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Abstract

To evaluate the future state of river water in view of actual pollution loading or different management options, water quality models are
a useful tool. However, the uncertainty on the model predictions is sometimes too high to draw proper conclusions. Because of the complexity
of process based river water quality models, it is best to investigate this problem according to the origin of the uncertainty. If the uncertainty
stems from input data or parameter uncertainty, more reliable results are obtained by performing specific measurement campaigns. The aim of
the research reported in this paper is to guide these measurement campaigns based on an uncertainty analysis. The practical case study is the
river Dender in Flanders, Belgium.

First an overview of different techniques that give valuable information for the reduction of input and parameter uncertainty is given. A global
sensitivity analysis shows the importance of the different uncertainty sources. Further an analysis of the uncertainty bands is performed to find
differences in uncertainty between certain periods or locations. This shows that the link between periods with high uncertainty and specific
circumstances (climatological, eco-regional, etc.) can help in gathering data for the calibration of submodels (e.g. diffuse pollution vs. point
pollution).
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In the field of environmental modelling and assessment, un-
certainty analysis (UA) is a necessary tool to provide, next to
the simulation results, a quantitative expression of the reliabil-
ity of those results. Next to the expression of uncertainty
bounds on the results, uncertainty studies have mainly been
used to provide insight into parameter uncertainty. However,
uncertainty analysis can also be a means to prioritize uncer-
tainties and focus research efforts on the most problematic
points of a model. As such, it helps to prepare future measure-
ment campaigns and to guide policy decisions. It also yields
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further insights into the model itself and can give hints for
future model improvements (Uhlenbrook and Sieber, 2005).

In this study, the use of UA as an evaluation tool is assumed
to be applied on an already calibrated model that can repro-
duce the measured data well but with an unacceptably high
uncertainty. We only consider parameter and input uncertainty
that can be minimised by gathering additional data. Model
structure uncertainty and mathematical uncertainty are not
taken into consideration. The aim of this research is to show
how UA can be used to guide future monitoring campaigns
to make model results more reliable by minimising the param-
eter and input data uncertainty of the model. The practical case
study is the river Dender in Flanders, Belgium. The methods
can be used for every variable under study and for all kinds
of rivers but the conclusions made for the case study are
only applicable for the Dender.
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2. Case study: the Dender basin

The Dender river, a tributary of the river Scheldt in Bel-
gium, drains an area of 1384 km2. The main channel is partly
canalised and contains 14 sluices. The river is heavily polluted
by domestic, industrial and agricultural pollution.

The software used to make a model for the river Dender,
is ESWAT. It is an extension of SWAT, the Soil and Water
Assessment Tool developed by the USDA (Arnold et al.,
1996), that includes a dynamic QUAL2E based water qual-
ity model (van Griensven and Bauwens, 2000). Other
changes to SWAT were also made to allow for integrated
modelling of the water quantity and quality processes in
river basins.

3. Methods

To reduce the overall uncertainty on the model results for a certain vari-

able, the following steps are proposed:

1. Identify which sources contribute most to the overall uncertainty on the

model results;

2. Estimate or calculate the uncertainty related to those main contributors;

3. Propagate the uncertainty through the model;

4. Analyse the model results to set up a future monitoring campaign;

5. Perform the new measurements;

6. Recalibrate the model with these new data;

7. Repeat steps 3e6 until satisfying results are obtained;

For every step of this process different techniques exist that can be chosen

among according to the experience of the modeller. In the practical example

the particular methods we used will be described.

3.1. Step 1: identification of the main uncertainty contributors,
uncertainty characterisation

The objective of a sensitivity analysis of model output can be defined as ‘to

evaluate how a given model depends on its input factors’ (Saltelli et al., 2000).

It is often assumed that the numbers of important factors in a model is small

compared to the total number of factors. A sensitivity analysis can reveal those

most influential factors.

