibiotic) (Sigma-Aldrich). Inoculum cultures were grown
in 250 mL baffled E-flasks at 37°C at a shaker speed of 200
rpm up to an OD-value of 1.5-2.5, to ensure exponentially
growth. The fermenter was inoculated with 40 mL of the
inoculum culture (W3110.shik1) or 20 mL (W3110).

2.1.2.Culture Media. The glucose and mineral solutions were
sterilized separately at 121°C for 20 min and thereafter mixed.
Antibiotic solution, vitamins and trace metals, and MgSO4

solution were added by sterile filtration through a 0.2 mm
Minisart cellulose acetate filter (Sartorius AG, Goettingen,
Germany). All solutions were prepared using deionized water;
1.5 L of medium was prepared for the batch cultivation. The
working volume of the chemostat was around 1.3 L, and pH
was adjusted to 7.0 by addition of NH4OH (25%) before and
after sterilization.

2.1.3.Carbon-Limited CultiWations. The composition of the
C-limitation medium for the batch phase and the chemostat
phase of the W3110 was the same as for the preculture medium,
except for some minor changes. The medium contained 0.13
g/L antifoam 286 (Sigma-Aldrich). In addition, the glucose
concentration was 10 and 25 g/L in batch and chemostat phase,
respectively. The composition of the medium for growth of
W3110.shik1 was the same as that for W3110 except that it
also contained 0.015 g/L tetracycline hydrochloride.

2.1.4.Phosphate-Limited CultiWations. The composition of
the P-limited medium in batch phase was, per liter: 20 g of
glucose, 92 mL of H3PO4 (85%), 5.39 g of NH4SO4, 3.32 g of
NaOH, 1.66 g of KOH (Sigma-Aldrich), 0.52 g of MgSO4‚7
H2O, 0.133 g of antifoam 286, 3.73 mL of H2SO4 (96%); trace
metals (1): 0.093 g of FeSO4‚7 H2O, and 0.079 g of citric acid
monohydrate; trace metal (2): 0.0073 g of CoCl2‚6 H2O,
0.00207 g of MnCl2‚4 H2O, and 0.00103 g of ZnCl (Sigma-
Aldrich). The medium of W3110.shik1 also contained 0.015
g/L tetracycline hydrochloride. In chemostat operation, the
phosphate solution and the solution of the remaining medium
components were fed separately to the fermenter. The phosphate
feed contained 0.9 mL/L H3PO4 (85%), whereas the second feed
solution contained all other components. Since the phosphate
solution contributed extra volume and thereby diluted the second
feed solution the latter was up concentrated 1.3 times, e.g., the
glucose concentration was 32 g/L, giving a concentration of 25
g/L in the reactor.

2.1.5.Fermentation Methods.All fermentations were carried
out in a Biostat CT culture vessel (Sartorius BBI Systems
GmbH, Melsungen, Germany) with a maximum working
volume of 3.5 L. Temperature (37°C), pH (7.0), stirring rate
(750 rpm), and airflow rate (0.75 slpm) were controlled by the
program MFCS/win shell 2.0 (Sartorius BBI) via the control
unit DCU Biostat C (Sartorius BBI). p O2 was measured with
an InPro 6000 (Mettler Toledo Gmbh, Giessen, Germany). The
pH was measured with a pH-meter of type 405-DPAS-SC-K8S/
120 (Mettler Toledo). For maintaining the pH at 7.0, H2SO4 (2
M) and NH4OH (25%) were used in the C-limited case and
H2SO4 (1 M) and NH4OH (12.5%) in the P-limited case. O2

and CO2 contents in the off gas were measured by an Innova
1311 (INNOVA Air Tech Instruments, Ballerup, Denmark).
Two balances and pumps were also coupled to the equipment,
allowing precise measurement of the feed rate during chemostat
operation. Data from all equipment except for one of the pumps
were routinely logged by the data acquisition software.

In the C-limited case, chemostat operation was started when
the glucose was finished (indicated by a rapid reduction of the

CO2 in the off-gas). In the P-limited case, the chemostat was
started when the phosphate was consumed (also seen as a small
peak in the p O2). Establishment of steady state was confirmed
from measurement of the off-gas composition. At least five
retention times were allowed to pass before each steady-state.
Sampling of OD and for metabolite analyses was carried out at
fermentation start, end of batch, and at steady state during
chemostat operation. Samples for dry weight were taken at the
end of the batch cultivation and at steady state during chemostat
cultivation.

2.2. Analytical Methods.The analytical methods for deter-
mining the amount of metabolites and cell dry weights are
described in ref 2; 3.5% of the dry weight was considered as
ash (13).

For the elemental composition of biomass, 50 mL of
fermentation broth was taken and centrifuged for 20 min at 2000
g and 4°C. The pellet was washed once with 40 mL of ice
cold 0.9% NaCl and again centrifuged and decanted. The pellets
were then frozen in liquid nitrogen, vacuum-dried, and analyzed
with a CHNS-O analyzer (model EA1108, Carlo Erba Instru-
ments, Italy) (4).

