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Abstract

DNA microarray technologies, which monitor simultaneously, the expression pattern of thousands of individual genes in different biological
systems have resulted in a tremendous increase of the amount of available gene expression data and have provided new insights into gene
expression during development, within disease processes, and across species. However, microarray gene expression data are characterized by
very high dimensionality (genes), relatively small numbers of samples (observations), irrelevant features, as well as collinear and multivariate
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haracteristics. These features complicate the interpretation and analysis of microarray data, and the complexity of such data m
nalysis entails a high computational cost. This situation motivated the researchers to develop a new method for analyzing micro

n this paper, we propose a simple gene selection and multivariate fuzzy statistical analysis methods. The proposed method wa
icroarray data from leukemia patients; specifically, it was used to interpret the gene expression pattern and analyze the leuke
hose expression profiles correlated with four cases of acute leukemia gene expression.
2005 Elsevier Ltd. All rights reserved.
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. Introduction

The recent development of DNA microarray technology,
hich offers the opportunity to simultaneously study the ex-
ression of thousands of individual genes in different biolog-

cal systems, has provided new insights into gene expression
uring development, within disease processes, and across
pecies. Recently, researchers have eschewed morphologi-
al tumor classifications in favor of classification using gene
xpression profiles on DNA chips. Therefore, researchers are
urrently seeking to develop new approaches to (i) diagnose
ancer early in its clinical course, (ii) more effectively treat
dvanced stage disease, (iii) better predict a tumor’s response
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to therapy prior to the actual treatment, and (iv) ultima
prevent disease from arising through chemopreventive s
gies. These goals can only be accomplished through a
ter understanding of how certain genes and their enc
proteins contribute to disease onset and tumor progres
and how they influence the response of patients to drug
apies. Innovations in genetic, biological, biochemical,
data analysis approaches are needed for researchers t
realize these goals (Ochs & Godwin, 2003).

However, microarray gene expression data are chara
ized by very high dimensionality (genes), relatively sm
numbers of samples (observations), irrelevant feature
well as collinear and multivariate characteristics. These
tures complicate the interpretation and analysis of microa
data, and the complexity of such data means that its an
entails a high computational cost. In particular, conventi
statistical techniques for analyzing gene expression da
not work well (or even at all) when the number of genes
exceeds the number of samples. This situation prompt
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to develop a new method for analyzing microarray data (Lu
& Han, 2003).

To solve the above mentioned problems, the first step in
creating such a new method is to extract the fundamental
features (or genes) of the gene expression data set (i.e., a
dimensional reduction), and the second step is to compare
the expression data with the desired level of data analysis
(i.e., clustering similar genes or samples, and/or identifying
the tumor class).

A lot of studies have used microarray technology to an-
alyze gene expression in colon, breast, leukemia, and other
cancers. These studies have demonstrated the ability of ex-
pression profiling to cluster similar genes and classify tumors.
Gene expression profiles may give more information than
traditional morphology.Golub, Slonim, Tamayo, and Lander
(1999)used a weighted voting scheme for molecular clas-
sification of acute leukemia; this scheme predicts leukemia
subtypes by means of a supervised learning algorithm and
discriminant decision rules derived on the basis of the mag-
nitude and threshold of the prediction strength.Alon et al.
(1999)used a clustering technique based on a deterministic-
annealing algorithm to classify cancer and normal colon tis-
sues.Scherf et al. (2000)used average linkage clustering to
distinguish between tumor tissues originating from various
sites for tumor tissues originating from various site.Alizadeh,
Eisen, and Staudt (2000)studied gene expression in the three
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type (M1, M2, M4, or M5), and (4) AML subtype by clinical
outcome (success or failure). Then, using fuzzy clustering,
we could predict the type and subtype of leukemia, identify
obscure leukemia subtypes in microarray data, and establish
the relationship between expression-based leukemia subclass
and clinical outcome.