Two approaches exist: a global or local sensitivity analysis. In a local

analysis, input variables or parameters are varied one at the time and their

influence on the model outcome is investigated while holding the other

parameters fixed to a central (nominal) value. In a global analysis the space

of the input variables and parameters is explored within a finite (or even

infinite) region and the variation of the output induced by a factor singly

or in combination with each other is taken globally, that is averaged

over the variation of all the factors. A global sensitivity analysis is more

reliable but requires more calculation. Because it is assumed that an already

calibrated model is available, a local sensitivity analysis will probably iden-

tify the most important parameters and data of the model. Indeed, local

analysis is done around an a priori assumed value of a parameter and

for a calibrated model the parameters are the best values obtained with

the available data.

For a local sensitivity analysis the following methods exist: (a) finite

difference method, (b) the direct differential method, (c) the Green’s func-

tion method, (d) the polynomial approximation method and (e) automatic

differentiation. For a detailed review of existing sensitivity techniques refer-

ence is made to the reviews of Turanyi (1990) and Rabitz et al. (1983).

Global sensitivity techniques like Monte Carlo based methods, one factor

at the time, GLUE and FAST are thoroughly discussed in Saltelli et al.

(2000).
3.2. Step 2: estimation or calculation of uncertainty

Parameter uncertainty can be calculated using the covariance matrix

obtained during the local sensitivity analysis or during the calibration process

(Beck, 1987).

If no direct calculations of uncertainty are possible, e.g. for the uncertainty

on the inputs, one can try to estimate the uncertainty. One can divide the

parameters and data in uncertainty classes (accurately known, very poorly

known and an intermediate class) and assign a percentage uncertainty to

them. A similar approach was adopted by Reichert and Vanrolleghem (2001).

3.3. Step 3: propagate the uncertainty through the model

For this step Monte Carlo methods can be used, in which the input data or

parameters are sampled between the uncertainty bounds that were determined

in the previous step. Another option is to apply linear error propagation. The

advantage of the latter is computational efficiency. However, if model non-lin-

earities are significant within the uncertainty range, the results will be inaccu-

rate. Monte Carlo simulation is a simple technique but requires a large number

of model runs, which is computationally demanding. It is possible to use ‘the

Latin Hypercube sampling’ which will need less runs and give the same accu-

racy of uncertainty results because it is a more effcient sampling method than

‘ad random sampling’ (McKay, 1988).

3.4. Step 4: analyse the model results to set up a future
measurement campaign

Two different approaches can be used depending on the aim for which the

additional measurements are collected. If it is the aim to reduce parameter un-

certainty, an automated optimal experimental design method that is explained

in Vandenberghe et al. (2002) can be used. It is based on maximisation of the

determinant of the Fisher Information Matrix, which corresponds to the min-

imisation of the variance of the parameter estimates. This maximisation is

done by varying the location, frequency, kind of variables measured and period

of the year for measuring using a synthetic time-series generated by the sim-

ulator. From this optimisation one can find experimental designs that are giv-

ing parameter estimates with a desired degree of accuracy. Also, combinations

of external circumstances that give data with low information content are de-

tected during the optimisation. This method requires a lot of simulation runs

but is totally automated and as such requires no additional information or

knowledge from the modeller.

However, when only focussing on the input data uncertainty that leads to

output uncertainty, expert-knowledge is required. It is then the aim to find

a link between periods of high/low uncertainty and external circumstances

(rain, discharge points, seasons, solar radiation, etc.). This information is

then used to make decisions about location, period, frequency, etc. of future

measurements. Further, with this link, the directions and magnitudes of change

in relation to management interventions can be identified and one becomes

able to differentiate between associated outcome sets (Jakeman and Letcher,

2003).

3.5. Step 5: perform the measurements

At this stage it is essential to ensure a good quality control on the measure-

ments to minimise measurement errors. It is also important to carefully add

information concerning time, location and depth of the water sample taken.

This information is very important for highly dynamic models with a small

time step where situations vary from hour to hour (e.g. algae blooms).

