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Population balance models (PBMs) can be used to describe the evolution with time of
distributions of properties of individuals. In this study a PBM for activated sludge flocculation
including aggregation and breakage processes was investigated. The PBM is an integro-
differential equation and does not have an analytical solution. A possibe method of solving the
equation at relatively low computational cost is to use discretization. Two different
discretization techniques, the fixed pivot and the moving pivot, were compared using
geometric grids of different coarseness. Simulations were performed for three different
processes: pure aggregation, pure breakage and combined aggregation – breakage. The results
for pure aggregation showed that the fixed pivot overpredicts the large particle sizes when using
coarse grids since grid refinement results in a clear downward trend. The predictions of the
moving pivot technique show even lower predictions for the large particle sizes, with a slight
upward trend for finer grids. This suggests that these predictions are closer to the pseudo-
analytical solution (i.e. at infinitely fine grid). For the pure breakage case it was found that the
moving pivot predictions collapsed onto one curve. Since a binary breakage case was studied, a
fixed pivot with a grid with geometric factor 2 also collapsed onto that curve. Grid refinement
for the fixed pivot case resulted in overestimations. Similar conclusions could be drawn for the
combined aggregation – breakage case. Overall, the moving pivot is found to be superior since
it produces more accurate predictions, even for much coarser grids. Despite the computational
burden, the latter implies a lower computational load.
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1. Introduction

A population balance model (PBM) can be used to describe the time evolution of one
or more property distributions of individuals of a population. This type of model was
proposed in the late 1970s [1], but applications were limited because of a lack of
computational power and appropriate measurement techniques to feed the models.
Since these limitations have gradually eased over recent decades, the popularity of

*Corresponding author. Email: Ingmar.Nopens@biomath.ugent.be

Mathematical and Computer Modelling of Dynamical Systems
Vol. 12, No. 5, October 2006, 441 – 454

Mathematical and Computer Modelling of Dynamical Systems
ISSN 1387-3954 print/ISSN 1744-5051 online ª 2006 Taylor & Francis

http://www.tandf.co.uk/journals
DOI: 10.1080/13873950600723376



PBMs has increased which is reflected by an increase in the number of studies using this
type of model. Applications can be found in various scientific fields dealing with a
‘population’ of individuals, such as crystallization, flocculation, flotation, polymeriza-
tion, precipitation, aerosol dynamics, cell age evolution, etc. Typically, one is interested
in describing the evolution of the distribution of a population property (e.g. size,
specific surface area, fractal dimension, density, cell age, cell storage material). The aim
is either to improve understanding of certain phenomena or to predict the evolution of
the distribution in order to control certain processes. An example of the type of
experimental data that can be described by a PBM (taken from a biological
flocculation experiment using activated sludge [2]) is shown in figure 1. It shows the
evolution of a number distribution in time, together with the evolution of the mass
mean diameter of the distribution which is often used as a summarizing parameter.
The format of the PBM depends on the process under study. The most general

(multidimensional) format of the population balance equation is as follows [3]:

@

@t
fðx; tÞ þ rx � _Xfðx; tÞ ¼ hðx; tÞ ¼ hðx; tÞagg þ hðx; tÞbreak ð1Þ

where x is a vector of properties, f(x,t) is the joint property distribution function, _X is a
vector containing the time derivatives of x, �x is the gradient operator (i.e. the sum of all
partial derivatives of the scalar on which it operates with respect to the elements of the
vector x), and h(x,t) represents the birth and death of individuals typically occurring
through aggregation and breakage. In the following sections the structure of the model
is described, two methods for solving this type of equation using discretization are
presented, and simulations using these two solution techniques are compared.

2. Description of the model

In the application investigated in this paper, activated sludge flocculation, the
individuals are activated sludge flocs, the property vector x is the floc size (one-
dimensional PBM) expressed as volume, and the distribution f(x,t) is the number
distribution. Since the model will be used to describe data from relatively short

Figure 1. Example of the type of data that can be modelled using a PBM: evolution with time of (a) size
distribution and (b) the mass mean derived from the distributions [2].
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flocculation experiments, biological floc growth is not considered. Therefore the second
term in equation (1) disappears because _X is zero. The function h(x,t) consists of birth
and death terms for both aggregation and breakage. Note that this function typically
consists of four terms, two for aggregation (birth and death) and two for breakage
(birth and death).

