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This research describes the application of a multivariate statistical process control method to a pilot-
scale sequencing batch reactor (SBR) using a batchwise nonlinear monitoring technique for a denoising
effect. Three-way batch data of normal batches are unfolded batch-wise and then a kernel principal
component analysis (KPCA) is applied to capture the nonlinear dynamics within normal batch processes.
The developed monitoring method was successfully applied to an 80-l sequencing batch reactor (SBR)
for biological wastewater treatment, which is characterized by a variety of nonstationary and nonlinear
characteristics. In the multivariate analysis and batch-wise monitoring, the developed nonlinear moni-
toring method can effectively capture the nonlinear relations within the batch process data and clearly
showed the power of nonlinear process monitoring and denoising performance in comparison with lin-
ear methods.

Introduction

The increase in environmental restrictions in re-
cent times leads to possibilities for advanced process
monitoring and control of plant performance. Most of
the changes in wastewater treatment plants are slow
when the process is recovering from a ‘bad’ state to a
‘normal’ state. Early detection and isolation of faults
in chemical and biological processes are very effec-
tive because they allow corrective action to be taken
well before the situation becomes dangerous. Some
changes are not so obvious and may gradually grow
until they cause any serious operational problem (Kano
et al., 2001, 2003; Rosen and Lennox, 2001; Yoo et
al., 2003).

Sequencing batch reactor (SBR) processes have
demonstrated their efficiency and flexibility in the
treatment of wastewaters with high concentrations of
nutrients (nitrogen, phosphorous) and toxic compounds
from domestic and industrial sources. The SBR under
study has a unique cyclic batch operation, usually with
five well-defined phases: fill, react, settle, draw and
idle. Most of the advantages of the SBR processes may
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be attributed to their single-tank designs and the flex-
ibility that allows them to meet many different treat-
ment objectives, which is derived from the possibility
of adjusting the duration of the different phases. How-
ever, the SBR process is highly nonlinear, time-vary-
ing and subject to significant disturbances like hydrau-
lic changes, composition variations and equipment fail-
ures. Small changes in concentrations or flows can af-
fect the effluent quality and microorganism growth.
Moreover, compared to continuous wastewater treat-
ment processes, SBR operation data have an added di-
mension of the batch number, in addition to the mea-
sured variables and sample times (batches × variables
× time), that is, a three-way matrix. Batch processes
generally exhibit some batch-to-batch variations in the
trajectories of the process variables. However, treat-
ment performance, the key indicator of process per-
formance, is often only examined off-line in a labora-
tory. Even though operators might be aware that there
are some problems in treatment performance, they are
often not able to find out or predict what the causes
are and when the problems will occur because most
batch processes are run without any effective form of
real-time on-line monitoring. Therefore, a multivariate
analysis and process monitoring of SBRs are cru-
cial to detect faults that can be corrected prior to
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completion of the batch or can be corrected in subse-
quent batches because the recovery of the biological
process from abnormal operation may take several
days, weeks or even months (Lee and Vanrolleghem,
2003; Yoo et al., 2004).

A multiway principal component analysis (MPCA)
and a multiway independent component analysis
(MICA) have been shown to be powerful monitoring
tools in many industrial batch processes (Nomikos and
MacGregor, 1994; Yoo et al., 2004). However, for some
complicated cases in industrial chemical, biological and
environmental processes which especially have
nonlinear characteristics, a principal component analy-
sis (PCA) exhibits bad behaviour because of its linear-
ity assumption. They have a shortcoming that the meas-
urement variables of the batch process should have lin-
ear correlations. In this work, a multiway kernel prin-
cipal component analysis (MKPCA) is used to tackle
the nonlinear problem and obtain better batch moni-
toring performance of the pilot-scale SBR. It can effi-
ciently compute principal components in high dimen-
sional feature spaces by the use of integral operators
and nonlinear kernel functions. Three-way batch data
of the normal batch process are unfolded batch-wisely,
and then nonlinear PCA is used to capture the nonlinear
characteristics within the batch processes. In this work,
it is shown that nonlinear multivariate statistical proc-
ess control to monitor an 80-l SBR for biological
wastewater treatment can be used to overcome this
drawback and obtain better monitoring performance.