3.6. Step 6: recalibrate the model with new inputs

An important issue here is that the calibration method has to be able to find

the optimal values. First, a choice is to be made between manual and auto-

mated optimisation methods. The former totally depends on the experience

of the modeller. Automated methods can differ in their particular search

method: global search methods scan the whole parameter space and are as
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such able to find the global optimum, but do not provide uncertainty measures.

Local search methods start on a certain point in parameter space and end when

they find an optimum. However, there is no guarantee that this is the global

optimum, so for those methods it is best if one can start in the neighbourhood

of the optimum. With these methods often covariance matrices for the opti-

mum parameter estimates are calculated, because most of the methods are de-

rivative based.

3.7. Step 7: repeat steps 3e6 until satisfying results are
obtained

The stop criterion for this trial and error method is dictated by an ‘a priori’

desired reliability of the model results. In practice, however, personnel, time

and equipment issues will be the limiting factor and will indicate when this

process stops.

4. Results and discussion

The seven steps are now demonstrated on a case study: sim-
ulations of the water quality of the river Dender, Flanders, Bel-
gium for 1994. The evaluation of the uncertainty on model
results is performed for nitrate concentration in the river water.
The work was started with a model that could be considered
well calibrated for the hydrological part because there was
an extended data set for the calibration of the model. However,
the model was not satisfying because calibration of the water
quality part of the model was only done with a limited amount
of instream measurements. Moreover, information about the
point pollution and diffuse pollution inputs were very
uncertain.

It can be seen from Figs. 1e3 that there is a large discrep-
ancy between the measurements and the simulations around
day 240 and time 340e350. There is a combination of reasons
for this: the very low nitrate concentrations that are measured
around day 240 are probably correct measurements because
the river has a very low oxygen during that period and then
the denitrification rate is very high. The fact that the model
could not simulate this phenomenon is probably caused by
the fact that the model is not performing well under those ex-
treme circumstances. In that period there is probably a large
model structure uncertainty. The measurements around time
340e350 lay almost all within the uncertainty bounds so input
and parameter uncertainty can explain the difference between
the model outcomes and measurements.

4.1. Step 1: identification of the main uncertainty
contributors

In this study we focus on the variable nitrate. We will eval-
uate the sensitivity of the model result ‘‘the duration that NO3

is higher than 3 mg/l at Denderbelle’’, a place near the mouth
of the river, towards the parameters and inputs. For the diffuse
pollution, a previous study for a similar nitrogen leaching
model (implemented in SWIM) from arable land in large river
basins (Krysanova and Haberlandt, 2001) showed that the rel-
ative importance of natural and anthropogenic factors affect-
ing nitrogen leaching was as follows: (1) soil, (2) climate
(3) fertilisation rate and (4) crop rotation. Reducing the uncer-
tainty on inputs for soil and climate depends on better equip-
ment to measure the different variables and proper use of
sophisticated mathematical techniques to interpolate for loca-
tions that are not measured. A lot of studies on that subject al-
ready exist (Sevruk, 1986). So for diffuse pollution it was
decided to only evaluate the data on management practices.
The hydrological model parameters were profoundly cali-
brated for this model because there was no data scarcity for
the water level and flow of the river Dender (van Griensven,
2002). When the hydrological data would have been scarce
or of bad quality we should have to include the hydrological
parameters in the sensitivity analysis as well because they
will also contribute a lot to the final uncertainty. Finally we
consider the parameters of the water quality model because
this model was difficult to calibrate with the limited amount
of data available.

Conducting sensitivity analysis for all input data and pa-
rameters in the ESWAT model is a too complex task for the
program we use: UNCSAM (Janssen et al., 1992). This pro-
gram cannot handle more than 50 parameters at a time. So
we split the problem in three parts: global sensitivity to (1)
model parameters (2) point pollution input and (3) diffuse pol-
lution input. Solution of each subproblem results in a ranking
of the parameters. We used the Standardised Regression
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Fig. 1. Simulation of nitrate concentration at Denderbelle, 1994, with uncertainty ranges due to parameter uncertainty.
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Fig. 2. Simulation of nitrate concentration at Denderbelle, 1994, with uncertainty ranges due to point pollution input uncertainty.
Coefficient (SRC), a measure often used for sensitivity analy-
sis (Saltelli et al., 2000)

SRCi ¼
Dy=Sy

Dxi=Sxi

with Dy=Dxi ¼ change in output due to a change in an input
factor and Sy, Sxi

the standard deviation of, respectively, the
output and the input. The input standard deviation Sxi

is spec-
ified by the user.