Most aggregation models are based on the ‘integral’ Smoluchowski equation [4]:

hðx; tÞagg ¼
1

2

Z x

0

abðx� x0; x0Þfðx� x0; tÞfðx0; tÞdx0 � fðx; tÞ
Z 1
0

abðx; x0Þfðx0; tÞdx0

ð2Þ

where a is the collision efficiency and b is the aggregation frequency function, often
referred to as the ‘aggregation kernel’.

The first term on the right-hand side of equation (2) describes the increase in flocs of
size x by aggregation of two smaller flocs (x – x0 and x0) whose total volume is equal to
the volume of a floc of size x (aggregation birth). The second term on the right-hand
side of equation (2) describes the loss of flocs of size x because of their aggregation with
flocs of any other size (aggregation death).

In a PBM describing flocculation, the aggregation kernel b represents the number of
collisions that occur and can be interpreted as a description of the transport of the
particles towards each other. Typically, the aggregation kernel is a function of the
volume of the colliding particles. The aggregation kernel used in this study is a ‘sum
kernel’ (since it is a function of the sum of the particle volumes) and is expressed as
follows [5]:

bði; jÞ ¼ 0:31Gðv1=3i þ v
1=3
j Þ

3 ð3Þ

where G is the average velocity gradient and vi is the volume of particle i. It describes
orthokinetic flocculation caused by fluid shear. Other methods of particle transport can
occur, such as Brownian motion (perikinetic flocculation) or differential sedimentation.
However, these are not considered here.

The factor a represents the fraction of collisions that are successful. It corrects for
hydrodynamic and/or electrostatic interactions which might affect the success of a
collision. It is often chosen to be a constant (fitting parameter) but it can be dependent
on particle properties (e.g. size) [6].

Breakage models are typically expressed as follows:

hðx; tÞbreak ¼
Z 1
x

nðxÞ�ðx0; xÞSðx0Þfðx0; tÞdx0 � SðxÞfðx; tÞ ð4Þ

where n(x) is the average number of daughter particles that are formed per breakage
event, � is the daughter distribution function, which describes the properties of the
particles that are formed, and S is the breakage rate or ‘breakage kernel’. The first
term on the right-hand side of equation (4) describes the increase in the number of
flocs of size x as a result of break-up of larger flocs (breakage birth). The second term
on the right-hand side of equation (4) describes the loss of flocs of size x because of
breakage (breakage death). In the literature, binary breakage is often assumed, i.e.
n(x)¼ 2. The daughter distribution function can be a discrete or a continuous
function. In this study it is assumed that particles break up into two daughter
particles with equal volumes. The breakage kernel is function of the particle volume.
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Some studies relate the breakage kernel to the turbulence regime, leading to complex
functionals [7,8]. The following breakage kernel was chosen in this simulation
study [9]:

SðiÞ ¼ Avai ð5Þ

where A is the breakage rate and a is a constant which is chosen to be 1/3. The latter
implies a linear relationship with the floc diameter.
Combining equations (1) – (5) results in an integro-differential equation which,

depending on the aggregation and breakage functions used, rarely has an analytical
solution. Hence other techniques, such as successive approximation, Laplace
transforms, weighted residuals, discretization, or Monte Carlo simulation, are used
to solve the equation. An overview of the different techniques used to obtain
approximate solutions for PBMs can be found in [3]. In this simulation study we use
discretization techniques to solve the population balance model.
When the property vector x is discretized, the integrals in equations (2) and (4) become

summations and the integro-differential equation is converted into a set of ordinary
differential equations which can be solved simultaneously using a time-integration
algorithm. However, accurate solutions need a fine grid which implies a high compu-
tational load. If an accurate solution of the complete distribution is needed, it is necessary
to use a fine grid and the coarseness will determine the accuracy of the solution. If accurate
estimates of certain properties of the distribution are required, it is possible to use other
techniques [10,11] which were developed in order to decrease the computational load
while still ensuring the conservation of at least two integral properties of x (e.g. numbers
and mass). These techniques will be discussed in more detail in the following sections.