2. Theory

2.1. Discriminant partial least squares

Nguyen and Rocke (2002)suggested an approach in
which high-dimensional vectors are reduced using the par-
tial least squares (PLS) method and then classified using
logistic discrimination and quadratic discriminant analysis.
They showed that the weight vector of PLS alone could be a
good indicator of the correlation between the predictor and
response.Cho, Lee, Park, Kim, and Lee (2002)proposed an
approach for the construction of the optimal linear classifier
based on the genes expression data with PLS. On the other
hand,Park, Tian, and Kohane (2002)used the PLS and gener-
alized linear regression methods to link gene expression data
with patient survival times and reformulate survival data for
a Poisson regression. However, it is more physically reason-
able to use all the weight vectors of PLS together with the
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ost prevalent adult lymphoid malignancies. Based on
xpression data, they identified two previously unrecogn
ypes of diffuse large B-cell lymphoma that exhibited dist
linical behavior. Average linkage hierarchical clustering
sed to identify the two tumor subclasses as well as to g
enes with similar expression patterns across the diff
amples.Ross et al. (2000)used cDNA microarrays to stud
ene expression in the 60 cell lines from the anti-cancer
creen (NCI 60) of the National Cancer Institute (NCI).
rarchical clustering of the tumoral cell lines based on
xpression data revealed a correspondence between ge
ression and tissue of origin. Hierarchical clustering was
sed to group genes with similar expression patterns a

he cell lines.Dudoit, Fridlyand, and Speed (2002)compared
he result of applying various classifies (such as linear
riminant analysis and quadratic analysis) to the sam
f gene expression data andBicciato, Pandin, Didone, an
i Bello (2002)applied an auto-associative neural netw
odel to pattern identification and classification in gene
ression data.

In this paper, we developed a simple approach to gen
ection based on discriminant partial least squares (DP
nd fuzzy clustering methods. The proposed method
pplied to microarray data from leukemia patients; sp

cally, it was used to interpret the gene expression pa
nd analyze the leukemia subtype. Using the DPLS-b
ene selection method, we determined the groups of g
hose expression profiles correlated with five cases: (1)

ymphoblastic leukemia (ALL) and acute myeloid leuke
AML), (2) ALL subtype (T-cell or B-cell), (3) AML sub
-

raction that is explained by the latent variables.
Discriminant partial least squares (DPLS) is a dimens

lity reduction technique for maximizing the covariance
ween the predictor (independent) blockX and the predicte
dependent) blockY for each component. DPLS models
elationship betweenX andY using a series of local leas
quares fits. PLS components are obtained in such a
hat the sample covariance between the response var
leukemia classes) and a linear combination of the pr
ors (genes), are maximized. In other words, the PLS

weight vectorw which satisfies (Nguyen & Rocke, 2002;
eung & Ruzzo, 2001),

k = arg max Cov(Xw, y) (1)

ubject to the unit weight and orthogonality constraint

′Swj = 0, for all 1 ≤ j ≤ k (2)

hereS=X′X. Thei-th PLS component is a linear combin
ion of the original predictors (Xwi). The variable importanc
n the projection (VIP) is a good measure of the influenc
ll variables in the PLS model on the response variables
IP can be calculated from the weight vector of the DP
odel and the percentage that is explained by the dime
f the model, which is defined as follows:

IP =
∑

a

(wak)
2 (3)

Note that after the PLS weight vectors are computed, g
re selected via the VIP. For a given PLS dimension (VIPak) is
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equal to the squared PLS weight (wak)2. The VIP can be con-
sidered as a measure of how much a certain gene corresponds
to the samples. Thus, we can select important genes based on
the VIP value. It is reasonable to assume that the weights of
the features are proportional to their importance in the de-
termination of the class labels, that is, the higher the weight,
the better the distinction power of the feature with respect to
the class label. Therefore, given a trained PLS classifier, a set
of K high-ranking genes are obtained by selecting the genes
with the topK VIP weights.

2.2. Fuzzy clustering

In the fuzzy c-means (FCM) clustering method, an object
can simultaneously be a member of multiple classes (Duda
et al., 2001; Yoo, Vanrolleghem, & Lee, 2003). The objective
function, which is minimized iteratively, is a weighted within-
groups sum of distancesdk,i . The weighting is performed by
multiplying the squared distances by membership valuesuk,i .