The technique is explained in detail in Vandenberghe et al.
(2001).

The parameters or input data that are found to contribute
significantly to the output (5% level) in each of the three sub-
problems are then taken together in one overall global sensitiv-
ity analysis in order to compare the contribution of the
different outputs. This subselection of parameters and inputs
can now be handled by UNCSAM. In Table 1 this result is in-
dicated with ‘‘combined parameter-input’’. Table 2 gives the
used ranges for a uniform distribution and the nominal values
for the water quality model parameters.

The ranges for the diffuse pollution inputs are given in
Table 3 and the way they were determined is explained in
Vandenberghe et al. (2003). For the point pollution inputs
we sampled uniformly between half and double the values,
as we decided that those inputs belong to the uncertainty class
‘poorly known’. Indeed, the point pollution loads were only
available as yearly averages.

The global sensitivity of the parameters and the inputs
shows that some parameters, O2 uptake per unit of NH3 oxida-
tion, O2 uptake per unit of HNO2 oxidation, denitrification
rate, rate NO2 to NO3, O2 uptake per unit of algae respiration
and the reaeration rate are most influential. They are followed
by the input data, planting date on farming land, amount of
fertilisation on pasture in subbasin 12 and BOD loads from
point 1 and 6. This result could not have been concluded
from the separate analyses of inputs and parameters. Appar-
ently the parameters can make the model to produce results
that are not much influenced by the input data. This shows
the importance of a well-calibrated model.

It can be argued that it is not safe to only take the most im-
portant factors from the three separate sensitivity analysis to
study the combined parameter/input sensitivity. To address
this an extra analysis was done and it was possible to deduce
from an SA in which some non-statistically significant param-
eters (shown in Table 1) were added, that the approach that
was followed was safe because the same parameters came
out to be most important and the non-significant parameters
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Fig. 3. Simulation of nitrate concentration at Denderbelle, 1994, with uncertainty ranges due to diffuse pollution input uncertainty.



729V. Vandenberghe et al. / Environmental Modelling & Software 22 (2007) 725e732
Table 1

Results of the sensitivity analysis for the model output ‘‘hours NO3> 3 mg/l’’ at Denderbelle, 1994

Diffuse pollution input SRC Point pollution input SRC Parameter SRC Combined parameter-input SRC