3. The fixed pivot approach

Several authors have proposed methods of solving a population balance equation
numerically using a reduced number of equations by applying discretization. The
reduction in the number of equations implies that the accuracy of the solution
deteriorates. However, in some cases one is not interested in an accurate solution of the
complete distribution, but only the conservation of certain properties (e.g. number or
mass conservation). Batterham et al. [12] used a geometric grid (viþ1¼ 2vi, where v is the
floc volume) to solve a pure aggregation population balance model conserving mass only.
Hounslow et al. [13] used a similar grid and developed a set of equations conserving both
number and mass for pure aggregation systems. Litster et al. [14] generalized Hounslow’s
technique for other geometric grids (viþ1¼ rvi, where r¼ 1/q and q is a positive integer),
again for pure aggregation. Finally, Hill and Ng [15] developed a similar technique for
pure breakage problems. The main disadvantage of these methods is that they can only be
used for one or a limited number of geometric grids and that the conservation of
distribution properties is restricted to number and mass. When another grid is to be used
and the properties of interest are different, new equations need to be derived.
In order to solve this problem, Kumar and Ramkrishna [10] proposed a framework

which allowed conservation of any two chosen integral properties of the distribution.
Moreover, the numerical technique developed can be used for any arbitrarily chosen
grid. The main difficulty which needs to be overcome is that particles can be formed
(through either aggregation or breakage) whose property x does not coincide with one
of the existing grid points or ‘pivots’. Two property balances are used to reallocate
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these particles to the adjoining pivots (figure 2(a)). Thus two arbitrarily chosen
properties of the distribution can be conserved.

The set of equations needed to conserve both mass and number is as follows [10]:

dNi

dt
¼

Xj�k
j;k

xi�1�ðxjþxkÞ�xiþ1

�
1� 1

2
dj;k

�
Zibxj;xkNjNk

�Ni

X
k

bxi;xkNk þ
X
k
j�i

ni;kSðxiÞNj � SðxiÞNi ð6Þ

where

Zi ¼
xiþ1�ðxjþxkÞ

xiþ1�xi xi � ðxj þ xkÞ � xiþ1

ðxjþxkÞ�xi�1
xi�xi�1 xi�1 � ðxj þ xkÞ � xi

8<
: and

ni;k ¼
Z xiþ1

xi

xiþ1 � v

xiþ1 � xi
�ðv; xkÞdvþ

Z xi

xi�1

v� xi�1
xi � xi�1

�ðv; xkÞdv

ð7Þ

where �(v,xk) is the breakage distribution function, i.e. the probability that a daughter
particle of size v is formed from the breakage of a particle of size xk. In this study,
�(v,xk) was chosen to be 1 if v¼ xk/2 and zero in all other cases.

Figure 2. Schematic representation of how the different techniques deal with newly formed particles which do
not coincide with an existing pivot: (a) fixed pivot; (b) moving pivot.
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Equation (6) consists of four terms. The first is the aggregation birth term and
contains a factor Z (defined in equation (7)) responsible for the reallocation of the
particles formed to the adjoining pivots if they do not coincide with a pivot. If they do
coincide with a pivot, Z¼ 1. It is important to note here that the summation is
performed for aggregated particles which have a volume between the pivots xi71 and
xiþ1. The second term describes the loss of particles due to aggregation (aggregation
death) and does not require any reallocation since particles only disappear and are not
formed. the third term (breakage birth) requires a factor for reallocation (ni,k) based on
the breakage distribution function (equation (7)). The fourth term describes the loss of
particles due to break-up (breakage death), and since no particles are formed during
this process this term does not require any reallocation. Note that equations (6) and (7)
are simplified equations which can only be used to conserve number and mass; hence
they yield identical results to the equations derived by Hounslow et al. [13] when a
geometrical grid with factor 2 (volume-based) is used. The advantage of the fixed pivot
technique is its generality in terms of the properties to be conserved and the grid
choice. The general equations of the fixed pivot technique can be found in the
literature [2,10].
Kumar and Ramkrishna [10] compared their technique with an analytical solution