1. Methods

1.1 Kernel principal component analysis (KPCA)
In industrial processes where severe nonlinear

correlations exist among process variables, linear sta-
tistical techniques are not very effective in reducing
the process data dimensions. If a linear PCA is used in
these processes, a large number of PCs are required to
explain sufficient data variance. For nonlinearly cor-

related data, the results from linear PCA may be inad-
equate because minor components can contain impor-
tant information on nonlinearity. By discarding the
minor components, this important information
nonlinearity is lost. However, if these minor compo-
nents are kept, the linear methods may require too much
information to be useful. For the process monitoring
with nonlinearity, nonlinear statistical techniques are
more appropriate (Zhang et al., 1997; Yoo et al., 2004).

The kernel principal component analysis (KPCA)
is an emerging technique to address the nonlinear prob-
lems on the basis of PCA. The conceptual framework
of the KPCA method is shown schematically in Fig-
ure 1 (Romdhani et al., 1999). First, the KPCA per-
forms nonlinear mapping Φ(·) from an input vector x
to a high-dimensional feature space F (step (a)). Then,
a linear PCA is performed in this feature space, which
gives score values t

k
 in a lower p-dimensional KPCA

space (step (b)). In order to reconstruct a feature vec-
tor) (Φ(x) from t

k
, t

k
 is projected into the feature space

via v
k
, giving a reconstructed feature vector Φ̂ p x( ) =

∑ k
p

=1 t
k
v

k
 (step (c)). Then the squared prediction error

(SPE) in the feature space is defined as SPE = ||Φ(x) –
Φ̂ p x( ) ||2. Here, Φ(x) is identical to Φ̂ p x( ) = ∑ k

n
=1 t

k
v

k

if p = n, where n is the number of nonzero eigenvalues
in the feature space among the total N eigenvalues (step
(d)). Given any algorithm which can be expressed
solely in terms of dot products, i.e. without explicit
usage of the variables themselves, this kernel method
enables us to construct different nonlinear versions of
it. Compared to other nonlinear methods, the main ad-
vantage of KPCA is that no nonlinear optimization is
involved. Based on these merits, KPCA has shown
better performance than linear PCA in feature extrac-
tion and classification including nonlinearity
(Schölkopf et al., 1998; Lee et al., 2004a).

To derive KPCA, we first map the data x
k
 ∈ Rm,

k = 1, ..., N into a feature space F where N is the number
of samples and compute the covariance matrix

Fig. 1 Conceptual diagram of KPCA
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where λ ≥ 0 denotes eigenvalues and v denotes the
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means the dot product between x and y. For λ ≠ 0, so-
lution v (eigenvector) can be regarded as a linear
combination of Φ(x

1
), ..., Φ(x

N
), i.e., v = ∑ i

N
=1 α

i
Φ(x

i
).

Multiplying Φ(x
k
) with both sides of Eq. (2), we have

λ α

α

i k i
i

N

i k j
j

N

i

N

j iN

Φ Φ

Φ Φ Φ Φ

x x

x x x x

( ) ( )

= ( ) ( ) ( ) ( ) ( )

=

==

∑

∑∑

,

, ,

1

11

1
3

Using the kernel trick, [K]
ij
 = K

ij
 = 〈Φ(x

i
), Φ(x

j
)〉,

the eigenvalue problem can be expressed in a simpli-
fied form

Nλααααα = Kααααα (4)

where ααααα = [α
1
, ..., α

N
]T and K ∈ RN×N is a gram matrix

which is composed of K
ij
. A justification of this proce-

dure is given in Schölkopf et al. (1998). Then, per-
forming PCA in the feature space F is equal to resolv-
ing the eigen-problem of Eq. (4).  This yields
eigenvectors α

1
, ..., α

N
, with eigenvalues λ

1
 ≥ λ

2
 ≥ ··· ≥

λ
N
. Dimensionality can be reduced by retaining only

the first p eigenvectors. The projection, i.e., a score
vector, of the k-th observation in the training data, is
calculated by projecting Φ(x) onto eigenvectors v

k
 in

F where k = 1, ..., p.
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i
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To solve the eigen-problem of Eq. (4) and to
project from the input space to the KPCA space using
Eq. (5), one can avoid the needs for performing the
nonlinear mappings and computing both the dot prod-
ucts in the feature space through introducing a kernel
function, that is, k(x, y) = 〈Φ(x), Φ(y)〉. The representa-

tive kernel functions which satisfy Mercer’s theorem
are the polynomial, sigmoid, and Gaussian kernels.

