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Abstract

DNA microarray technologies, which monitor simultaneously, the expression pattern of thousands of individual genes in different biological
systems have resulted in a tremendous increase of the amount of available gene expression data and have provided new insights into gen
expression during development, within disease processes, and across species. However, microarray gene expression data are characterized
very high dimensionality (genes), relatively small numbers of samples (observations), irrelevant features, as well as collinear and multivariate
characteristics. These features complicate the interpretation and analysis of microarray data, and the complexity of such data means that its
analysis entails a high computational cost. This situation motivated the researchers to develop a new method for analyzing microarray data.
In this paper, we propose a simple gene selection and multivariate fuzzy statistical analysis methods. The proposed method was applied to
microarray data from leukemia patients; specifically, it was used to interpret the gene expression pattern and analyze the leukemia subtype
whose expression profiles correlated with four cases of acute leukemia gene expression.
© 2005 Elsevier Ltd. All rights reserved.

Keywords: Bioinformatics; Fuzzy clustering; Gene expression analysis; Gene selection; Molecular biology; Leukemia gene expression; Partial least squares
(PLS)

1. Introduction to therapy prior to the actual treatment, and (iv) ultimately
prevent disease from arising through chemopreventive strate-
The recent development of DNA microarray technology, gies. These goals can only be accomplished through a bet-
which offers the opportunity to simultaneously study the ex- ter understanding of how certain genes and their encoded
pression of thousands of individual genes in different biolog- proteins contribute to disease onset and tumor progression,
ical systems, has provided new insights into gene expressionand how they influence the response of patients to drug ther-
during development, within disease processes, and acrosspies. Innovations in genetic, biological, biochemical, and
species. Recently, researchers have eschewed morphologidata analysis approaches are needed for researchers to fully
cal tumor classifications in favor of classification using gene realize these goal®©chs & Godwin, 2008
expression profiles on DNA chips. Therefore, researchers are However, microarray gene expression data are character-
currently seeking to develop new approaches to (i) diagnoseized by very high dimensionality (genes), relatively small
cancer early in its clinical course, (ii) more effectively treat numbers of samples (observations), irrelevant features, as
advanced stage disease, (iii) better predict a tumor’s responsavell as collinear and multivariate characteristics. These fea-
tures complicate the interpretation and analysis of microarray
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to develop a new method for analyzing microarray data ( type (M1, M2, M4, or M5), and (4) AML subtype by clinical
& Han, 2003. outcome (success or failure). Then, using fuzzy clustering,

To solve the above mentioned problems, the first step in we could predict the type and subtype of leukemia, identify
creating such a new method is to extract the fundamentalobscure leukemia subtypes in microarray data, and establish
features (or genes) of the gene expression data set (i.e., @he relationship between expression-based leukemia subclass
dimensional reduction), and the second step is to compareand clinical outcome.
the expression data with the desired level of data analysis
(i.e., clustering similar genes or samples, and/or identifying
the tumor class). 2. Theory