(i.e. their population balance model had a rather simple structure with regard to
aggregation and breakage kernels) to check the performance of the technique for pure
break-up, pure aggregation, and combined aggregation – breakage. The technique
produced accurate predictions for pure break-up even when coarse grids were used.
The cases involving aggregation (pure aggregation and the combined case) suffered
from severe overprediction at large particle sizes. The degree of overprediction was
reduced by using a finer grid. The overprediction was attributed to steep non-linear
gradients in the number density functions. This problem was addressed by the moving
pivot technique described in the next section.

4. The moving pivot approach

In order to overcome the problem of steep non-linear gradients in the number density
functions, leading to overprediction in the large particle size range, Kumar and
Ramkrishna [11] proposed the ‘moving pivot’ technique. This technique accounts for
the evolving non-uniformity of the distribution in each interval as a result of breakage
and aggregation events by allowing a varying pivot location (figure 2(b)). The other
features (arbitrary choice of grid and integral properties to be conserved) were
maintained. Details of the derivation of the equations can be found in the literature
[2,11]. The equations conserving number and mass are as follows:

dNi

dt
¼

Xj�k
j;k

vi�ðxjþxkÞ�viþ1

�
1� 1

2
dj;k

�
bxj;xkNjNk �Ni

X
bxi;xkNk þ

X
j�i

SðxiÞNjB
ð1Þ
i;j � SðxiÞNi

dxi
dt
¼ 1

Ni

Xj�k
j;k

vi�ðxjþxkÞ�viþ1

�
1� 1

2
dj;k

�
½ðxj þ xkÞ � xi�bxj;xkNjNk

� 1

Ni

X
j�i

SðxiÞNj½B
ðvÞ
i; j � xiB

ð1Þ
i; j � ð8Þ
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where

B
ð1Þ
i; j ¼

Z viþ1

vi

�ðv; xjÞdv B
ðvÞ
i; j ¼

Z viþ1

vi

v�ðv; xjÞdv: ð9Þ

The first expression in equation (8) describes the time variation of Ni and looks similar
to that in the fixed pivot method. It also contains four terms (aggregation birth/death
and breakage birth/death). However, the first and third terms are different from those
in equation (6). The difference in the first term is the fact that the summation now
involves aggregated particles which are formed between the class boundaries vi and viþ1
(and not between pivots as was the case in the fixed pivot approach). A similar
difference occurs in the third term where the integrals (equation (9)) have different
limits from those for ni,k (equation (7)). A closer look at the second expression in
equation (8) reveals that only two terms are responsible for changing the pivots xi, one
for aggregation birth and one for breakage birth. In fact, the equation is just a
determination of the average diameter (in this case volume) of every size class when
new particles are created in them. In this way, the pivots are allowed to move inside the
class boundaries depending on the number and volume of particles that are created in
the class through either aggregation or breakage.

The moving pivot technique was compared with the fixed pivot technique, but only
with respect to its additional features [11]. It was found that it did not overpredict in
the large particle size range; rather, a small underprediction was observed. However,
the results for the moving pivot technique were much closer to the analytical solution
than those obtained using the fixed pivot technique with exactly the same grid. Further
refinement of the grid improved the accuracy of the solution.

5. Numerical results

The aim of this study was to compare solutions of the PBM described in section 2 and
to determine the optimal solution method and grid coarseness, taking into account
both the accuracy of the solution and the required calculation time. Three cases were
investigated: pure aggregation, pure breakage, and combined aggregation – breakage.
Unlike the investigations by Kumar and Ramkrishna [10,11], no analytical solution of
the PBE was available. The solution methods described in sections 3 and 4 were
implemented in the modelling and in the simulation platform WEST (Hemmis NV,
Belgium) which was used to perform all simulations [16].