Like other nonlinear PCA methods, KPCA has
several parameters that must be set in advance. For
example, the selection of the kernel function is the most
important problem confronting KPCA because the de-
gree to which it captures the nonlinear characteristic
of a system depends on the choice of the kernel func-
tion. A general question of how to select the ideal ker-
nel for a given process is an open problem. A number
of kernel functions have been proposed, the most com-
mon being the polynomial kernel, the sigmoid kernel,
and the radial basis kernel. The non-linear mapping
function would be ideal to be a linearising transform
which reflects the process with first exploiting one’s
knowledge of the physics and chemistry of the process
to create meaningful. If one have a nonlinear informa-
tion (shape) of the process, it could be used to select a
kernel functions among polynomial, sigmoid, and ra-
dial basis functions in KPCA.
1.2 Multiway principle component analysis

(MPCA)
MPCA is used for analysis and monitoring of batch

process data. The batch data are reported in terms of
batch runs, variables and times. Data are arranged into
a three-dimensional matrix X (I × J × K), where I is
the number of batches, J is the number of variables
and K is the number of sampling times in a given batch.
It can be decomposed using various three-way tech-
niques, including MPCA. Multiway PCA is equivalent
to performing an ordinary PCA on a large two-dimen-
sional matrix X constructed by unfolding the three-way
data as shown in approach of Figure 2 (Nomikos and
MacGregor, 1994).

MPCA decomposes the three-way X array into a
summation of the product of the score vector t

r
 and the

loading matrix P
r
 plus the residual array E that is mini-

mized in least squares sense as

X E E X E= ⊗ + = + = + ( )
= =

∑ ∑t P t Pr
r

R

r r r
T

r

R

1 1

6ˆ

where ⊗ denotes the Kronecker product (X = t⊗P is
X(i, j, k) = t(i)P(j, k) and R denotes the number of
principal components retained. The first equation in
Eq. (6) denotes the 3-D decomposition while the sec-
ond equation displays the more common 2-D decom-
position (Nomikos and MacGregor, 1994).

The statistics used for the MPCA are Hotelling’s
T2 and a squared prediction error (SPE). If a new batch
is good and consistent with the normal batches, its
scores should fall within the normal range and the
SPE or Q-statistic should be small. The T2 and Q-sta-
tistics obtained at the end-of-batch for batch i are cal-
culated as
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where e
i
 is the i-th row of E, I is the number of batches

in the reference set, t
r
 is a vector of R scores, S is the

(R × R) covariance matrix of the t-scores calculated
during the model development (diagonal due to the
orthogonality of the t-score values), R is the number
of principal components retained in the model, F

R,I–R
 is

the F-distribution value with R and (I – R – 1) degrees
of freedom. Statistical limits on the T2 and Q-statistics
are computed by assuming that the data have a
multivariate normal distribution (Nomikos and
MacGregor, 1995).
1.3 Nonlinear batch monitoring using MKPCA

In this paper, a nonlinear batch monitoring sys-
tem of SBR is developed on the basis of the multiway
kernel principal component analysis (MKPCA) (Lee
et al., 2004b). Batch processes deliver, by nature, a
3-way matrix (X(I × J × K)) of data. In a typical batch
run, j = 1, 2, ..., J variables are measured at k = 1, 2, ...,
K time intervals throughout the batch. Similar data exist
in several (i = 1, 2, ..., I) similar process batch runs.
MPCA needs to unfold this matrix in order to obtain a
two-way matrix, and then perform PCA. In this paper,
we used KPCA instead of PCA to extract the nonlinear
structure of the unfolded matrix, X(I × JK).