A lot of studies have used microarray technology to an-
alyze gene expression in colon, breast, leukemia, and other2.1. Discriminant partial least squares
cancers. These studies have demonstrated the ability of ex-
pression profiling to cluster similar genes and classify tumors.  Nguyen and Rocke (20023uggested an approach in
Gene expression profiles may give more information than which high-dimensional vectors are reduced using the par-
traditional morphologyGolub, Slonim, Tamayo, and Lander tial least squares (PLS) method and then classified using
(1999)used a weighted voting scheme for molecular clas- logistic discrimination and quadratic discriminant analysis.
sification of acute leukemia; this scheme predicts leukemia They showed that the weight vector of PLS alone could be a
subtypes by means of a supervised learning algorithm andgood indicator of the correlation between the predictor and
discriminant decision rules derived on the basis of the mag- responseCho, Lee, Park, Kim, and Lee (200@joposed an
nitude and threshold of the prediction strengilon et al. approach for the construction of the optimal linear classifier
(1999)used a clustering technique based on a deterministic-based on the genes expression data with PLS. On the other
annealing algorithm to classify cancer and normal colon tis- handPark, Tian, and Kohane (20023ed the PLS and gener-
sues.Scherf et al. (2000)sed average linkage clustering to alized linear regression methods to link gene expression data
distinguish between tumor tissues originating from various with patient survival times and reformulate survival data for
sites for tumor tissues originating from various skbzadeh, a Poisson regression. However, it is more physically reason-
Eisen, and Staudt (2008)udied gene expression in the three able to use all the weight vectors of PLS together with the
most prevalent adult lymphoid malignancies. Based on genefraction that is explained by the latent variables.
expression data, they identified two previously unrecognized  Discriminant partial least squares (DPLS) is a dimension-
types of diffuse large B-cell ymphoma that exhibited distinct ality reduction technique for maximizing the covariance be-
clinical behavior. Average linkage hierarchical clusteringwas tween the predictor (independent) blogland the predicted
used to identify the two tumor subclasses as well as to group(dependent) block for each component. DPLS models the
genes with similar expression patterns across the differentrelationship betweeX andY using a series of local least-
samplesRoss et al. (200Q)sed cDNA microarrays to study  squares fits. PLS components are obtained in such a way
gene expression in the 60 cell lines from the anti-cancer drugthat the sample covariance between the response variables
screen (NCI 60) of the National Cancer Institute (NCI). Hi- (leukemia classes) and a linear combination of the predic-
erarchical clustering of the tumoral cell lines based on genetors (genes), are maximized. In other words, the PLS finds
expression data revealed a correspondence between gene exweight vectow which satisfiesguyen & Rocke, 2002
pression and tissue of origin. Hierarchical clustering was also Yeung & Ruzzo, 200,
used to group genes with similar expression patterns across
the cell linesDudoit, Fridlyand, and Speed (200@mpared Wik = arg max Covikw, y) 1)
th? result of app!ying various clgssifies (.SUCh as linear dis- subject to the unit weight and orthogonality constraint
criminant analysis and quadratic analysis) to the same set
of gene expression data aBitcciato, Pandin, Didone, and wSw; =0, foralll<;<k (2)
Di Bello (2002)applied an auto-associative neural network
model to pattern identification and classification in gene ex- whereS=X'X. Thei-th PLS component is a linear combina-
pression data. tion of the original predictors{w;). The variable importance

In this paper, we developed a simple approach to gene se4n the projection (VIP) is a good measure of the influence of
lection based on discriminant partial least squares (DPLS)all variables in the PLS model on the response variables. The
and fuzzy clustering methods. The proposed method wasVIP can be calculated from the weight vector of the DPLS
applied to microarray data from leukemia patients; specif- model and the percentage that is explained by the dimension
ically, it was used to interpret the gene expression pattern of the model, which is defined as follows:
and analyze the leukemia subtype. Using the DPLS-based
gene selection method, we determined the groups of genesVIP = Z (Wai)? )
whose expression profiles correlated with five cases: (1) acute “
lymphoblastic leukemia (ALL) and acute myeloid leukemia Note that after the PLS weight vectors are computed, genes
(AML), (2) ALL subtype (T-cell or B-cell), (3) AML sub- are selected via the VIP. For a given PLS dimension QIR
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. 2 _
egual to the squared PLS weightf)-. The \(IP can be con Q 129 genes, 38 training samples )
sidered as a measure of how much a certain gene corresponds

to the samples. Thus, we can select important genes based on +

the VIP value. It is reasonable to assume that the weights of

. . . Gene selection by DPLS
the features are proportional to their importance in the de- cHOnDY

termination of the class labels, that is, the higher the weight, Extract 30(25) genes that have highest VIP
the better the distinction power of the feature with respect to
the class label. Therefore, given a trained PLS classifier, a set +

of K high-ranking genes are obtained by selecting the genes
with the topK VIP weights.