5.1 Simulation conditions

The distribution properties to be conserved were chosen to be number and mass
(zeroth and third integral moments of the number distribution). Different geometrical
grids were used (viþ1¼ svi, 1.1� s� 2). The lower boundary of the size range was
chosen to be 0.6 mm because the single bacterial cells making up the floc have a
diameter of about 1 mm. The upper boundary of the size range was chosen to be the
upper limit of the class for which the pivot did not exceed 800 mm. Thus the number
of classes ranged from 31 for the case where s¼ 2 to 226 for the case where s¼ 1.1. A
floc monodispersion of diameter 5.5 mm with a total volume of 5.96 1010 mm3 was
chosen as the initial condition. The average velocity gradient G was chosen to be
37.0 s71.
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The initial conditions were calculated for each of the different grid – solution method
combinations. When using the fixed pivot technique, the pivots between which the
monodisperse diameter was situated were identified, and the mass and number were
reallocated to the adjoining pivots conserving both mass and number of the
monodispersion (same procedure as described for the fixed pivot (see section 3)). All
other Ni values were set to zero. When using the moving pivot technique, the class
containing the monodisperse diameter was assigned a pivotal size of 5.5 mm and was
filled with 6.776 108 flocs as the initial Ni. All other pivots were chosen to be class
centres and the Ni values were set equal to 10713. This is needed because equation (8)
contains a division by Ni. The value was chosen such that no mass is added to the
system. Parameters a and A were set at 0.1 and 5000, respectively (or to zero for the
pure aggregation and pure breakage cases), which corresponds to moderate aggre-
gation and breakage. In order to check for mass losses the third moment of
the distribution was monitored during all simulations. No significant mass losses were
observed in any of the simulations (51073%).
The numerical results are presented in terms of cumulative oversize number (CON)

as a function of the floc volume, which is defined as follows:

CONðv; tÞ ¼
Z 1
v

nðv0; tÞdv0: ð10Þ

This plot emphasizes the predictions for number density in the large particle size tail of
the distribution and the zeroth moment of the size distribution (total number) in a
single plot. To emphasize the predictions in the small particle size tail, the cumulative
undersize number (CUN) can be used, which is similar to CON except that it has
different integration limits:

CUNðv; tÞ ¼
Z v

0

nðv0; tÞdv0: ð11Þ

5.2 Pure aggregation and pure breakage simulations

First, simulations using either the fixed or the moving pivot approach were performed
for the pure aggregation and pure breakage processes. The results are shown in figure 3
for pure aggregation (A¼ 0) at t¼ 23 s and in figure 4 for pure breakage (a¼ 0) at
t¼ 10 s. These time points were chosen so that it was possible to observe the moving
front. Since a steady state will not be reached for pure aggregation and pure breakage,
the front eventually disappears after a while and the volume becomes concentrated in
the largest size class for pure aggregation and in the smallest size class for pure
breakage.
For pure aggregation, five different geometric grids were studied using the fixed pivot

method (s values of 1.1, 1.2, 1.3, 1.5, and 2) and three using the moving pivot technique
(s values of 2, 1.9, and 1.8). Coarse grids tend to overpredict the large particle sizes for
the fixed pivot technique and hence inherently overpredict the rate of aggregation. This
can clearly be seen in figure 3(b) where grid refinement results in lower predictions for
the CON tail. The improvements in accuracy for the grids investigated was evaluated at
CON¼ 10 (i.e. the volume at which there are still 10 oversized particles). These
improvements are still quite large in the fixed grids, implying that even the accuracy of
the finest grid (s¼ 1.1) is not very great. This can be seen in table 1 which summarizes
the corresponding diameters for CON¼ 10. Litster et al. [14] used s values as low as
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Figure 3. Prediction of the cumulative oversize number (CON) as a function of the particle volume for pure
aggregation (A¼ 0) at t¼ 23 s: (a) complete range, (b) enlarged section.