Sampling for transcriptome analysis was performed at steady
state. To minimize mRNA degradation, 50 mL falcon tubes
containing about 25 mL of ice were filled up as fast as possible
with fermentation broth. The tubes were centrifuged for 1 min
at 2000g, and the pellet was frozen in liquid nitrogen. In the
phosphate-limited experiments, the mRNA sampling method
was further improved by adding 1.25 mL of “stop-solution”,
containing about 95% ethanol and 5% phenol, to the tubes prior
to sampling.

Total RNA was extracted by using the Fastprep system
including the FastRNAPro Blue kit (Qbiogene, Montre´al,
Canada). DNA present was degraded by addition of DNAse
(VWR International) to a concentration of 0.2 UµL-1 . The
samples were then held at 37°C for 20 min. The reaction was
interrupted by addition of 0.5 M EDTA (Sigma-Aldrich) to a
final concentration of 10 mM. The RNA was further cleaned
by using a RNeasy microelute Cleanup kit (Qiagen, Venlo, The
Netherlands). The quality of RNA was controlled by running
the samples on a 1% TBE gel. The RNA samples were then
sent to SWEGENE Microarray Resource Centre (Lund, Sweden)
where the quality of RNA was further controlled by using
Nanodrop ND1000 (Nanodrop Technologies, Wilmington,
USA), which gives very accurate concentration and 260/280
ratio figures. In addition quality testing of the RNA was carried
out using the Agilent Bioanalyzer 2100 (Agilent Technologies,
Palo Alto, USA). cDNA synthesis, cDNA fragmentation, and
preparation of the hybridization mixture was carried out
according to the recommendations of the manufacturer of the
microarrays (Affymetrix, Santa Clara, USA). Hybridization,
washing, staining, and scanning of the microarrays (Affymetrix
E. coli antisense genome arrays AS v2) were performed by using
GeneChip Hybridization Oven 640, GeneChip Fluidic Station
450, and GeneChip Scanner 2500 (all from Affymetrix). Data
acquisition and gene expression data analysis was carried out
using MAS 5.0 (Affymetrix). A chip to chip normalization was
performed in this program by scaling to a median intensity of
100. For statistical analysis the Bayesian test was carried out
using a web-interface version of Cyber-T found at http://
visitor.ics.uci.edu/genex/cybert/ (14). All presented microarray
data were significant at a 95% level. The mRNA data are
discussed in more detail in ref 15.

2.3. Theoretical Framework. A metabolic network model
is basically a system of linear equations. There are two methods
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to solve such a system. The first one works directly with
nullspace calculations (16). It is an elegant method but has a
major drawback: it is not possible to use internal flux
measurements to reduce the number of degrees of freedom in
the system. Only exchange rates can be used. The second
method (well described in ref 17) is more general and is the
one that is used in this work. Both methods make use of the
pseudo inverse of a matrix and its nullspace. The methods will
be reviewed briefly.

2.3.1.Pseudo InWerse of a Matrix. The solution of a linear
system

can be found by calculating the inverse of matrixA:

This can only be done ifA is invertible, which means that
the system of equations should be neither overdetermined nor
underdetermined. In MFA those conditions are rarely fulfilled.

In the case of an overdetermined system a “least-squares”
solution can be calculated by use of the (left) pseudo inverse:

The left pseudo inverse can thus be defined as (ATA)-1AT

and to be calculable,ATA must be nonsingular. This means
that the number of rows ofA should be less or equal to the
number of columns. Furthermore, those rows should be linearly
independent.

A more general method, which can be applied to every matrix,
to calculate the pseudo inverse is based on Singular Value
Decomposition (18) (a good explanation of SVD, the pseudo
inverse, and its application in MFA can be found in ref 19).
Given the matrixA with dimensions〈m × n〉, there exist
orthonormal matrixes:

so that

whereS is an〈m × n〉 dimensional nonsquare diagonal matrix.
The elements on the diagonal are the singular values ofA. The
number of singular values that are not zero is equal to the rank
of A. WhenA has full rank andm ) n, the inverse ofA is (the
inverse of an orthonormal matrix is equal to its transposed)

The inverse of a diagonal matrix is calculated by inverting
the elements on the diagonal one by one. IfA is not fully ranked
or A is not square, a partial inverse can be calculated by
inverting only singular values inS that are not zero. This way
the pseudo inverse of every matrix can be calculated:

This makes it possible to calculate a solution not only when
the system is fully or overdetermined but also when parts of
the system are underdetermined. The next section explains how
one can make a distinction, by use of the nullspace, between
those underdetermined parts (whose obtained solution is obvi-
ously not unique) and the determined ones.

2.3.2 Nullspace. If the system as given in eq 1 is under-
determined, the solution given with the pseudo inverse

is only one of the infinity of possible solutions. To determine
which elements ofx have a single solution and to determine a
relationship between the infinity of solutions for the other
elements ofx, the nullspace can be calculated.