Dimension reduction by PCA

Y

2.2. Fuzzy clustering Apply FCM to principal score values

In the fuzzy c-means (FCM) clustering method, an object +
can simultaneously be a member of multiple clasasié
etal., 2001 Yoo, Vanrolleghem, & Lee, 2003The objective Interpret patterns, classify the leukemia subclass and
function, which is minimized iteratively, is a weighted within- predict the clinical results using fuzzy clustering
groups sum of distancel ;. The weighting is performed by +

multiplying the squared distances by membership vallues

Classification and prediction using

cXN "2 fuzzy membership functions
In(Com) =" " ()", 4)

i=1 k=1 for four cases

whereC is the total number of clusterbl the total number

of objects in the calibration date; the distance between an
objectk and a prototype (cluster) anduy; is the member-
ship function. After computing the membership values for
all calibration objects, the cluster centers) @are described

by prototypes, which are fuzzy weighted means, according
to the following equation:

Fig. 1. Schematic flow diagram of the proposed data analysis algorithm for
gene expression data.

For microarray data, we apply the FCM algorithm to the
reduced PCA feature space, thatis, to the score vector of PCA.
This fuzzy clustering method allows intermediate logical as-

Z/I(V:l(“k,i)mxk ) signments whereby genes or patients are placed into multiple
i = W ! (®) groups by assigning a membership value for each group of be-
k=1\"kd tween 0 (not in group) and 1 (completely in group). The use

In the prediction of a new test sample, a new value is of membership values has the advantage of allowing gene
computed using EqB). or sample the possibility of belonging to multiple clusters,
which may better reflect the underlying biology.

UN+Li = & 1 D) (6) Fig. 1 shows a schematic flow diagram of the proposed
ijl(d,ii/d,ij) data analysis algorithm for gene selection, dimensional re-
duction, and the FCM method. First, the relevant genes are
2.3. Interpretation and multivariate fuzzy analysis of selected using the VIP of the DPLS model. Second, the fea-
gene expression data ture dimension is reduced by PCA in order to apply the pro-

posed clustering and prediction method using FCM clustering

Because raw microarray data frequently contain correla- with Mahalanobis distances for the underdetermined system,
tions between measured variables and are of high dimensioni.e., the number of genes is much greater than the number
ality, itis necessary to introduce multivariate statistical latent of samples. Third, FCM is used to interpret microarray data
variable methods to increase variable independency and topatterns, classify the leukemia class, and predict the clinical
reduce dimensionality. PCA and PLS are usually used eitherresults of a test sample.
to reduce the data dimension while retaining the important
information or to display the data information in a form that
can be easily interpreted. Data clustering can then be applied3. Leukemia gene expression microarray dataset
to the transformed data of lower dimension instead of to the
original data. Moreover, the compression of data before clus- 3.1. Background of leukemia
tering causes the clustering algorithm to become more stable
and efficient in cases where the original variables are highly  Leukemia is a malignant cancer that originates in cells
correlated and of high dimensioNguyen & Rocke, 2001 in the bone marrow, and is characterized by uncontrolled
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growth of developing white blood cells. The bone marrow sion level of each gene was normalized to have a zero mean
generates cells called blasts that develop (mature) into sev-and a standard deviation of onéafg et al., 200R

eral different types of blood cells with specific tasks in the

human bodyGolub etal., 1999 red blood cells (which carry

oxygen to all tissues of the body), white blood cells (which 4. Result and discussion

fight infection), and platelets (which make the blood clot).

There are different types of white blood cells: (i) granulo- The proposed method is applied to the acute leukemia
cytes, white blood cells that develop from blood-forming cells data set published bgolub et al. (1999vith four cases: (1)
called myeloblasts, and mainly destroy bacteria when mature;acute lymphoblastic leukemia and acute myeloid leukemia,
(if) monocytes, developing from monoblasts, are also impor- (2) ALL subtype (T-cell or B-cell), (3) AML subtype (M1,
tant in protecting the body against bacteria; (iii) lymphocytes M2, M4, or M5), and (4) AML subtype by clinical outcome
are the main cells in lymphoid tissue, which is a major part of (success or failure).

the immune system. Two types of lymphocytes are known:

B lymphocytes (B-cells) produce antibodies, and T lympho- 4 1 |nterpreting patterns of ALL and AML using fuzzy

cytes (T-cells) recognize cells infected by viruses and des”oyclustering

them.