Figure 4. Prediction of the cumulative undersize number (CUN) as a function of the particle volume for pure
breakage (a¼ 0) at t¼ 10 s: (a) complete range; (b) enlarged section.
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1.12 to approach an analytical solution for their case. As the results here show, this still
seems to be too coarse.
The moving pivot technique resulted in even smaller numbers of large particles

compared with the fixed pivot predictions. When refining the grid, rather higher
predictions of the CON tail are observed. However, the improvements in accuracy
between the grids investigated at CON¼ 10 are much smaller, implying that the accuracy
cannot be improved much by further refining the grid. Moreover, in view of the
convergence of the fixed pivot predictions and the relative stability of the moving pivot
predictions, the solution obtained using the latter can be regarded as being close to the
pseudo-analytical solution. This is confirmed in table 1 as the increase in diameter when
refining the grid with the moving pivot is less than the decrease was observed with the
fixed pivot. This was also noted by Kumar and Ramkrishna [11]. They compared the
results with the analytical solution and found that the latter lay between the fixed and
moving pivot predictions, but closer to the latter. It can be concluded that the moving
pivot technique is superior in terms of accuracy, even for coarse grids. However, it should
be noted that the calculation load for the moving pivot is higher than that for the fixed
pivot for the same grid coarseness. It is recommended that the moving pivot technique is
used for pure aggregation cases since coarser grids, which are less computation intensive
than the fine grids required by the fixed pivot, can be used to obtain the same accuracy.
For pure breakage, five grids were studied using the fixed pivot method (s values of

1.1, 1.2, 1.3, 1.5, and 2) and three using the moving pivot technique (s values of 2, 1.9,
and 1.8). For the different moving pivot grids, the predictions almost completely
collapse onto the same curve and the pivots, although starting at a different value for
each grid at t¼ 0 s, all move to the pivot values of the grid with s¼ 2. Moreover, the
prediction of the fixed grid for s¼ 2 collapses onto the same curve. For finer grids, the
fixed pivot yielded different results at CUN¼ 10 (table 2). This rather surprising result
actually has a simple explanation. It is caused by the kind of breakage used in this
study (binary breakage into equally sized daughters). If a grid with s¼ 2 is used, a
breakage event will produce particles which are the size as the pivot of the underlying
class. Therefore no errors will be made when this kind of grid is used, and the fixed and
moving pivot techniques will yield the same result. However, when a finer grid is used,
the fixed pivot method is unable to correct for the fact that particles are created in
volumes different from the pivot. The moving pivot can correct for this by moving to
the same volumes as for a grid with s¼ 2 (still remaining within their boundaries). This
example shows the flexibility of the moving pivot technique. When even finer grids are
used for the fixed pivot (s values of 1.1 and 1.2), waves start to build up in the solution.
This is also due to the binary breakage into equal-sized daughters. Some classes of

Table 1. Diameters corresponding to CON¼ 10 for the pure aggregation case using different solution
techniques (at t¼ 23 s).

Solution technique and grid coarseness Diameter (mm)

Fixed pivot, s¼ 2.0 641
Fixed pivot, s¼ 1.5 466
Fixed pivot, s¼ 1.3 396
Fixed pivot, s¼ 1.2 365
Fixed pivot, s¼ 1.1 343
Moving pivot, s¼ 2.0 319
Moving pivot, s¼ 1.9 301
Moving pivot, s¼ 1.8 330
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particles simply cannot be formed. Grid refinement does not appear to give a more
accurate solution in the breakage case. Only the fixed pivot case with s¼ 2.0 yields
comparable results to those obtained with the moving pivot. However, it should be
noted that, for other kinds of breakage (e.g. binary breakage into unequal daughters,
multiple breakage), the comparison between the two solution methods is expected to be
similar to the results obtained for aggregation, i.e. the moving pivot will be superior.
Therefore it is recommended that the moving pivot is used for pure breakage.