1.3.1 Outline of batch monitoring based on MKPCA
1. Acquire normal operating data X(I × J × K) and
unfold it batch-wise X(I × JK).
2. The data X(I × JK) are normalized using the mean
and the standard deviation of each variable at each time
in the batch cycle over all batches.
3. Given a set of JK-dimensional scaled normal op-
erating data x

k
 ∈ RJK, k = 1, ..., I, compute the kernel

matrix K ∈ RI×I by [K]
ij
 = K

ij
 = 〈Φ(x

i
), Φ(x

j
)〉 = [k(x

i
,

x
j
)].

4. Carry out mean centering in the feature space for
∑ k

I
=1 Φ̃ (x

k
) = 0.

K̃ K 1 K K1 1 K1= − − + ( )I I I I 9
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5. Carry out variance scaling in the feature space for
[1/(I – 1)]∑ k

I
=1 Φ̃scl (x
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6. Solve the eigenvalue problem Iλααααα = K̃scl ααααα and
normalize ααααα

k
 such that 〈ααααα

k
, ααααα

k
〉 = 1/λ

k
.

7. For normal operating data x at each batch, extract
a nonlinear component via

Fig. 2 Unfolding method of MPCA for a three-way batch
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where Φ̃scl (x) is the mean centered and variance scaled
feature vector of Φ(x).
8. Calculate the monitoring statistics (T2 and SPE)
at each batch and determine the control limits of T2

and SPE charts.
A measure of the variation within the MKPCA

model is given by Hotelling’s T2 statistic. T2 is the sum
of the normalized squared scores, and is defined as

  
T t t t tp p

T2
1

1
1 12= [ ] [ ] ( )−, , , ,K KΛ

where t
k
 is obtained from Eq. (5), p is the number of

PCs and Λ–1 is the diagonal matrix of the inverse of
the variances associated with the retained principal
components. The confidence limit for T2 is obtained
using the F-distribution.

T
p I

I I p
Fp I p

2
2 1

13~ , ,
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where I is the number of batches in the model, p is the
number of principal components, and α is the signifi-
cance level. The measure of goodness of fit of a sam-
ple to the PCA model is the squared prediction error
(SPE), also known as the Q statistic. In this paper, we

used a simple calculation of SPE in the feature space
F suggested by Lee et al. (2004b). Then SPE in the
feature space is defined as

SPE p= ( ) − ( ) ( )Φ Φx xˆ 2
14

where Φ̂ p x( ) = ∑ k
p

=1t
k
v

k
 is the reconstructed feature

vector with p principal components in the feature space.
The confidence limit for the SPE can be computed from
its approximate χ2 distribution

SPE g

g v m h m v

h~

,

,χ α
2

22 2
15
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where m and v are the estimated mean and variance
respectively of the SPE from the reference batches
(Nomikos and MacGregor, 1994).

2. Results and Discussion

2.1 Pilot-scale SBR process
The data used in this research were collected from

a pilot-scale SBR system shown in Figure 3. A fill-
and-draw sequencing batch reactor (SBR) with an
80-l working volume is operated in a 6-h cycle mode
and each cycle consists of fill/anaerobic (1 h), aerobic
(2 h 30 min), anoxic (1 h), re-aerobic (30 min) and
settling/draw (1 h) phases. The hydraulic retention time
(HRT) and the solid retention time (SRT) are main-
tained for 12 h and 10 d, respectively. Like synthetic
municipal-like sewage, loading amounts of COD,
NH

4
+-N and PO

4
3–-P per cycle in standard conditions

Fig. 3 Schematic diagram of the pilot-scale sequencing batch reactor
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are 440, 60 and 9.5 mg/l, respectively. The control of
the duration/sequence of phases and the on/off status
of peristaltic pumps, mixer and air supply are auto-
matically achieved by a Labview program. Six elec-
trodes for pH, oxidation-reduction potential (ORP),
dissolved oxygen (DO), temperature, conductivity and
weight are connected to the individual sensors to check
the status of the SBR, where a set of on-line measure-
ments is obtained every one minute. Thus, no advanced
nutrient or expensive measurement devices were in-
stalled in order to run an on-line monitoring algorithm
of the SBR process. Figure 4 shows typical batch pro-
files of the 6 variables during a batch. (Lee and
Vanrolleghem, 2003; Yoo et al., 2004).