Jm(C, m) =
C∑

i=1

N∑

k=1

(uk,i)
md2

k,i (4)

whereC is the total number of clusters,N the total number
of objects in the calibration data,dk,i the distance between an
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Fig. 1. Schematic flow diagram of the proposed data analysis algorithm for
gene expression data.

For microarray data, we apply the FCM algorithm to the
reduced PCA feature space, that is, to the score vector of PCA.
This fuzzy clustering method allows intermediate logical as-
signments whereby genes or patients are placed into multiple
groups by assigning a membership value for each group of be-
tween 0 (not in group) and 1 (completely in group). The use
of membership values has the advantage of allowing gene
or sample the possibility of belonging to multiple clusters,
which may better reflect the underlying biology.

Fig. 1 shows a schematic flow diagram of the proposed
data analysis algorithm for gene selection, dimensional re-
duction, and the FCM method. First, the relevant genes are
selected using the VIP of the DPLS model. Second, the fea-
ture dimension is reduced by PCA in order to apply the pro-
posed clustering and prediction method using FCM clustering
with Mahalanobis distances for the underdetermined system,
i.e., the number of genes is much greater than the number
of samples. Third, FCM is used to interpret microarray data
patterns, classify the leukemia class, and predict the clinical
results of a test sample.

3. Leukemia gene expression microarray dataset

3.1. Background of leukemia

ells
i lled
bjectk and a prototype (cluster)i, anduk,i is the member
hip function. After computing the membership values
ll calibration objects, the cluster centers (vi) are describe
y prototypes, which are fuzzy weighted means, accor

o the following equation:

i =
∑N

k=1(uk,i)mxk∑N
k=1(uk,i)m

, ∀i (5)

In the prediction of a new test sample, a new valu
omputed using Eq.(6).

N+1,i = 1
∑C

j=1(d2
k,i/d

2
k,j)

2/(m−1) (6)

.3. Interpretation and multivariate fuzzy analysis of
ene expression data

Because raw microarray data frequently contain cor
ions between measured variables and are of high dimen
lity, it is necessary to introduce multivariate statistical la
ariable methods to increase variable independency a
educe dimensionality. PCA and PLS are usually used e
o reduce the data dimension while retaining the impo
nformation or to display the data information in a form t
an be easily interpreted. Data clustering can then be ap
o the transformed data of lower dimension instead of to
riginal data. Moreover, the compression of data before

ering causes the clustering algorithm to become more s
nd efficient in cases where the original variables are h
orrelated and of high dimension (Nguyen & Rocke, 2002).
Leukemia is a malignant cancer that originates in c
n the bone marrow, and is characterized by uncontro
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growth of developing white blood cells. The bone marrow
generates cells called blasts that develop (mature) into sev-
eral different types of blood cells with specific tasks in the
human body (Golub et al., 1999): red blood cells (which carry
oxygen to all tissues of the body), white blood cells (which
fight infection), and platelets (which make the blood clot).
There are different types of white blood cells: (i) granulo-
cytes, white blood cells that develop from blood-forming cells
called myeloblasts, and mainly destroy bacteria when mature;
(ii) monocytes, developing from monoblasts, are also impor-
tant in protecting the body against bacteria; (iii) lymphocytes
are the main cells in lymphoid tissue, which is a major part of
the immune system. Two types of lymphocytes are known:
B lymphocytes (B-cells) produce antibodies, and T lympho-
cytes (T-cells) recognize cells infected by viruses and destroy
them.

There are two major leukemia classes, myelogenous (also
called myeloid) and lymphocytic (also called lymphoblastic)
leukemia, which could both be acute or chronic. The terms
myelogenous and lymphocytic denote the type of bone mar-
row cells that is involved. Acute leukemias progress quickly,
and can lead to death of a patient within months when not
treated. Medical treatment of patients will vary depending on
the leukemia class. Thus, knowledge of the leukemia class is
very important information for doctors to correctly treat pa-
tients. Acute leukemia data sets can be classified into acute
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(
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sion level of each gene was normalized to have a zero mean
and a standard deviation of one (Yang et al., 2002).