The nullspace is defined as the set of linear independent
vectors,xn, that fulfill the equation

The number of independent nullspace vectors is equal to the
number of columns inA minus the rank ofA. From the
definition it is clear that each nullspace vector can be added an
arbitrary number of times to the base solution given in eq 8.
Thus the complete solution is

wheref is a vector with as many elements as there are vectors
(columns) in the nullspace ofA. For all possible values off the
solution remains valid.

Parallel pathways in the metabolic model typically yield
nullspace vectors if there are no fluxes measured from one of
those pathways. Elements (rows) ofx that have only zeros in
the nullspace ofA are fully determined. Thus, a system of
equations can have some unknowns for which a unique solution
can be found and some for which this is not possible.

2.3.3.Construction of the Metabolic Model. When gathering
the reactions for the metabolic model, inevitably some errors
get in. Errors in stoichiometry were caught with the elemental
consistency test. Superfluous reactions were detected with the
dead end test and removed. Both tests are described elsewhere
(20).

Although the technique for solving the metabolic model
explained further can cope with parallel pathways, we chose to
remove them, to be able to fully solve the model and have all
fluxes known. During the construction of the model, parallel
pathways were detected with the method described in ref 20
and removed.

2.3.4.Solution of the Metabolic Model. The matrix repre-
sentation of a biochemical reaction network can be written as

werec is a vector containing the concentration of the different
metabolites inside the cell, matrixW is the extended stoichio-
metric matrix, and vectora is the vector with all the reaction
rates. If steady state is assumed, the concentration of the
metabolites inside the cell does not change and eq 11 can be
simplified to

W is called the extended stoichiometric matrix because it
contains more than pure enzymatic conversions. The exchange
of metabolites with the environment is added as reactions taking
from, or removing matter to a buffer (21). Thus input and output

Ax ) b (1)

x ) A-1b (2)

x ) (ATA)-1AT b (3)

U〈m×m〉 andV〈n×n〉 (4)

A ) USVT (5)

A-1 ) VS-1UT (6)

A# ) VS#UT (7)

x ) A#b (8)

Axn ) 0 (9)

x ) A#b + nullspace(A)f (10)

dc
dt

) Wa(c) (11)

Wa ) 0 (12)
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from the system is modeled as (e.g. glucose):

The corresponding rate in the flux vectora is the input rate for
glucose.

In MFA the following representation is frequently used for a
metabolic model (8, 9):

wherer is the net accumulation rate vector,W is the reaction
rate vector, sensu stricto, andS is the stoichiometric matrix with
the different reactions in the rows and the metabolites in the
columns. This equation can be rewritten as (I representing the
identity matrix augmented with some rows containing zeros,
corresponding to the metabolites that have a zero exchange rate
in eq 14):

which matches eq 12.
Equation 12 is split up in two parts: one for the rates that

are measured and thus known (subscript m) and one for the
rates to be calculated (subscript c):

This equation can be solved forac:

2.3.5.Redundant Measurements. The solution obtained in
eq 17 can be substituted into eq 16:

As a matrix multiplied with its nullspace is equal to zero, this
equation can be rewritten as

When the system is overdetermined, i.e., when there are more
measurements than degrees of freedom (and assuming the
measurements do not agree perfectly), the terms befoream in
eq 19 form a nonzero matrix. All independent rows of that
matrix can be combined in the redundancy matrixR (6, 22):

It should be noted that it is not because there is redundancy
in the measurements that the nullspace of the extended sto-
ichiometric matrix should be void. It is perfectly possible (and
usual) to have parts of the system of equations that are
overdetermined and parts that are underdetermined.

2.3.6.Making Use of Redundant Measurements. Redundant
measurements can be used to enhance the confidence in the
measurements. This is explained in ref 5 for black box models,
but the method also applies to stoichiometric models (7). The
real value of a measurementam is equal to the measured value
ãm minus some random noiseδ:

Equation 20 gives the general formula; applied in a statistical
context, distinction should be made between a real value of a

variable (that can never be known), the measurement of that
variable (indicated with a tilde), and the estimate of that variable
(indicated with a hat). Combining eqs 21 and 20 yields

E being the vector of residuals. It was proven that to minimize
the error δ on the measurements, the following objective
function J has to be minimized (23):

Pε is the variance covariance matrix of the vector of residuals,
and it can be proven that

The variance covariance matrix ofδ (Pδ) is equal to the
variance covariance matrix of the measurementsPãm.

The solution of the minimization problem of eq 23 gives an
estimate forδ:

which in turn gives an estimate for the measurements (I is the
identity matrix):

That these estimated values are better than the measured ones
is obvious from the variance covariance matrix of the estimated
values:

since the second term ofPâm is always positive. Making an
estimate of the measured fluxes thus reduces their uncertainty.