5.3 Combined aggregation – breakage simulations

Finally, the PBM was solved for the combined aggregation – breakage case. Under the
conditions mentioned above, it takes about 300 s to reach a steady-state particle size
distribution. The steady-state numerical results for CON and CUN are shown in figures
5 and 6, respectively. Again, five grids were studied using the fixed pivot method
(s values of 1.1, 1.2, 1.3, 1.5, and 2) and three using the moving pivot technique (s values of
2, 1.9, and 1.8). For the fixed pivot approach, the CON tail predictions are different for
the grids investigated with a clear direction of change. A similar, but less pronounced,
effect to that in the pure aggregation case is observed. The diameter values obtained at
CON¼ 10 are summarized in table 3. A downward trend can clearly be observed and it is
assumed that the ‘exact’ or pseudo-analytical solution can be found by further refinement
of the grid. A similar trend has been observed by other researchers [10,14].

Since the difference between the grids with s values of 1.2 and 1.1 is still rather large,
it is thought that the accuracy is still not very high and that further grid refinement is
necessary. Again, the moving pivot predictions for large particle sizes are much lower
than the fixed pivot solution. Since grid refinement does not result in large differences
(52%), the moving pivot can be considered to be closer to the pseudo-analytical
solution and hence is superior to the fixed pivot.

The predictions for smaller particle sizes (figure 6) are also different for the
investigated grids. Similar results to those for the pure breakage case were found.
However, the moving pivot predictions do not collapse as perfectly onto the same curve
for all grids (again the curve obtained with the fixed pivot for s¼ 2) as was the case in
the pure breakage case. Further refining the grid in the fixed pivot case leads to lower
predictions of the CUN tail. This is probably because of inaccuracies introduced by the
aggregation. Therefore in this case it is less clear that the moving pivot is superior and
will produce more accurate results. However, based on the CON values, the moving
pivot is still thought to be superior.

Table 2. Diameters corresponding to CON¼ 10 for the pure breakage case using different solution techniques
(at t¼ 10 s).

Solution technique and grid coarseness Diameter (mm)

Fixed pivot, s¼ 2.0 1.10
Fixed pivot, s¼ 1.5 1.01
Fixed pivot, s¼ 1.3 1.10
Fixed pivot, s¼ 1.2 1.22
Fixed pivot, s¼ 1.1 1.25
Moving pivot, s¼ 2.0 1.10
Moving pivot, s¼ 1.9 1.10
Moving pivot, s¼ 1.8 1.10
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Figure 5. Steady-state prediction of the cumulative oversize number (CON) as a function of the particle
volume for the fixed and moving pivot: (a) complete range; (b) enlarged section.

Figure 6. Steady-state prediction of the cumulative undersize number (CUN) as a function of the particle
volume for the fixed and moving pivot: (a) complete range; (b) enlarged section.
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Overall, it can be concluded that the moving pivot approach is superior to the fixed
pivot method, even for coarse grids (s¼ 2). Therefore more accurate predictions than
those obtained using the fixed pivot approach can be obtained at much lower
computational cost (coarser grids can be used).

6. Summary

Two different methods of solving a PBM for activated sludge floccuation using

discretization, the fixed pivot and the moving pivot techniques, have been presented.

Simulations for geometric grids with different coarseness using both techniques were

compared for three different processes: pure aggregation, pure breakage, and combined

aggregation – breakage. The pure aggregation case revealed that the fixed pivot technique

overpredicts the CON tail (i.e. the number of large particles) when using coarse grids. The

moving pivot technique yielded much lower predictions, but since grid refinement caused

only minor changes, it is, in agreement with literature reports, thought to be more accurate

than the fixed pivot technique (even for coarse grids). In the pure breakage case, the fixed

pivot technique with a grid with a geometric factor of 2 was found to produce accurate results

for the specific breakage case investigated (binary breakage into equally sized daughters).

This will not be true for more general breakage cases, and the moving pivot is again expected

to be superior. The combined aggregation – breakage case revealed very similar results to the

pure cases. Overall, the moving pivot is found to be superior in almost all cases investigated.

The only drawback of this method is its larger computational cost per size class considered.

However, this is more than compensated by its numerical efficiency, since significantly

coarser grids yield more accurate results than with the fixed pivot approach.
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