There are two major leukemia classes, myelogenous (also 1o determine the specific genes that discriminate between
called myeloid) and lymphocytic (also called lymphoblastic) a| | and AM L, we used the DPLS method for gene selection,
leukemia, which could both be acute or chronic. The terms \yhere the response variable Y is 0 (AML) or 1 (ALL). Among
myelogenous'ar?d lymphocytic denote t.he type of bone Mar-the 7129 genes, 50 were selected on the basis of the VIP value
row cells that is involved. Acute leukemias progress quickly, of ppLS, where the VIP plot of DPLS for the leukemia data
and can lead to death of a patient within months when not get js displayed iffig. 2 Thus, on the basis of the correlation
treated. Medical treatment of patients will vary depending on coefficients, we chose the 50 genes that were most correlated
the leukemia class. Thus, knowledge of the leukemia class isyyith the classification of leukemia. The top 50 genes were ex-
very important information for doctors to correctly treat pa- amined for chromosomal localization using NCBI LocusLink
tients. Acute leukemia data sets can be classified into aCUtehttp:/Avww.nchi.nlm.nih.gov/LocusLink In contrast to the
lymphoblastic leukemia and acute myeloid leukemia. More- 5q genes ofsolub et al. (1999)it assigns high rankings to
over, ALL cases can be classified into T-cell ALL gnd B-cell zyxin, leukotriene (C4 synthase gene), leptin, CD33 antigen,
ALL, depending on the type of lymphocytes that is affected Fap and myeloperoxidase (MPO) as well as cystatins and

(Golub etal., 1998 cathepsins. These genes are known to play important roles
) _ ) in acute leukemia. For example, Zyxin is located in chro-
3.2. Gene expression profiles: leukemia dataset mosome 7, which may contain genes related to myeloid ma-

_ ) ) lignancy, and Cystatins are endogenous protein inhibitors of
The leukemia dataset and all details with respect 10 cathepsins, and hence these specific protease-inhibitors might
the methods used to collect the data are described in theyg important in the etiology of ALL and AML. In addition,
paper of Golub et al. (1999) The dataset, available at cp33isiocated in chromosome 19¢13.3, and has been devel-
http://www.genome.wi.mit.edu/MPReonsists of a set of  oheq fortargeted antibody therapy to kill leukemia AML cells

high-density oligonucleotide microarrays (Affymetrix) with (Thomas, Olson, Tapscott, & Zhao, 200AImost all of the
probes of 7129 human genes, was obtained from 72 patients.

Forty seven patients were affected with ALL (38 B-ALL and
9T-ALL), and 25 patients were affected with AML. The train-
ing data set consists of 38 bone marrow samples: 27 samples
were taken from ALL patients (19 B-ALL and 8 T-ALL) and

11 were taken from AML patients. The independent (test)
data set consisted of 34 samples: 20 ALL patients and 14
AML patients. Furthermore, a description of cancer subtypes,
treatment response, patient gender, and laboratory that per-
formed the analysis is provided with the data. Moreover, the
result of the subsequent treatment (success or failure) is pro-
vided for a limited number of samples. The gene expression
profiles of the original data set are represented as log 10 nor-
malized expression values, such that overall intensities for
each chip are equivalent. To remove systematic sources of
variation in the microarray experiments (i.e., different label-

ing efficiencie-s and scapning properties, print-tip or spatial Fig. 2. variable influence on projection (VIP) of DPLS in the leukemia data
effects, and different noise levels in each array), the expres-set. The higher the VIP value, the more influential the variable.

VIP

Genes
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selected genes have a high expression level (more tiin 10  We applied the FCM clustering method (with four PCs)
and show large discrepancies between the ALL and AML and analyzed the results of the corresponding clustering and
samples. This means that the genes selected may hardly belassification. In FCM, the fuzzifiem was set to 1.2 on the
contaminated by noise, key discriminating genes betweenbasis of the results of many simulations under various condi-
ALL and AML, and hence, they are highly likely to be criti-  tions. We initialized the parameters of the cluster prototype
cal candidates for the distinction of leukemia subtypes. center usingc-means clusterindzig. 5shows the FCM mem-