The estimated measurements should be used to calculate the
unknown fluxes. Equation 17 becomes

and the variance covariance matrix of the unknown fluxes
becomes (19)

Only the rows and columns ofPâc corresponding to elements
of âc that have no freedom left in the nullspace ofWc (i.e., for
which the corresponding rows in the nullspace ofWc contain
only zeros) are relevant.

2.3.7.Statistical Test of the Quality of the Measurements.
In the previous section it was explained how to increase the
reliability of the measured fluxes. It is also possible to check
whether the measurements are consistent. If so the residual
vectorε should be equal to zero. To investigate whether this is
the case, the following test statistich is used (24):

The H0 hypothesis of this statistic is that measurements are
consistent and thath is equal to zero.

This test statistic is equal to the objective functionJ from eq
23 (5), and thus ifPδ

-1 is a diagonal matrix,h can be rewritten
as

f GLC (13)

[r0]) SW (14)

[S - I ] [W
r ]) 0 (15)

Wcac + Wmam ) 0 (16)

ac ) -Wc
#Wmam + nullspace(Wc)f (17)

Wmam - Wc(Wc
#Wmam + nullspace(Wc)f) ) 0 (18)

(Wm - WcWc
#Wm)am ) 0 (19)

Ram ) 0 (20)

am ) ãm - δ (21)

R ãm ) R(am + δ) ) Rδ ) E (22)

J ) δTPε
-1δ (23)

Pε ) RPδR
T (24)

δ̂ ) Pδ RT Pε
-1 E (25)

âm ) (I - Pãm
RT(RPãm

RT)-1R)ãm (26)

Pâm
) (I - Pãm

RT(RPãm
RT)-1R)Pãm

(27)

âc ) -Wc
#Wm âm + nullspace(Wc)f (28)

Pâc
) Wc

#WmPâm
Wm

TWc
#T (29)

h ) ETPε
-1E (30)
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with n being the number of elements in the vectoram, i.e., the
number of measured fluxes. As the errorδ on the measurement
is assumed to be normally distributed, the terms of the sum in
the equation above are normally distributed with variance equal
to one and thus the test statistich follows, by definition, aø2

distribution.
It can be proven that the number of degrees of freedom of

that ø2 distribution is equal ton minus the rank ofR.
2.3.8.Vector Comparison Test. If the quality of the measure-

ments test rejects theH0 hypothesis that the errors are equal to
zero, one can detect which measurement(s) is erroneous. A
simple approach would be to try to remove measurements one
by one and check if the statistical test passes (the serial
elimination method of ref 5), but this is not statistically good
practice as there are some issues with independency of the tests
(6). A better approach is to use the vector comparison test (6).

Equation 20 can be written more explicitly as

with Ri representing the different columns ofR and ami the
different measured fluxes. If one of the measurements is really
wrong by an amountτ, the expected value (E) ofE is

The same reasoning can be applied when more measured
fluxes are wrong: the residual vectorE will then be a linear
combination of those erroneous measurements. For each com-
bination of subvectorsRs of the redundancy matrixR, a
statistical test is run withH0 hypothesis that the residual vector
E is a linear combination ofRs. The statistic used for this test

follows a ø2 distribution with rank(R) - rank(Rs) degrees of
freedom (6). Running the test for each possible combination of
vectors ofR is time-consuming, but it makes no sense to take
combinations with more than rank(R) - 1 vectors, as the degree
of freedom of the corresponding statistic is then zero or less.
This is also intuitive: a vector ofn elements is a linear
combination of every independent set ofn vectors of lengthn.
As such, the problem of too many combinations becomes worse
the more fluxes measured, a luxury problem.

2.4. Implementation.Solving of and performing the statisti-
cal tests on metabolic models was implemented in SciLab
(www.scilab.org). Figure generating was done using a combina-
tion of R (www.r-project.org), xfig (www.xfig.org) and Latex
(www.latex-project.org).

All fluxes were expressed in mol L-1 h-1, and model
calculations were performed with those units. In the figures,
all fluxes are divided by the biomass flux and are thus expressed
as fractions of that flux.

3. Metabolic Model

3.1. Biomass Composition.To investigate whether biomass
composition varied for different dilution rates, the elemental

composition of the biomass was determined (the elements C,
H, O, N, and S were measured; three repeats were performed).
A significant difference was only found for oxygen and to a
lesser extent nitrogen (Figure 1). The oxygen content increases
with increasing growth rate, which is the reason the total
molecular mass (expressed in C-moles) is rising slightly with
increasing growth rate (Figure 2).

Measurements of the protein, DNA, and RNA content were
performed to see whether the change in oxygen content was
reflected in the biomass composition. However, no significant
differences were found. Furthermore, sensitivity of the model
to changes in the biomass composition was low. Therefore a
constant biomass composition was used for every dilution rate:
70% protein, 12% RNA, 3% DNA, and 15% other (expressed
in g/gDW). Those values were based partially on the values
found in the literature (25), partially on the elemental composi-
tion of the biomass shown in Figure 1, and partially on the
biomass composition measurements (data not shown).