4. Result and discussion

The proposed method is applied to the acute leukemia
data set published byGolub et al. (1999)with four cases: (1)
acute lymphoblastic leukemia and acute myeloid leukemia,
(2) ALL subtype (T-cell or B-cell), (3) AML subtype (M1,
M2, M4, or M5), and (4) AML subtype by clinical outcome
(success or failure).

4.1. Interpreting patterns of ALL and AML using fuzzy
clustering

To determine the specific genes that discriminate between
ALL and AML, we used the DPLS method for gene selection,
where the response variable Y is 0 (AML) or 1 (ALL). Among
the 7129 genes, 50 were selected on the basis of the VIP value
of DPLS, where the VIP plot of DPLS for the leukemia data
set is displayed inFig. 2. Thus, on the basis of the correlation
coefficients, we chose the 50 genes that were most correlated
with the classification of leukemia. The top 50 genes were ex-
amined for chromosomal localization using NCBI LocusLink
( e
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ymphoblastic leukemia and acute myeloid leukemia. M
ver, ALL cases can be classified into T-cell ALL and B-
LL, depending on the type of lymphocytes that is affec

Golub et al., 1999).

.2. Gene expression profiles: leukemia dataset

The leukemia dataset and all details with respec
he methods used to collect the data are described i
aper of Golub et al. (1999). The dataset, available
ttp://www.genome.wi.mit.edu/MPR, consists of a set o
igh-density oligonucleotide microarrays (Affymetrix) w
robes of 7129 human genes, was obtained from 72 pat
orty seven patients were affected with ALL (38 B-ALL a
T-ALL), and 25 patients were affected with AML. The tra

ng data set consists of 38 bone marrow samples: 27 sa
ere taken from ALL patients (19 B-ALL and 8 T-ALL) an
1 were taken from AML patients. The independent (t
ata set consisted of 34 samples: 20 ALL patients an
ML patients. Furthermore, a description of cancer subty

reatment response, patient gender, and laboratory tha
ormed the analysis is provided with the data. Moreover
esult of the subsequent treatment (success or failure) is
ided for a limited number of samples. The gene expres
rofiles of the original data set are represented as log 10
alized expression values, such that overall intensitie
ach chip are equivalent. To remove systematic sourc
ariation in the microarray experiments (i.e., different la
ng efficiencies and scanning properties, print-tip or sp
ffects, and different noise levels in each array), the ex
http://www.ncbi.nlm.nih.gov/LocusLink). In contrast to th
0 genes ofGolub et al. (1999), it assigns high rankings
yxin, leukotriene (C4 synthase gene), leptin, CD33 ant
AH, and myeloperoxidase (MPO) as well as cystatins
athepsins. These genes are known to play important
n acute leukemia. For example, Zyxin is located in ch

osome 7, which may contain genes related to myeloid
ignancy, and Cystatins are endogenous protein inhibito
athepsins, and hence these specific protease-inhibitors
e important in the etiology of ALL and AML. In additio
D33 is located in chromosome 19q13.3, and has been d
ped for targeted antibody therapy to kill leukemia AML c
Thomas, Olson, Tapscott, & Zhao, 2001). Almost all of the

ig. 2. Variable influence on projection (VIP) of DPLS in the leukemia
et. The higher the VIP value, the more influential the variable.

http://www.genome.wi.mit.edu/mpr
http://www.ncbi.nlm.nih.gov/locuslink
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selected genes have a high expression level (more than 103)
and show large discrepancies between the ALL and AML
samples. This means that the genes selected may hardly be
contaminated by noise, key discriminating genes between
ALL and AML, and hence, they are highly likely to be criti-
cal candidates for the distinction of leukemia subtypes.