It has been reported that on-line sensor values
collected in the SBR are related with dynamic charac-
teristics of the nutrient concentrations (COD, NH

4
+-N,

PO
4

3–- and NO
3

–) in SBRs (Chang and Hao, 1996). The
derivative of pH, ORP and DO profiles can detect the
ends of phosphate release, ammonia conversion, and
phosphate uptake, which also are useful information
sources. Therefore, the first derivatives of pH, ORP
and DO signals were calculated from on-line sensor
profiles and included into the database. The second
derivatives are too noisy to obtain any valuable infor-
mation. We considered 150 batches in the historical
data set of the SBR for which 9 variables were avail-
able at 300 time instants.

2.2 Multivariate batch monitoring of the pilot-scale
SBR
Ten principal components (PCs) of the MPCA

model for 9 input variables including the first deriva-
tives were retained by the cross-validation method ex-
plaining 77.5% of variation of the input space. Twenty
PCs of the MKPCA model for 9 input variables includ-
ing the first derivatives were retained by the broken-
stick rule explaining 77.8% of the variation in the fea-
ture space (Nomikos and MacGregor, 1994). MKPCA
selected the Gaussian kernel, k(x, y) = exp(–||x – y||2/
δ) with δ = rmσ2, where r is a constant determined by
the process to be monitored (10 in this research), m is
the dimension of the input space, and σ2 is the vari-
ance of the data (Mika et al., 1999). According to
Schölkopf et al. (1999), KPCA has a potential to uti-
lize more PCs to code the structure rather than noise;
hence, KPCA outperforms linear PCA in denoising if
a sufficiently large number of PCs are used. In this
research, a Gaussian kernel was used for the mapping
to a high-dimensional feature space since it is found to
be appropriate to capture the nonlinearity of the con-
sidered system by testing the monitoring performance
of a range of kernel functions. Obviously, other kernel
functions may be more appropriate for other nonlinear
cases.

Figure 5 shows the T2 and the SPE charts of the
MPCA and the MKPA models with 9 input variables.

Fig. 4 Typical batch trajectory profiles of an SBR
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There is little difference between the T2 charts of the
MPCA and the MKPCA models. But there is a consid-
erable difference between the SPE charts of them. This
difference originates from the noise amplification of
the derivatives of the three signals. This noise ampli-
fication may significantly distort the information of a
signal and makes the SPE statistic of the MPCA model
with 9 input variables less efficient because their SPE
limits are too high, that is, models do not stay valid for
prolonged deviation in the SPE limit. This may come
from the nonlinear biological kinetics and noise am-
plification. In the instance of noisy data, MPCA dis-
cards the finite variance due to the noise by projection
of data onto the main principal components. On the
other hand, MKPCA extracts a large number of
nonlinear principal components and therefore allows
spreading the information regarding the data structure
more widely giving a better opportunity to discard some
of the eigen directions where the noisy part of the data
resides. Thus, MKPCA provides a better capability of
feature extraction and denoising. In addition, if the
structure to be extracted is nonlinear, then linear PCA
has a worse denoising capabili ty than KPCA
(Schölkopf et al., 1999). This observation is the con-
firmation of the nonlinear batch monitoring.

In the SPE chart, MPCA assigned the eight batches
as abnormal since they exceed the 99% control limit,
whereas MKPCA assigned several additional batches
as abnormal, i.e., batches 89, 91, 92, 101, 112. MKPCA
can find nonlinearly abnormal data even though it is
regarded as normal according to the linear relation of
MPCA. Figure 6 shows the univariate plots of the
original three signals (DO, pH, ORP) and three deriva-
tives (dDO/dt, dpH/dt, dORP/dt) for normal batches
and batch 91. In Figure 5(b), it is shown that MKPCA
can detect the abnormal behavior of the pH signal and
also the derivative of ORP, dOPR/dt in batch 91,