The latter fraction is subdivided into four other components:
lipopolysaccharides (LPSs), lipids, peptidoglycane, and glyco-
gen. The relative occurrence on weight basis of those four
compounds was 0.520 lipids, 0.194 LPS, 0.143 peptidoglycane,
and 0.143 glycogen. Those values were taken from the average
biomass composition ofE. coli at a growth rate of 1 h-1 (26).

The composition of the lipid fraction can be found for
different E. coli strains at different growth rates (26). The
variations seems rather small, so constant composition was
taken: 75% phosphatidylethanolamine, 20% phosphatidylglyc-
erol, and 5% cardiolipin.

For DNA each nucleotide was assumed to be equally
represented in molar units (26). For RNA the distribution was
26.2% ATP, 32.2% GTP, 20.0% CTP, and 21.6% UTP in molar
units (26).

The biomass used in the metabolic model had the following
elemental composition: C1H1.91O0.506N0.252P0.015S0.007, which
gives a molecular mass of 26.22. This is somewhat higher as
what would be expected from Figure 2, but it was the best
agreement that could be obtained between literature data of (25)
and the elemental composition data of Figure 1.

3.2. Different Reactions.The metabolic model included
glycolysis, with glucose transported by the PTS system (27),
the pentose phosphate pathway, the Krebs cycle, and ethanol,
acetate and formate formation.

It is generally assumed that the glyoxylate pathway is not
active in theE. coli K12 family (from which the strain used in
this study is a member) if glucose is provided as a carbon source
(28, 29, 30). Instead PEP carboxylase was used as regenerating
reaction for the Krebs cycle metabolites (31, 32). The difference
between both pathways is that PEP carboxylase uses one more
ATP (32).

For each amino acid and nucleotide the anabolic reactions
were included. To avoid parallel pathways (and thus parts of
the model that cannot be solved), no “salvage” pathways were
used. Biosynthesis of LPS, Lipid A, peptidoglycane, and the
lipid bilayer were also added. As explained above, a simple
biomass composition was used for every growth rate.

Shikimic acid is an intermediate metabolite in the aromatic
acid pathway, but not only shikimic acid is excreted. Also
dehydroquinic acid (precursor of shikimic acid), quinic acid,
dehydroshikimate, protocatechuate, and gallic acid can be
excreted (33). Those last two were not detected in the fermenta-
tion broth and thus were not included in the model.

h ) J ) δ̂TPδ
-1δ̂ ) ∑

j)1

n δ̂j
2

σδj,j

2
(31)

R1am1
+ R2am2

+ ‚‚‚ + Riami
+ ‚‚‚ + Rnamn

) E (32)

E[E] ) E[R1am1
+ R2am2

+ ‚‚‚ + Ri(ami
+ τ) + ‚‚‚ + Rnamn

]

) E[R1am1
+ R2am2

+ ‚‚‚ + Riami
+ ‚‚‚ + Rnamn

] +
Riτ

) Riτ

h∆ ) ETPε
-1E - ETPε

-1Rs(Rs
TPε

-1Rs)
-1Rs

TPε
-1E (33)
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Sources for the reactions were mainly the ecocyc database
(http://www.ecocyc.org/) (34), the database provided by the
University of California (http://systemsbiology.ucsd.edu/organ-
isms/ecoli.html) (35), and the KEGG database (http://
www.genome.ad.jp/kegg/) (36). The P/O ratio was set to 1.33
(37).

The thus constructed model contained 137 reactions and 151
metabolites of which 16 were exchangeable: Dhq, H2SO4, Ac,

Cit, Shi, H2O, O2, PiOH, GLC, CO2, Eth, Qa, Biom, Dhs, NH3,
and FA. All parallel pathways were removed. There were no
dead-end reactions, and the elemental consistency test was
passed (20).

There are 143 independent equations in the model and 137
+ 16 unknowns. Thus, at least 10 measurements must be
performed. Twelve exchange fluxes were measured: O2, GLC,

Figure 1. Elemental composition of biomass (expressed in C-moles) at different dilution rates. H (upper left), O (upper right), N (lower left) and
S (lower right): (2) C-limited cultures, (0) P-limited cultures. Error bars are for the standard deviation.

Figure 2. Molar mass of the biomass (in C-moles) as function of the
dilution rate. Notation as in Figure 1.

Figure 3. Moles of carbon going in the reactor versus moles of carbon
leaving the reactor. Open symbols are for influxes, and closed symbols
are for the carbon leaving the reactor: (4, 2) C-limited cultures, (O,
b) P-limited cultures. Error bars represent the standard deviation.
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CO2, Cit, FA, Shi, Dhs, Dhq, Qa, Ac, Eth, and Biom. The
consistency of the measurements could thus be assessed, and if

the consistency test failed, the vector comparison test could be
used to search for the dissonant measurement.