PCA was applied to interpret the patterns of ALL and bership values for the 38 training samples (left) and the pre-
AML in the leukemia data set because the presence of toodiction results for the 34 test samples (right). In the training
many features degrades the clustering performance. The opdataset, patients 1-27 have high membership values in class 1
timal number of PCs should be determined considering both (AML) and low membership valuesin class 2 (ALL), whereas
the curse of dimensionality and the loss of information. Sev- patients 28—-38 show the opposite behavior. Thus, the ALL
eral techniques exist for determining the optimal number of and AML patients are well clustered without any clustering
PCs, but to date no dominant technique has emerged. In theerror. All but 2 of the 34 test samples were correctly classi-
system considered here, four PCs were found to be adequatéied. The two misclassified samples were ALL(#42), which
based on the cross-validation of the prediction residual sumshowed high gene expression levels in comparison to other
of squares (PRESS). The four PCs capture about 77.3% ofALL patients, and ALL(#66), which showed low expression
the variation in the 50 genes by projecting the 50 genes into levels in comparison to other AML patients.
four dimensions. To interpret the leukemia data set, we ex-
amined the score plots of the training and test data in the 4.2. Analysis of ALL subclass (B-cell and T-cell)
two-dimensional space spanned by the first two PCs, which
are shown inFig. 3. Fig. 3(@) shows the PCA score plot Acute lymphoblastic leukaemiais a heterogeneous disease
for 38 training data sets of ALL and AML. For the vali- with distinct biological and prognostic groupings. Diagno-
dation, the projected samples of an independent matrix of sis relies on traditional cytomorphological and immunohis-
expression data from 34 patients is showfrig. 3b). Here, tochemical evaluation of the leukaemic blasts. Subsequently,
ALL and AML can be visually distinguished with the ex- cytogenetic analysis identifies clonal nhumeric and/or struc-
ception being the 66th patient. Thus, dimension reduction by tural chromosomal abnormalities that may be present, thus
PCA can make it possible to distinguish between ALL and confirming the subtype classification and providing impor-
AML. tant prognostic information for treatment plannikgbriaei,

We now consider why the 66th patient was abnormal. To Anastasi, & Larson, 20Q02ALL can be further classified into
investigate the source of misclassification of this patient or the T-cell and B-cell lineages. In clinical practice, the B-cell
more specifically to identify which genes are responsible for lineage responds better to treatment than the T-cell lineage.
this particular patient having cancer, we examined the contri- Therefore, it is important distinguish between these lineages.
bution plot and gene expression of the abnormal 66th AML Among the 47 ALL patients oGolub et al. (1999)27 pa-
patient, which are illustrated iRig. 4(a). Contribution plots  tients were used as a training data set (19 B-cell ALL and
are graphical representations of the contribution of each gene8 T-cell ALL). To determine the 25 genes that discriminate
to the deviation of the current patient from that defined by the between T-cell ALL (T-ALL) and B-cell ALL (B-ALL), we
PCA model for the learning data set. By interrogating the un- used the DPLS method to select the top 25 gene selection,
derlying PCA model at the point where the abnormality is where the response variable Y is O (T-ALL) or 1 (B-ALL).
detected, one can extract diagnostic or contribution plotsthat In general, ALL is cytogenetically classified as belong-
reveal the group of genes making the greatest contributionsing to one of the following classes: (i) hyperdiploid (more
to the deviations in the scores. Inspection of such plots couldthan 50 chromosomes); (ii) pseudodiploid (abnormal 46
potentially reveal the group of genes that most influence the chromosomes); (iii) diploid (normal 46 chromosomes); (iv)
difference between the ALL and AML patients. The contribu- hypodiploid (less than 46 chromosomes). Numerous chromo-
tion plot derived from the mean values enables classification somal translocations have been associated with the disease,
of the patients as having ALL or AML. The contributions of some of which occur only rarely. ALL breakpoints often in-
most genes in the 66th patient are negative, contrary to thevolve the immunoglobulin (Ig) (B-ALL) or T-cell receptor (T-
behavior of the other AML patients. These plots provide con- ALL) genes. The two mostcommon translocationsS¢ggR?2)
siderable insight into the possible factors causing this patientandt(11g23). In addition, thé(1:19) translocation is com-
to appear abnormal in the current analysis, and thus, greatlymon in childhood B-ALL, and(8;14)(g24;932), and variants
narrow the search for the source of the abnormality. For a de-t(2;8) andt(8;22) are found in almost all B-ALL patients. T-
tailed illustration Fig. 4(b) shows the gene expression levels ALL patients may show(1;14)(p32;q11) or 14q11, 7q34-36
of the top five genes for patient 66 and patients 50-54. This or 7p15 translocations, which involve the T-cell receptor loci.
plot reveals that patient 66 has low gene expression levels, The Philadelphia chromosomi#9;22)(q34;q11)] is found in
compared to other AML patients. In particular, the top-ranked about 30% of adults with ALLGolub et al., 1999; Yeoh et
gene, Zyxin, shows an abnormally low expression level for al., 2003. Almost all selected 25 genes mapped to regions
patient 66. that have been previously associated with ALL chromosomal
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Fig. 3. Score plot of PCA for ALL and AML leukemia: (a) training samples of 38 patients and (b) test samples of 34 patients.