Fig. 5 The Hotelling’s T2 and SPE charts of 150 batches of (a) the MPCA and (b) the MKPCA methods with 9 input vari-
ables (six original and three derivative signals). The dotted lines correspond to 95 and 99% confidence limits

whereas MPCA in Figure 5(a) cannot detect this ab-
normal batch due to the nonlinearity. One classic way
of dealing with these nonlinearities in the PCA is to
include cross-products of variables as well as nonlinear
transformations of variables. A nonlinear mapping
function would be ideal as a linearising transforma-
tion which reflects one’s knowledge of the chemical
and biological relations of the process. But this asks to
specify a nonlinearity shape in advance. In Figure 6,
we cannot define the nonlinear transformation for the
first derivatives of pH, ORP and DO signals of SBR.

It is well-known that the first derivatives of pH,
ORP and DO signals can give valuable information
about the nutrient dynamics, such as the nitrate knee,
nitrate apex, ammonia valley, phosphorous release and
uptake end points (Chang and Hao, 1996). Although
we can use these three additional signals for MPCA to
access to this valuable information, derivation always
amplifies the noise components in the data set, that is,
a high-pass filtering, which makes the SBR data set
more nonlinear than the original 6 variables. This re-
quires a bargain between the information-richness and
noiseamplification. The impact of nonlinearity was
assessed through the use of normal probability plots.
Figure 7 shows the normal probability plot of the SPE
of the MPCA and the MKPCA model with 9 input vari-
ables. From this figure, we can conclude that the
MKPCA has better nonlinear feature extraction results
than MPCA.

Nonlinear diagnostic charts of an SBR which can
capture biological relations can be immediately dis-
played to the operator as soon as the special biological
event is detected. Since operators will use the infor-
mation on the fault, the detected special event can
be corrected prior to completion of the batch or in
subsequent batches. When the SBR has no major up-
sets, the process would be more stable than when it is
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exposed to disturbances.

Conclusion

In this paper, a scheme for nonlinear multivariate
statistical process control of a pilot-scale SBR is de-
veloped using multiway kernel PCA. Three-way batch
data of the normal batch process is unfolded batch-
wise and then nonlinear PCA is used to capture the
nonlinear relation among batches. This technique has
successfully been applied to an 80-l SBR for biologi-
cal wastewater treatment, which is characterized by a
variety of non-stationary and nonlinear characteristics.
In the multivariate batch monitoring of an SBR, the
nonlinear relations among the batch operations of the
SBR can effectively be captured and the power and
advantages of nonlinear process monitoring in com-
parison with the linear MPCA method are clearly
shown. If nonlinear correlations within the batch ex-
ist, MKPCA shows better monitoring and denoising
performance than MPCA. MKPCA may be an appro-
priate tool to monitor process stability and to analyze
the nonlinear biological processes using simple on-line
measurements and their derivatives.
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Nomenclature
CF = covariance matrix in the feature space
E = residual array
F = feature space
F

R,I–R
= F-distribution value with R and (I – R – 1) degrees

of freedom
I = number of batches
J = the number of variables
K = number of sampling times
[K]

ij
= kernel trick, =K

ij
 = 〈Φ(x

i
), Φ(x

j
)〉

K ∈ RN×N = gram matrix
K̃ = mean-centered kernel matrix
K̃ scl

= mean-centered and scaled kernel matrix
k(x, y) = kernel function, =〈Φ(x), Φ(y)〉
m = estimated mean of the SPE statistic
N = number of data points
P

r
= loading matrix

S = (R × R) covariance matrix
SBR = sequencing batch reactor
SPE = squared prediction error
T2 = Hotelling’s T2 statistic
t

r
= principal score vector

v = variance of the SPE statistic
X(I × J × K)= three-dimensional matrix
x = input vector
〈x, y〉 = dot product between x and y
v = eigenvector of the covariance matrix CF

Φ(·) = nonlinear mapping function
Φ̃scl x( ) = mean centered and variance scaled feature vector

of Φ(x)
Φ̂ p x( ) = reconstructed feature vector with p principal com-

ponents in the feature space
σ2 = variance of the data
λ = eigenvalues

⊗ = Kronecker product
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