PCA was applied to interpret the patterns of ALL and
AML in the leukemia data set because the presence of too
many features degrades the clustering performance. The op-
timal number of PCs should be determined considering both
the curse of dimensionality and the loss of information. Sev-
eral techniques exist for determining the optimal number of
PCs, but to date no dominant technique has emerged. In the
system considered here, four PCs were found to be adequate
based on the cross-validation of the prediction residual sum
of squares (PRESS). The four PCs capture about 77.3% of
the variation in the 50 genes by projecting the 50 genes into
four dimensions. To interpret the leukemia data set, we ex-
amined the score plots of the training and test data in the
two-dimensional space spanned by the first two PCs, which
are shown inFig. 3. Fig. 3(a) shows the PCA score plot
for 38 training data sets of ALL and AML. For the vali-
dation, the projected samples of an independent matrix of
expression data from 34 patients is shown inFig. 3(b). Here,
ALL and AML can be visually distinguished with the ex-
ception being the 66th patient. Thus, dimension reduction by
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We applied the FCM clustering method (with four PCs)
and analyzed the results of the corresponding clustering and
classification. In FCM, the fuzzifiermwas set to 1.2 on the
basis of the results of many simulations under various condi-
tions. We initialized the parameters of the cluster prototype
center usingk-means clustering.Fig. 5shows the FCM mem-
bership values for the 38 training samples (left) and the pre-
diction results for the 34 test samples (right). In the training
dataset, patients 1–27 have high membership values in class 1
(AML) and low membership values in class 2 (ALL), whereas
patients 28–38 show the opposite behavior. Thus, the ALL
and AML patients are well clustered without any clustering
error. All but 2 of the 34 test samples were correctly classi-
fied. The two misclassified samples were ALL(#42), which
showed high gene expression levels in comparison to other
ALL patients, and ALL(#66), which showed low expression
levels in comparison to other AML patients.

4.2. Analysis of ALL subclass (B-cell and T-cell)

Acute lymphoblastic leukaemia is a heterogeneous disease
with distinct biological and prognostic groupings. Diagno-
sis relies on traditional cytomorphological and immunohis-
tochemical evaluation of the leukaemic blasts. Subsequently,
cytogenetic analysis identifies clonal numeric and/or struc-
tural chromosomal abnormalities that may be present, thus
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ML.
We now consider why the 66th patient was abnorma

nvestigate the source of misclassification of this patien
ore specifically to identify which genes are responsible

his particular patient having cancer, we examined the co
ution plot and gene expression of the abnormal 66th A
atient, which are illustrated inFig. 4(a). Contribution plot
re graphical representations of the contribution of each

o the deviation of the current patient from that defined by
CA model for the learning data set. By interrogating the
erlying PCA model at the point where the abnormalit
etected, one can extract diagnostic or contribution plots
eveal the group of genes making the greatest contribu
o the deviations in the scores. Inspection of such plots c
otentially reveal the group of genes that most influenc
ifference between the ALL and AML patients. The contri

ion plot derived from the mean values enables classific
f the patients as having ALL or AML. The contributions
ost genes in the 66th patient are negative, contrary t
ehavior of the other AML patients. These plots provide c
iderable insight into the possible factors causing this pa
o appear abnormal in the current analysis, and thus, gr
arrow the search for the source of the abnormality. For

ailed illustration,Fig. 4(b) shows the gene expression lev
f the top five genes for patient 66 and patients 50–54.
lot reveals that patient 66 has low gene expression le
ompared to other AML patients. In particular, the top-ran
ene, Zyxin, shows an abnormally low expression leve
atient 66.
onfirming the subtype classification and providing imp
ant prognostic information for treatment planning (Kebriaei,
nastasi, & Larson, 2002). ALL can be further classified in

he T-cell and B-cell lineages. In clinical practice, the B-
ineage responds better to treatment than the T-cell line
herefore, it is important distinguish between these linea
mong the 47 ALL patients ofGolub et al. (1999), 27 pa-

ients were used as a training data set (19 B-cell ALL
T-cell ALL). To determine the 25 genes that discrimin

etween T-cell ALL (T-ALL) and B-cell ALL (B-ALL), we
sed the DPLS method to select the top 25 gene sele
here the response variable Y is 0 (T-ALL) or 1 (B-ALL)
In general, ALL is cytogenetically classified as belo

ng to one of the following classes: (i) hyperdiploid (m
han 50 chromosomes); (ii) pseudodiploid (abnorma
hromosomes); (iii) diploid (normal 46 chromosomes);
ypodiploid (less than 46 chromosomes). Numerous chr
omal translocations have been associated with the dis
ome of which occur only rarely. ALL breakpoints often
olve the immunoglobulin (lg) (B-ALL) or T-cell receptor (
LL) genes. The two most common translocations aret(9;22)
nd t(11q23). In addition, thet(1:19) translocation is com
on in childhood B-ALL, andt(8;14)(q24;q32), and varian