abnormalities, including the T-cell antigen receptor (X03934, the 25 genedrig. 6 shows the clustering results with FCM
9p56), TCRB (X00437, 7q34) (CD47, X69398 3q13), membership values for ALL samples of 47 patients with T-
CD7 (D00749, 7934), and TCF7(X59871, 5q3Kgbriaei cell and B-cell lineages. All of the B-cell and T-cell lineage
et al. (2002)report that the major chromosomal abnor- ALL samples are well clustered except for one misclustered
malities in ALL are t(9;22)(g34;911), t(12;21)(p13;922), sample (#17). These results confirm that the top 25 genes
t(4;11)(q21;923), t(1;19)(g23;p13), 8924 translocations and are differentially expressed between the T-ALL and B-ALL
hyperdiploidy. These results suggest that the 25 genes sesubclasses of ALL patients.
lected via DPLS as being most relevant for classifying B-ALL
and T-ALL subclasses are biologically relevant as well. 4.3. Analysis of AML subclass: M1, M2, M4, M5

After selecting the top 25 genes that are differentially ex-
pressed between the B-cell and T-cell lineages of ALL pa-  The original French—American—British (FAB) system for
tients, PCA was used to reduce the data dimension. Four PCsletermining leukemia subtype was based only on the appear-
were determined, and captured about 83% of the variation inance of leukemic cells under the microscope after routine
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Fig. 6. FCM clustering results of ALL samples of 47 patients: (a) cluster 1 (T-cell lineage) and (b) cluster 2 (B-cell lineage).

processing or cytochemical staining. AML can be classified curs frequently in both ALL and AML patients. Many of the
into six subtypes, designated M1-M6. Although patients tend genes in the top 25 genes of the AML subclass with M1, M2,
to be classified into either the M2 or M4 subtype under the M4, and M5 encode proteins critical for S-phase cell cycle
FAB system, it is difficult to for most doctors to discriminate progression (Cyclin D3, Op18, and MCM3), chromatin re-
sharply between these subtypes. And identifying the M3 sub- modeling (RbAp48 and SNF2), transcription (TFRE and
type is of importance because this subtype usually respondscell adhesion (zyxin) or are known oncogenes (c-MYB, E2A
well to treatment with retinoids. The M5 subtypeis noteasyto and HOXA9). CD33 and MB-1 encode cell surface proteins
detect using the FAB system and usually shows poor responsdor which monoclonal antibodies have been demonstrated to
to treatment; most doctors recommend intensive chemother-be useful in distinguishing lymphoid from myeloid lineage
apy for patients with this subtype. Correctidentification of the cells Dorrie, Gerauer, Wachter, & Zunino, 2001
AML subtype is very important to the clinical treatment step. After selecting the top 25 genes, PCA was used to reduce
Because the AML subtype cannot be determined in some pa-the data dimension. Four PCs were determined, and captured
tients, leukemia should be assigned to more than one clusterabout 82% of the variation in the 25 genEgy. 7 shows the
(Golub et al., 1999 PCA score plot of the 20 AML patients with M1, M2, M4, or
Among the 25 AML patients, we used 20 patients as a M5 comprising the training data set and the five test samples
training data set, where 4 patients (samples 32, 35, 38, and
61) were M1, 10 patients (samples 28, 29, 33, 34, 37,51,53,