Figure 4. Relative fluxes (each flux is normalized against the biomass flux) in the glycolysis and pentose phosphate pathway for diffrerent growth
rates: (0) phosphate-limited cultures, (2) carbon-limited cultures. Metabolites are typeset in roman font, and names of reactions are in italic. The
error bars represent the standard deviation.

Figure 5. (Left) Moles of ATP hydrolyzed per mole of biomass formed. (Right) Moles of ATP per mole of biomass per hour that is hydrolyzed.
From this data, the maintenance coefficients are calculated, assuming a constant P/O ratio of 1.l33. Notation as in Figure 4.
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4. Results and Discussion

4.1. Carbon Balance. Only one statistically significant
difference could be detected between the carbon in- and outflux
(Figure 3): the carbon balance of the carbon-limited culture
with a dilution rate of 0.12 h-1 is clearly not closed. It is also
for this experiment that the model did not fit and no plausible
wrong measurement could be detected with the vector com-
parison test. However, this experiment was kept in the data set
since the absolute error is small even though the coincidental
small variance on the measurements makes this error significant.
Furthermore, the calculated fluxes were in accordance with those
at other dilution rates.

4.2. Flux Analysis. Ten chemostat experiments were per-
formed in which 12 exchange rates were measured. As explained
above two measurements were redundant. The statistical test
to evaluate whether the measurements agree could be run, and
even when the measurements did not agree, the vector com-
parison test could point to the wrong measurement.

In four out of 10 experiments, the measurements were not
consistent. Running the vector comparison test revealed in one
case that the consumed amount of oxygen was too high and in
a second case the amount of measured carbon dioxide. Remov-
ing those measurements in the respective data sets made the
remaining data consistent.

Figure 6. (Left) Moles of oxygen consumed and (right) moles of carbon dioxide produced per mole of biomass formed. Notation as in Figure 4.

Figure 7. Fluxes in the Krebs cycle and the fermentative pathways. Notation as in Figure 4.
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In a third experiment, the ethanol measurement was detected
as inconsistent, but removing this one made the model predict
a high ethanol flux, which was never detected in reality for any
of the dilution rates. However, in this dataset the oxygen
measurement was identified as the second possible cause for
the nonfit of the model. Removing the oxygen measurement
and keeping the ethanol measurement yielded a consistent
dataset and realistic model predictions.

The fourth case (the carbon-limited case with growth rate
around 0.12 h-1, for which the carbon balance did not close)
had only the ethanol measurement as potentially erroneous.
Removing that measurement made the model predict an ethanol
flux that was significantly not zero. Therefore, in the simulations
shown, the ethanol measurement was not removed. The data
from this experiment were not discarded as they appear to agree
with the cultures run at other dilution rates.

Figure 4 shows the relative fluxes (in Figures 4, 7, and 8
each molar flux is divided by the biomass flux) for the glycolysis
and the pentose phosphate pathway. It can be seen that for the
carbon-limited cultures, each 1 mol of glucose gives 2 mol of
biomass (the graph for the PTS reaction shows that the relative
flux-relative, as each molar flux is divided by the biomass
flux-of glucose going into the cell is 0.5, thus to produce 1
mol of biomass, 0.5 mol of glucose is consumed), or put another
way, three of the six carbons of glucose are used for biomass
construction. The same graph also shows that under P-limited
conditions, at low dilution rates, the biomass yield is lower,
but strangely, at a dilution rate of 0.25 h-1 it tends to become
better than under carbon limitation (less glucose is consumed
per mole of biomass produced than under carbon limitation).
Looking at the ATP hydrolysis (Figure 5) and the respiration
(Figure 6) there is no difference between the carbon-limited and
phosphate-limited cultures at higher dilution rates. Thus, the

better biomass yield of P-limited cultures at high dilution rates
is not due to less CO2 production or less ATP hydrolysis. The
reason for it should be found in the aromatic pathway.

In the first reaction of the aromatic pathway, the synthesis
of Dahp (Figure 8), one can see that for high dilution rates, the
flux through it is higher for carbon-limited cultures than for
phosphate-limited ones. Considering that the fluxes through the
chorismate synthesis reaction are all equal (because a fixed
biomass composition was used), the increased flux through the
Dahp formation reaction necessarily means an increased excre-
tion of products upstream of chorismate. Unfortunately, those
byproducts were found not to be shikimic acid, the target
molecule, but dehydroquinate and dehydroshikimate. Thus,
carbon-limited cultures have a larger flux through the shikimate
pathway but do not produce more shikimate because that extra
flux is wasted on other byproducts. If this byproduct excretion
could be eliminated, carbon-limited cultures would clearly be
better for shikimate production.