(2;8) andt(8;22) are found in almost all B-ALL patients.
LL patients may showt(1;14)(p32;q11) or 14q11, 7q34-
r 7p15 translocations, which involve the T-cell receptor l
he Philadelphia chromosome [t(9;22)(q34;q11)] is found i
bout 30% of adults with ALL (Golub et al., 1999; Yeoh
l., 2002). Almost all selected 25 genes mapped to reg

hat have been previously associated with ALL chromoso
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Fig. 3. Score plot of PCA for ALL and AML leukemia: (a) training samples of 38 patients and (b) test samples of 34 patients.

abnormalities, including the T-cell antigen receptor (X03934,
9p56), TCRB (X00437, 7q34) (CD47, X69398 3q13),
CD7 (D00749, 7q34), and TCF7(X59871, 5q31).Kebriaei
et al. (2002)report that the major chromosomal abnor-
malities in ALL are t(9;22)(q34;q11), t(12;21)(p13;q22),
t(4;11)(q21;q23), t(1;19)(q23;p13), 8q24 translocations and
hyperdiploidy. These results suggest that the 25 genes se-
lected via DPLS as being most relevant for classifying B-ALL
and T-ALL subclasses are biologically relevant as well.

After selecting the top 25 genes that are differentially ex-
pressed between the B-cell and T-cell lineages of ALL pa-
tients, PCA was used to reduce the data dimension. Four PCs
were determined, and captured about 83% of the variation in

the 25 genes.Fig. 6 shows the clustering results with FCM
membership values for ALL samples of 47 patients with T-
cell and B-cell lineages. All of the B-cell and T-cell lineage
ALL samples are well clustered except for one misclustered
sample (#17). These results confirm that the top 25 genes
are differentially expressed between the T-ALL and B-ALL
subclasses of ALL patients.

4.3. Analysis of AML subclass: M1, M2, M4, M5

The original French–American–British (FAB) system for
determining leukemia subtype was based only on the appear-
ance of leukemic cells under the microscope after routine
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Fig. 4. Illustration for the abnormal 66th AML sample: (a) contribution plot and (b) comparison of gene expression levels of top five genes (samples 66 and
50–54).

Fig. 5. Prediction result of membership values of FCM for training (left) and test samples (right) with cluster 1 (AML, upper) and cluster 2 (ALL, lower).
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Fig. 6. FCM clustering results of ALL samples of 47 patients: (a) cluster 1 (T-cell lineage) and (b) cluster 2 (B-cell lineage).

processing or cytochemical staining. AML can be classified
into six subtypes, designated M1–M6. Although patients tend
to be classified into either the M2 or M4 subtype under the
FAB system, it is difficult to for most doctors to discriminate
sharply between these subtypes. And identifying the M3 sub-
type is of importance because this subtype usually responds
well to treatment with retinoids. The M5 subtype is not easy to
detect using the FAB system and usually shows poor response
to treatment; most doctors recommend intensive chemother-
apy for patients with this subtype. Correct identification of the
AML subtype is very important to the clinical treatment step.
Because the AML subtype cannot be determined in some pa-
tients, leukemia should be assigned to more than one cluster
(Golub et al., 1999).

Among the 25 AML patients, we used 20 patients as a
training data set, where 4 patients (samples 32, 35, 38, and
61) were M1, 10 patients (samples 28, 29, 33, 34, 37, 51, 53,
57, 58, and 60) were M2, 4 patients (samples 31, 50, 52, and
54) were M4, and 2 patients (samples 30 and 36) were M5.
The remaining five patients (samples 62–66) which could
not be classified byGolub et al. (1999)were used as a test
data set. To determine the genes that discriminate between
the AML subclasses included in the training data set (i.e.,
M1, M2, M4, and M5), we used the DPLS method to se-
lect the top 25 gene selection, where the response matrices
(Y) were [1 0 0 0]T for M1, [0 1 0 0]T for M2, [0 0 1 0]T for
M of
t el-
p nts.
O ude
t hil-
d type.
A ,
w eads
t -