pa16
a �0.30 BOD point 6 �0.61 ai5

i �0.7 ai5 �0.51

fa4
b 0.23 NO3 point 7 0.42 rk5

j �0.34 ai6 �0.50

gropa
c �0.18 BOD point 5 �0.38 rk2

k 0.32 rk5 �0.40

plfa
d 0.17 BOD point 8 �0.24 rk1

l �0.21 bc2 0.38

co5
e �0.17 NH3 point 1 0.23 ai6

m �0.2 ai4 �0.31

co15
f �0.16 BOD point 3 �0.23 bc2

n 0.17 rk2 0.12

pa12
g 0.16 BOD point 7 �0.22 rk3

o 0.12 plfa �0.08

co11
h 0.15 BOD point 1 �0.14 ai4

p �0.09 BOD point 6 �0.07

NO3 point 5 0.11 rs3
q 0.07 BOD point 1 �0.07

BOD point 4 �0.09 k1
* pa16 0.07

NH3 point 2 0.09 bc1
*

BOD point 2 �0.08 ai1
*

NH3 point 3 0.06 ai0
*

* Parameters with SRC¼ not significant ( p¼ 0.9) but also taken into the combined SA for a safety check.
a pa16¼Amount of fertilisation on pasture in subbasin 16.
b fa4¼Amount of fertilisation on farming land in subbasin 4.
c gropa¼Growth date of pasture.
d plfa¼ Plant date on farming land.
e co5¼Amount of fertilisation on corn in subbasin 5.
f co15¼Amount of fertilisation on corn in subbasin 15.
g pa12¼Amount of fertilisation on pasture in subbasin 12.
h co11¼Amount of fertilisation on corn in subbasin 11.
I ai5¼O2 uptake per unit of NH3 oxidation.
j rk5¼Denitrification rate.
k rk2¼Oxygen reaeration rate.
l rk1¼Carbonaceous biological oxygen demand deoxygenation rate coefficient in the reach.

m ai6¼O2 uptake per unit of HNO2 oxidation.
n bc2¼Rate NO2 to NO3.
o rk3¼Rate of loss of BOD due to settling.
p ai4¼O2 uptake per unit of algae respiration.
q Rs3¼Benthic source rate for NH4-N in the reach.
form the separate analysis did not show up in the top of the
list.

4.2. Step 2: estimation or calculation of uncertainty

For both the point and diffuse pollution input identical un-
certainties were taken for the sampling range. For the uncer-
tainty to be applied to the parameters a recalibration with
the selected parameters is best because this makes that uncer-
tainty ranges can be calculated with the covariance matrix.
However, this was not done in this study: uncertainties of
50% were assigned to each of the parameters. The norminal
values were found with a calibration that was performed
with a global effective search method (SCE-UA) (Duan
et al., 1992) and uncertainties on these parameter values
were not calculated during that calibration because in this
method no covariance matrices are calculated.

4.3. Step 3: propagation of the uncertainty through the
model

Here again the uncertainties are split: parameter uncertainty,
diffuse pollution uncertainty and point pollution uncertainty.
For each of these three subproblems an uncertainty analysis
was performed in which all of the uncertainty sources are varied
at the same time to see the effects of the uncertainty on
parameters and inputs. The uncertainty bands (i.e. the 5% and
95% percentiles) were calculated for the modelled time series.

Figs. 1e3 shows the time series of nitrate concentrations in
the river water at Denderbelle, situated near the mouth, with
the 5% and 95% uncertainty bounds for uncertainty due to
point input (Fig. 2) and diffuse pollution input (Fig. 3).
Fig. 1 shows the uncertainty bounds for nitrate at the same
location due to parameter uncertainty.

4.4. Step 4: analyse the model results to set up a future
measurement campaign

To reduce parameter uncertainty, optimal experimental de-
sign based on the Fisher Information Matrix can be done (as
explained in Section 3). This is the most objective method
to find important measurement locations, times, conditions
to better estimate the parameters. This design of new experi-
ments is not presented here as we focus here on the uncertainty
analysis and what information can be revealed from it.

Linking the results obtained in step 3 to the external cir-
cumstances, rainfall intensity and river flow (Fig. 4), it can
be seen that diffuse pollution inputs are important during pe-
riods with intense rainfall and high flows. Under those condi-
tions, the uncertainty on the nitrate concentration is mainly
due to these factors. The small uncertainty bounds observed
at the beginning of the year, even under high flows and
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Table 2

Parameters and initial conditions used in the sensitivity analyses (*Arnold et al., 1996; **Bowie et al., 1985; ***calibrated)

Variable Description Units Range Nominal value

ai1 Ration of chlorophyll to algae biomass mg-chl a/mg algae 10e100* 10***

ai1 Fraction of algae biomass that is nitrogen mg N/mg algae 0.07e0.09* 0.09***

ai2 Fraction of algae biomass that is phosphorus mg P/mg algae 0.01e0.02* 0.02***

ai3 O2 production per unit algae growth mg O2/mg algae 1.4e2.6** 2.3**

ai4 O2 uptake per unit of algae respiration mg O2/mg algae 1.6e2.3* 2.0*

ai5 O2 uptake per unit of NH3 oxidation mg O2/mg NH3-N 3.0e4.0* 3.5*

ai6 O2 uptake per unit of HNO2 oxidation mg O2/mg HNO2-N 1.00e1.14* 1.07*

mmax Maximum algae growth rate 1/day 1.0e3.0* 2.2*

rhoq Algae respiration rate 1/day 0.05e0.5* 0.2*

kl Michaelis-Menten half-saturation constant for light langley/hour 0.72e6.16** 5.226***