The larger flux through the shikimate route for carbon-limited
cultures gives no significant rise in the G6P levels that enter
the pentose phosphate pathway. The differentiation is in the
amount of carbon that goes from the PPP to the glycolysis
pathway via F6P and G3P. A split occurs at Rl5P. More E4P is
needed to sustain the production of Dahp under carbon
limitation, and therefore the reaction catalyzed by TK2 is lower
or even zero at higher dilution rates for carbon-limited cultures.
This makes more Xu5P available, which in turn allows the TK1
flux to increase. This allows the TA flux to increase, leading to
a higher E4P production. As under carbon limitation the flux
through TK2 is lower, the one through PPE can also be lower,
whereas the one through PPI is higher. This is in line with the
studies where an increased flux to the shikimate pathway was
achieved by overexpression of Tk1. An amplification of this

Figure 8. Fluxes in the shikimate pathway. Notation as in Figure 4.
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enzyme in combination with an overexpressed DAHP-synthase
has shown to double the flow into the pathway in comparison
to the case where only DAHP-synthase was overexpressed (38).

The fluxes through glycolysis (Figure 4) follow the same
pattern as those from ATP hydrolysis (Figure 5) and respiration
(Figure 6). This pathway is mainly used to fuel the citric acid
cycle (Figure 7) for generating ATP and biomass precursors.
Interesting to note is the negative flux in carbon-limited cultures
going through AcKNLR (Figure 7). Actually, no acetate was
supplied to the medium. The acetate consumed is provided by
the cysteine, ornithine, and lipid A synthesis reactions. Acetate
consumption in the presence of glucose, although uncommon,
was reported in the literature (39).

The flux through PEP carboxylase (Figure 7) is completely
dependent on the biomass formation reaction (as is the one

through the chorismate synthesis reaction, Figure 8). This can
be seen nicely as the constant flux for every phosphate-limited
culture. For the carbon-limited cultures, this is not true, as there
was some citric acid consumed in the experiment with the lowest
growth rate, whereas it was produced in the other ones. The
amounts of citric acid consumed or produced were however
very low: there is no significant difference between the carbon-
limited and phosphate-limited cultures in the flux through PEP
carboxylase.

The calculated ATP hydrolysis flux allows to investigate the
maintenance requirement for different growth rates and limiting
conditions (Figure 5). Phosphate-limited cultures have a higher
non-growth-associated maintenance compared to that of carbon-
limited ones as under carbon abundance there is no need for an
effective carbon utilization. The non-growth-associated main-

Figure 9. Fluxes compared with the RNA expression data for the central carbon metabolism. The error bars represent the standard deviation. The
dots represent the fluxes, and the bars represent the gene expression levels. The gene names can be found in the lower part of each graph, and the
upper part labels the different experiments: WtP for wild-type strain, P-limited culture; WtC for wild-type strain, C-limited culture; MoP for
modified strain, P-limited culture; and MoC for modified strain, C-limited culture. Reaction names are typeset in italic font, and metabolite names
are in roman font.
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tenance for phosphate-limited cultures is 0.68 mol ATP per mole
of biomass per hour. For carbon-limited cultures it is 0.15 mol/
molBM/h. This conforms with the values reported in the
literature: 0.20 mol/molBM/h (39), 0.073 mol/molBM/h (40),
and 0.12 mol/molBM/h (41).

The growth-associated maintenance for phosphate-limited
cultures is very low: 0.053 mol per mole of biomass. For
carbon-limitation this is 1.68 mol/molBM/h. In literature both
low values, 0.34 mol/molBM (39), and high values, 2.6 mol/
molBM (41) can be found.

Apparently under carbon-abundant conditions, the cells, even
at the lowest growth rate, produce as much ATP as possible
and this production does not significantly increase (cannot
increase?) with higher growth rates. Carbon-limited cultures
want to optimize the utilization of the available glucose and
try to minimize the maintenance cost, resulting in an high growth
dependent maintenance. However, the total maintenance is
always lower than in carbon-abundant cultures (in the right part
of Figure 5, the curve of the P-limited cultures, squares, lies
above the curve of the C-limited ones, triangles). At a growth
rate of 0.3 h-1 both curves meet each other. This is also the
point at which the cells start to wash out. This suggests that the
maintenance level of the phosphate-limited cultures is really
the maximum that the cell can sustain.

4.3. RNA Expression Compared with Metabolic Fluxes.
To investigate whether there exists a correlation between RNA
expression levels and metabolic fluxes, four different kinds of
cultures were performed in which flux data and RNA expression
levels were determined. Two different experiments were done
with the wild-type strain (no genetic modifications for increased
flux through the aromatic pathway), one carbon-limited and one
phosphate-limited, and two experiments were done with the
modified strain, also one carbon-limited and one phosphate-
limited. Each experiment was performed twice. The continuous
cultures were all run at a dilution rate of 0.2 h-1.

In general RNA expression levels are compared by taking
the log2 of the fraction of expression levels under modified
conditions against expression levels in a reference state. The
reference state in this case would be the wild-type fermentation
under carbon- or phosphate-limited conditions. As the RNA
expression levels have to be compared with the fluxes, the same
mathematical treatment should be applied to the flux values
(relative molar fluxes were used; each flux expressed in mol
L-1 h-1 was divided by the biomass flux). However, for the
wild type, some fluxes in the shikimate-producing pathway are
zero (more precisely, there is no quinic acid production). For
the modified strain, some other fluxes are zero (no formic acid
formation). Thus, for those fluxes, no good reference state exists.