curs frequently in both ALL and AML patients. Many of the
genes in the top 25 genes of the AML subclass with M1, M2,
M4, and M5 encode proteins critical for S-phase cell cycle
progression (Cyclin D3, Op18, and MCM3), chromatin re-
modeling (RbAp48 and SNF2), transcription (TFIIE�), and
cell adhesion (zyxin) or are known oncogenes (c-MYB, E2A
and HOXA9). CD33 and MB-1 encode cell surface proteins
for which monoclonal antibodies have been demonstrated to
be useful in distinguishing lymphoid from myeloid lineage
cells (Dorrie, Gerauer, Wachter, & Zunino, 2001).

After selecting the top 25 genes, PCA was used to reduce
the data dimension. Four PCs were determined, and captured
about 82% of the variation in the 25 genes.Fig. 7shows the
PCA score plot of the 20 AML patients with M1, M2, M4, or
M5 comprising the training data set and the five test samples
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Fig. 8. Prediction result of membership values of FCM for five test AML samples (62–55) with subclass M1, M2, M4, or M5.

(62–66) plotted in the two-dimensional space spanned by the
first two PCs. In this plot, the AML patients are well sep-
arated into four clusters, one for each subtype, without any
clustering error. Based on the results of the training data, we
used the FCM clustering method to predict the subtype of the
five AML samples that could not be predicted by the method
of Golub et al. (1999). Fig. 8depicts the prediction results for
the five unknown test samples (#62–66) using FCM cluster-
ing. The prediction results indicate that three AML patients
(samples #63–65) are of subtype M1, and two patients (sam-
ples #62 and 66) are of subtype M2.

4.4. Prediction of clinical outcome of AML patients
(failure and success)

The genomewide expression patterns of tumors provide a
good representation of their biology and diversity. Thus, re-
lating gene expression patterns to clinical outcomes is a key
issue in cancer genetics. Many parameters have been explored
in relation to leukemia cancer biology and disease outcome,
and researchers have found that some patients is a good indi-
cator of prognosis. However, some patients have been found
to opposite prognosis, as well, which underlines the difficul-
ties of correlating single factors with prognoses (Thomas et
al., 2001). Although the FAB system for classifying AML as
M1, M2, M3, M4, M5, or M6 by morphological states is based
o ying
t s to
b e
o filing
i n of
p apy.

dict-
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additional gene selection for the prediction of clinical output
of AML treatment. Among the 25 AML patients, we used 15
patients as a training data set, of whom 7 patients (#34–38 and
52–53) survived and 8 patients (#28–33, 50, and 51) died dur-
ing treatment, and we used the remaining 10 patients (samples
#54, 57, 58, and 60–66), who did not respond to treatment,
as a test data set. We used the DPLS method for selecting the
top 25 genes for discriminating between failure and success
of clinical treatment of AML patients. The chromosomal lo-
cations of the 25 identified genes were checked in the NCBI
LocusLink, because chromosomal abnormalities are preva-
lent in leukemia patients and often have prognostic implica-
tions (Thomas et al., 2001). Almost all genes among the se-
lected 25 genes have been identified previously as containing
abnormalities in AML or another form of leukemia. Most of
the genes reported byLyons-Weiler, Patel, and Bhattacharya,
2003are also found in our marker gene set (HoxA9, PIG-
B, MACH-alpha-2 protein, BPI Bactericidal/permeability in-
creasing protein, Autoantigen PM-SCL, ERGIC-53 Protein,
and so on). Overexpression of HoxA9 would presumably re-
sult in an overproduction of leukocytes and lymphocytes. In-
deed, the injection of retrovirally engineered primary bone
marrow cells that overexpresses both HoxA9 and Meis1 into
mice induces AML within three months (Kroon et al., 1998).
Golub et al. (1999)found that HoxA9 had the highest cor-
relation to their ideal distribution, but did not find a suitable
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n clinical data, we should elucidate the factors underl
he success or failure of treatment, which would allow u
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ailure of chemotherapy, but were confronted with a lac
tatistical significance in their measure of the difference
ween success and failure (P< 0.1). When checking the ge
xpression profiles of HoxA9 among the 15 AML patie

n the training group, those with poor treatment outco
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Fig. 9. Analysis and interpretation using PCA for 15 AML patients (8 failure and 7 success samples): (a) score plot and (b) loading plot.

among these patients showed increased expression of
HoxA9.