kn Michaelis-Menten half-saturation constant for nitrogen mg N/l 0e10* 0.1*

kp Michaelis-Menten half-saturation constant for phosphorus mg P/l 0e10* 0.014*

L0 Minimum light intensity for algae bloom J/m2 1.5e7.5*** 5.0***

L1 Algae light self shading coefficient g algae biomass/m2 0.01e2.0*** 0.3***

L2 Sediment shading coefficient mg/l 10e200*** 100***

Pn Algae preference factor for ammonia mg/l 0e1* 0.3***

kdd Algae die-off rate 1/day 0.01e0.8*** 0.2****

rs1 Local algae settling rate in the reach. m/day 0.01e1.85* 0.15*

rs2 Benthic (sediment) source rate for dissolved phosphorus in the reach. mg dissolved P/(m2 day) 0.01e0.03** 0.01**

rs3 Benthic source rate for NH4-N in the reach. mg NH4-N/(m2 day). 0.0004e1.8** 1.0**

rs4 Rate coefficient for organic N settling in the reach. m/day 0.001e3.0*** 0.05*

rs5 Organic phosphorus settling rate in the reach. m/day 0.001e0.1* 0.03*

rk1 Carbonaceous biological oxygen demand deoxygenation rate coefficient in the reach. 1/day 0.02e3.4* 0.87*

rk2 Oxygen reaeration rate in accordance with Fickian diffusion in the reach. m/day 0e100* 0.3***

rk3 Rate of loss of carbonaceous biological oxygen demand due to settling in the reach. m/day 0.1e3.0*** 0.2***

rk4 Benthic oxygen demand rate in the reach g/m2 day 0.02e12.8** 5**

rk5 Coliform die-off rate in the reach. Day 0.05e4.0* 0.9*

rk6 Decay rate for arbitrary non-conservative constituent in the reach. Day 0e10*** 1***

bc1 Rate constant for biological oxidation of NH4 to NO2 in the reach. 1/day 0.1e1* 0.1***

bc2 Rate constant for biological oxidation of NO2 to NO3 in the reach. 1/day 0.2e2* 1.0*

bc3 Rate constant for hydrolysis of organic N to NH4 in the reach. 1/day 0.2e0.4* 0.4***

bc4 Rate constant for mineralization of organic P to dissolved P in the reach. 1/day 0.01e0.7* 0.1*

rktemp Rate constant for heat exchange m/day 0.1e1*** 0.35***
rainfall, are acceptable because during those months manage-
ment practices are less important than in other periods of the
year. During dry weather flow, the input uncertainty of the
loads is strongly propagated. Hence this UA indicates that
one can obtain a better calibration for the diffuse pollution
part of the model with data taken during wet periods with
high flows. If one focuses on calibrating the in-stream behav-
iour and point pollution then measurements during dry periods
are needed, as in such conditions the model is not sensitive to-
wards input of diffuse pollution.

Further it is seen on Fig. 1 that the 95% bounds show much
higher peaks than the mean concentration time series. This
means that some peak values of nitrate in the river water
at Denderbelle may not be predicted properly due to an
underestimation of the amount of fertiliser used. Those peaks

Table 3

Uncertainty ranges for diffuse pollution input

Input Uncertainty

Plant date for the crops �1 month

Harvest date of the crops �1 month

Amount of fertiliser applied per subbasin

and per crop (kg/ha)

�25%
(e.g. days 156 and 260) are significantly higher than the levels
of nitrate for basic water quality.