Figure 10. Fluxes compared with the RNA expression data for the Krebs cycle. Notation as in Figure 9.
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Therefore, the mean of the four values was used as reference
state, each value was divided by it, and the log2 was taken.
This was done for both the RNA expression levels and the fluxes
that were not zero (Figures 9-11).

The flux through a reaction is not always controlled by the
enzyme level, as metabolic control analysis shows, but can also
be limited by the availability of reactants. It is not expected
that there is a direct correlation between RNA expression levels
and enzyme levels, even less between RNA expression levels
and metabolic fluxes. Only when RNA expression is absent can
one say for sure that the corresponding flux is zero, and the
absence of expression of a gene can only be disproven, not
proven (12). However, in some cases there can be qualitative
correlations between RNA expression levels and metabolic
fluxes (42). For some (key) reactions an increase in flux
correlates with an increase or decrease in RNA expression levels
(Figures 9-11). Some correlations were detected in the glyco-
lysis and the aromatic pathway, whereas in the PPP and the
citric acid cycle the reactions seem to be driven by supply and
demand and not by RNA expression of their genes.

In the following paragraphs examples are given of these three
cases: positive correlation, negative correlation and no correla-
tion.

4.3.1. PositiWe Correlation. The modified strain has the
feedback inhibition acting onaroF andaroG from tyrosine and
phenylalanine, respectively, trypthophane and phenylalanine
removed. This can be seen both in the fluxes and in the RNA
expression levels (Figure 11).

The expression ofydiB seems not to be correlated with the
ShiSY reaction (Figure 11), but it is correlated with the

production of quinate. Carbon limitation in the modified strains
gives a highydiBexpression combined with a high flux through
DhqDH.

4.3.2.NegatiWe Correlation. Whereas in C-limited cultures
ptsG is more expressed than in carbon-abundant ones, the
specific uptake of glucose is lower (Figure 9). An explanation
might be that under such conditions the cell tries to optimize
the uptake of carbon by expressing moreptsG(43). The same
is valid for the geneacs, for acetate assimilation (Figure 10):
this gene codes for acetyl coenzyme A synthethase and is even
expressed when no acetate is available (44). This seems to fit
the case here: under carbon-limiting conditions, the expression
of this gene is stronger; more need for carbon?

Carbon-abundant cultures have a low expression of genes
coding for pyruvate dehydrogenase (PyrD in Figure 10) and a
high flux through that reaction, whereas carbon-limited cultures
show the opposite behavior. This confirms the high non-growth-
and low growth-associated maintenance found for the phosphate-
limited cultures: the flux through the citric acid cycle (mainly
used for generating ATP via respiration) is saturated. This can
also be observed in the Krebs cycle itself: the flux through it
is higher in P- than in C-limitation while the genes are
downregulated. Furthermore, the flux in the modified strain is
generally higher than the one in the wild-type strain.

4.3.3. No Correlation. In general the fluxes in the PPP
pathway do not follow the RNA expression patterns (Figure
9). Fluxes seem to be driven by the need to build blocks for
the amino acid synthesis reactions, in case of the aromatic
pathway.

Figure 11. Fluxes compared with the RNA expression data in the aromatic amino acid pathway. Notation as in Figure 9.
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Figure 12. Appendix A: List of reactions included in the model.
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Figure 13. Appendix B: List of metabolites. The first column contains the names as used in Appendix A. The second column contains the
elemental composition and the charge:Peptstands for polypeptide, i.e., a complex molecule for which it makes no sense to use the exact elemental
composition. The third column gives the full name of the metabolites.
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5. Conclusions

With the aid of MFA (of which an overview was given,
including the error propagation of the measured fluxes to the
calculated ones and how to use redundant measurements to test
for consistency of the data), it was shown that in theE. coli
W3110.shik1 strain, the difference in shikimic acid yield
between carbon-rich and carbon-limited cultures is not due to
a lower flux in the aromatic amino acid pathway but to a larger
excretion of dehydroshikimic acid and dehydroquinic acid. The
flux entering the shikimate pathway was even higher in carbon-
limited cultures, and this was due to or caused by less carbon
going from the pentose phosphate pathway to the glycolysis.

Flux data were compared with RNA expression data. Most
of the fluxes were not driven by the amount of expression of
the corresponding gene. However, some fluxes were correlated,
especially those from the altered genes:aroF and aroG
feedback inhibition, giving a higher flux through the aromatic
pathway, andydiB overexpression, causing a high quinate
production. Finally, a number of important fluxes are negatively
correlated with the RNA expression level: this to maximize
the flux through that reaction, for example,ptsGunder carbon-
limitation.
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