57, 58, and 60) were M2, 4 patients (samples 31, 50, 52, and s 2
54) were M4, and 2 patients (samples 30 and 36) were M5. ;| D,”_Fs = oMs
The remaining five patients (samples 62—66) which could T etcsamples 62.66)
not be classified byolub et al. (1999Wwere used as a test 21 R _

data set. To determine the genes that discriminate between
the AML subclasses included in the training data set (i.e., il
M1, M2, M4, and M5), we used the DPLS method to se- «
lect the top 25 gene selection, where the response matricesg ,| L
(Y) were LOOO] for M1, [0100]" for M2, [0010] for ot
M4 and [000 1] for M5. We selected the top 25 genes of ah
the AML subclass with M1, M2, M4, and M5. The Philadel- ”

phia chromosome is found in less than 1% of AML patients. ol . A ‘}; 30 |
Other genetic abnormalities associated with AML include '
t(8;21)(g22;922), which is observed most frequently in chil- 3
dren and young adults and is associated with the M2 subtype.
Almost all patients with AML M3 showi(15;17)(g22;921),

which affects the retinoic acid receptor alpha and thus leadsrig 7. pca score plot of 25 AML patients with M1, M2, M4, or M5, and
to acute promyleocytic leukemia. In additiaif11g23) oc- five test samples (62—66).
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Fig. 8. Prediction result of membership values of FCM for five test AML samples (62-55) with subclass M1, M2, M4, or M5.

(62-66) plotted in the two-dimensional space spanned by theadditional gene selection for the prediction of clinical output
first two PCs. In this plot, the AML patients are well sep- of AML treatment. Among the 25 AML patients, we used 15
arated into four clusters, one for each subtype, without any patients as a training data set, of whom 7 patients (#34—38 and
clustering error. Based on the results of the training data, we 52—-53) survived and 8 patients (#28-33, 50, and 51) died dur-
used the FCM clustering method to predict the subtype of the ing treatment, and we used the remaining 10 patients (samples
five AML samples that could not be predicted by the method #54, 57, 58, and 60-66), who did not respond to treatment,
of Golub et al. (1999)Fig. 8depicts the prediction results for  as a test data set. We used the DPLS method for selecting the
the five unknown test samples (#62—66) using FCM cluster- top 25 genes for discriminating between failure and success
ing. The prediction results indicate that three AML patients of clinical treatment of AML patients. The chromosomal lo-
(samples #63-65) are of subtype M1, and two patients (sam-cations of the 25 identified genes were checked in the NCBI

ples #62 and 66) are of subtype M2. LocusLink, because chromosomal abnormalities are preva-
lent in leukemia patients and often have prognostic implica-

4.4, Prediction of clinical outcome of AML patients tions (Thomas et al., 2001 Almost all genes among the se-

(failure and success) lected 25 genes have been identified previously as containing

abnormalities in AML or another form of leukemia. Most of

The genomewide expression patterns of tumors provide athe genes reported thyons-Weiler, Patel, and Bhattacharya,
good representation of their biology and diversity. Thus, re- 2003 are also found in our marker gene set (HoxA9, PIG-
lating gene expression patterns to clinical outcomes is a keyB, MACH-alpha-2 protein, BPI Bactericidal/permeability in-
issue in cancer genetics. Many parameters have been exploredreasing protein, Autoantigen PM-SCL, ERGIC-53 Protein,
in relation to leukemia cancer biology and disease outcome,and so on). Overexpression of HoxA9 would presumably re-
and researchers have found that some patients is a good indisult in an overproduction of leukocytes and lymphocytes. In-
cator of prognosis. However, some patients have been founddeed, the injection of retrovirally engineered primary bone
to opposite prognosis, as well, which underlines the difficul- marrow cells that overexpresses both HoxA9 and Meis1 into
ties of correlating single factors with prognos@h¢mas et ~ mice induces AML within three months (Kroon et al., 1998).
al., 200). Although the FAB system for classifying AML as  Golub et al. (1999found that HoxA9 had the highest cor-
M1, M2, M3, M4, M5, or M6 by morphological statesis based relation to their ideal distribution, but did not find a suitable
on clinical data, we should elucidate the factors underlying gene set that enabled predicting chemotherapy success and
the success or failure of treatment, which would allow us to failure. Thomas et al. (20013uspected that, out of all the
better predict thelinical outcomeof leukemia patients. One  genes in the original data, HoxA9 could predict success and
of the most promising aspects of gene expression profiling failure of chemotherapy, but were confronted with a lack of
is the hope that it will enable more accurate identification of statistical significance in their measure of the difference be-
patients who are at a high risk of failing conventional therapy. tween success and failuré € 0.1). When checking the gene