It is also of interest to know how uncertainty is propagated
from one location to the other. This analysis was done for the
uncertainty propagation due to diffuse pollution inputs. The
number of hours that NO3 was above 3 mg/l was calculated.
This was done for the time series of the mean, the 5% bound
and the 95% bound (Fig. 5). The uncertainty bounds become
larger when approaching the mouth due to the summation of
the uncertainties on all diffuse pollution inputs that enter the
river. However, it is interesting to see that with the available
quality of input data no conclusions can be drawn concerning
the question whether the diffuse pollution causes nitrate to ex-
ceed 3 mg/l longer downstream than upstream. More accurate
data are needed to draw good conclusions from the model
results.

Step 5: Perform the measurements.
Step 6: Recalibrate the model with new inputs.
Step 7: Repeat step 3 till 6 until satisfying results are
obtained.

The last three steps in the procedure are only relevant when
a new measurement campaign is actually conducted. However,
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Fig. 4. Rainfall intensity and flow in 1994 at Denderbelle.
for budgetary reasons no additional measurements could be
done.

5. Conclusions and recommendations

The results of an uncertainty analysis were here evaluated
to guide future monitoring campaigns. The conclusions are
not intended to be real guidelines for future measurement cam-
paigns on the river Dender. Due to a too small set of available
measurements a validation of the model was not possible
which is a valuable and necessary step for the reliability of
the predictions. However, the conclusions show the advantages
of a guided measurement campaign and are more focussing on
the techniques and the possibilities of the proposed seven-step
approach, rather than giving results for the particular case used
here.

Information of output sensitivity to the inputs was collected
by considering diffuse and point pollution inputs separately.
Measurements during dry periods can be used to better cali-
brate the model for point source pollution because the inputs
of diffuse pollution are not important then. On the other
hand, periods with intense rainfall and high flows are very in-
teresting for the calibration of the model with respect to dif-
fuse pollution impacts because the model output nitrate is
then very sensitive towards the inputs related to farmer’s
practices.
When evaluating the influence of the uncertainty of the dif-
fuse pollution inputs, the uncertainty bounds appeared to be
too high to draw reliable conclusions from the model results.
So, it showed the importance of accurate measurements and
input data if the model results have to serve for decision sup-
port and river basin management.

It is obvious from the comparison between the global sen-
sitivity analyses, for the subgroups of inputs and parameters
and the combination parameters-input, that the parameters
were most important. This shows that it is best to start with
a good calibration of the model and then focus on collecting
more accurate input data.

Too often a model is calibrated with only one comprehen-
sive measurement campaign. This is mostly not the most effi-
cient way. When for example only measurements during dry
periods are made in such simple campaigns, the model cannot
be well calibrated for the diffuse pollution part. So, it is better
to perform two separate smaller measurement campaigns with
the first one being an ‘exploring’ one, while the second cam-
paign is guided by previous analysis of the model results.
The combination of the two monitoring campaigns can assure
that at least some measurements are performed at ‘the right
moment’, making the calibration process easier and more
reliable.

It is necessary to combine all previous uncertainty analyses
to evaluate the total uncertainty on the model results and to
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Fig. 5. Uncertainty on predicted hour of NO3 exceeding 3 mg/l from upstream to the mouth of the Dender in 1994. Only diffuse pollution input uncertainty is

considered.
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compare them with the measurements. In this way, also model
structure uncertainty can be quantified (Willems and Berla-
mont, 2002).

It needs to be mentioned that the seven steps approach as
presented here can often not be followed completely (espe-
cially step 7) because of time and/or budget limitations. The
continued repetition of the steps until satisfying results are ob-
tained is an ideal situation but stopping after the first six steps,
is surely acceptable. All depend on the aim of the model use
and the desired degree of precision. Often, the aims of the
modelling study are reconsidered after an evaluation of the pre-
cision of the model rather than to pursue a smaller uncertainty.

A shorter procedure does not seem useful because that
would mean we leave out the idea of conducting of new mea-
surements and we come again to the current practice of gath-
ering inputs and measurements to build a model without
knowing beforehand which inputs and measurements are
most important (Van Waveren et al., 1999). So, large projects
can for sure benefit from an additional measurement cam-
paign, and a first measurement campaign can be kept limited.
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