After selecting the top 25 genes, differentially expressed
between AML patients who lived or died during treatment,
PCA was used to reduce the data dimension. Four PCs were
determined, and captured about 76% of the variation in the
25 genes. To determine the correlation between the genes se-
lected for AML patients and clinical outcome, we examined
the PCA score and loading plots of the 15 AML patients (8
failure and 7 success samples); these plots are shown inFig. 9.
These plots demonstrate that the selected 25 genes can visu-
ally discriminate the clinical outcome of AML patients, and
that PCA can extract the key feature components. The plot
of the PCA loadings (Fig. 9(b)) can be used to establish how
the 25 genes are interrelated. The form of the loading plot is
closely connected with the pattern of the score plot (Fig. 9(a)),
and shows how the 25 genes are expressed and how they inter-
act to separate the AML patients based on clinical outcome.

In the loading plot, genes that correlate with successful treat-
ment appear on the right side and genes that correlate with
treatment failure appear on the left side. Almost all of the
genes in each gene group have common expression patterns,
that is, group-specific regulation patterns known as coregu-
lation patterns. It means that the expression of each group is
highly elevated only in the sample class and down-regulated
in the other classes (Stephanopoulos, Hwang, Schmit, Misra,
& Stephanopoulos, 2002). This result is notable in that these
genes may be considered marker genes related to the clinical
outcome of AML patients.

Fig. 10depicts the prediction results based on the mem-
bership values from FCM clustering for the 10 AML patients
(54, 57, 58, 60–66) whose clinical outcome was not specified
by Golub et al. (1999). The results indicate that eight AML
patients (#54, 57, 58, 62–66) are predicted to survive after
treatment, and two AML patients (#61 and 62) are predicted
to die after treatment. Thus, the proposed method makes it
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Fig. 10. Prediction result of membership values of FCM for 10 test samples (54, 57, 58, 60–66) with AML patients who lived and died after treatmentFig. 3.
Trajectories of nine variables from a nominal batch run.

possible to predict the clinical outcome of AML patients.
Moreover, based on the present findings in regard to the link
between certain genes and clinical outcome, we can deter-
mine the specific genes and relapse in leukemia patients, and
also suggest a medicine manufacturer to make a new drug
development with the maker genes, which manifest them-
selves among the survival patients after treatment. Although
the clinical outcome is also affected by many other factors,
such as patient age, treatment regime, and time of diagno-
sis, the results presented here highlight the potential of the
proposed method for uncovering prognostic indicators for
leukemia.

5. Conclusions

Biotechnological advances, such as DNA microarray anal-
ysis of gene expression, allow researchers to enlarge their
understanding of living systems, biochemical pathways, and
even disease. Indeed, the DNA microarray technology is use-
ful for discriminating between various subtypes of leukemia,
which is necessary for the accurate diagnosis and treatment of
patients. Here, we present a simple class-oriented gene selec-
tion method and fuzzy clustering method. This new method
is a simple and efficient way to identify genes and gene ex-
p ween
l clus-
t oun-
t ased
c ingle
c uzzy
c ex-
p om

microarray data, and for identifying leukemia subtypes. It
makes possible the identification of important genes for each
subclass and the classification of leukemia subtype solely on
the basis of molecular-level monitoring. It was also used to
establish a relationship between expression-based subclasses
of leukemia tumors and patient outcome, which can give a
hint to the drug development. Thus, it can potentially be used
to guide the design of new, more effective approaches to the
treatment of leukemia. Because the proposed method is based
on a simple gene selection and fuzzy clustering methods, it
can be used in other microarray data. We are developing a
quite innovative method for a simultaneous classification and
an unknown subclass finding with a new generic statistic so as
to remove the limitations of a threshold-based gene selection,
such as an inability of an unknown subclass.
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