To search for additional sets of genes useful for predict- expression profiles of HoxA9 among the 15 AML patients
ing the clinical outcome of leukemia patients, we performed in the training group, those with poor treatment outcomes
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among these patients showed increased expression ofn the loading plot, genes that correlate with successful treat-
HoxA®9. ment appear on the right side and genes that correlate with
After selecting the top 25 genes, differentially expressed treatment failure appear on the left side. Almost all of the
between AML patients who lived or died during treatment, genes in each gene group have common expression patterns,
PCA was used to reduce the data dimension. Four PCs weréhat is, group-specific regulation patterns known as coregu-
determined, and captured about 76% of the variation in the lation patterns. It means that the expression of each group is
25 genes. To determine the correlation between the genes sehighly elevated only in the sample class and down-regulated
lected for AML patients and clinical outcome, we examined in the other classeStephanopoulos, Hwang, Schmit, Misra,
the PCA score and loading plots of the 15 AML patients (8 & Stephanopoulos, 2002This result is notable in that these
failure and 7 success samples); these plots are shdvig.i\ genes may be considered marker genes related to the clinical
These plots demonstrate that the selected 25 genes can viswsutcome of AML patients.
ally discriminate the clinical outcome of AML patients, and Fig. 10depicts the prediction results based on the mem-
that PCA can extract the key feature components. The plotbership values from FCM clustering for the 10 AML patients
of the PCA loadingsKig. 9b)) can be used to establish how (54,57, 58, 60—-66) whose clinical outcome was not specified
the 25 genes are interrelated. The form of the loading plot is by Golub et al. (1999)The results indicate that eight AML
closely connected with the pattern of the score i (9a)), patients (#54, 57, 58, 62—66) are predicted to survive after
and shows how the 25 genes are expressed and how they intetreatment, and two AML patients (#61 and 62) are predicted
act to separate the AML patients based on clinical outcome.to die after treatment. Thus, the proposed method makes it
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Fig. 10. Prediction result of membership values of FCM for 10 test samples (54, 57, 58, 60—66) with AML patients who lived and died afterfigaBnent
Trajectories of nine variables from a nominal batch run.

possible to predict the clinical outcome of AML patients. microarray data, and for identifying leukemia subtypes. It
Moreover, based on the present findings in regard to the link makes possible the identification of important genes for each
between certain genes and clinical outcome, we can deter-subclass and the classification of leukemia subtype solely on
mine the specific genes and relapse in leukemia patients, andhe basis of molecular-level monitoring. It was also used to
also suggest a medicine manufacturer to make a new drugestablish a relationship between expression-based subclasses
development with the maker genes, which manifest them- of leukemia tumors and patient outcome, which can give a
selves among the survival patients after treatment. Although hint to the drug development. Thus, it can potentially be used
the clinical outcome is also affected by many other factors, to guide the design of new, more effective approaches to the
such as patient age, treatment regime, and time of diagno-treatment of leukemia. Because the proposed method is based
sis, the results presented here highlight the potential of theon a simple gene selection and fuzzy clustering methods, it
proposed method for uncovering prognostic indicators for can be used in other microarray data. We are developing a
leukemia. quite innovative method for a simultaneous classification and
an unknown subclass finding with a new generic statistic so as
to remove the limitations of a threshold-based gene selection,

5. Conclusions such as an inability of an unknown subclass.
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