

#### BIOMATH Department of Applied Mathematics, Biometrics and Process Control

The source of soluble microbial products and their impact on MBR fouling

Ghent University; UNESCO-IHE 11-07-2006

T. Jiang, S. Myngheer, V. De Schepper, I. Nopens, H. Futselaar, W. van der Meer, M.D. Kennedy, G.L. Amy, P.A. Vanrolleghem

UGent-Biomath, Coupure Links 653, 9000 Gent, BE tao.jiang@biomath.ugent.be

### Introduction

- SMP (soluble microbial products)
  = soluble EPS in the sludge water phase
- SMP
  - = BAP (Biomass associated products)
  - + UAP (Growth associated products)

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

#### tao.jiang@biomath.ugent.be

## **Problem definition**

- SMP is the main foulant in MBR
- It is not clear the relative contribution of BAP and UAP to MBR fouling

# Objective

- Differentiate the source of SMP (BAP + UAP)
- Quantify the impact of SMP on membrane fouling

## **Biomath MBR setup**



- An + Aero/Anox + Mem (BNR)
- Synthetic WW
- SRT = 17 days
- Fully automatic
- Temperature controlled
- Online TMP, DO, pH, ORP, Temperature monitoring

4

Online particle size measurement

## **Batch SMP Experiment**

- Raw SMP (BAP+UAP)
  - Filtrate < 0.45 μm</li>
- Batch BAP
  - Washed MBR sludge
  - Continuous aeration for 7 days
  - Room temperature, no pH and DO control
  - BAP < 0.45  $\mu$ m
- SMP and BAP  $\rightarrow$  Batch filtration

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

#### tao.jiang@biomath.ugent.be

5

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

653, 9000 Gent, BE tao.jiang@biomath.ugent.be

### **Batch Filtration Experiment**



- Mem = MBR (0.03µm)
- Const. flux = MBR (31.8 L/m<sup>2</sup>h)
- BW every 7.7 min for 1 min
- Dead-end filtration
- Online TMP
- Feed, perm. and BW water are collected

6

# LC-OCD results (raw SMP)



## **LC-OCD** results



- Major fraction of BAP>20 KDa, similar to raw SMP
- Smaller inert BAP was also produced

| UGent-Biomath, Coupure Links 653, 9000 Gent, BE | tao.jiang@biomath.ugent.be |
|-------------------------------------------------|----------------------------|
|-------------------------------------------------|----------------------------|

## **Rejection of SMP**

|                         | SMP Raw<br>(BAP+UAP) | BAP   |
|-------------------------|----------------------|-------|
| Feed DOC (mg/L)         | 47.15                | 20.96 |
| Permeate DOC (mg/L)     | 17.31                | 15.53 |
| Feed SUVA (L/mg*m)      | 0.23                 | 0.61  |
| Permeate SUVA (L/mg*m)  | 0.35                 | 0.64  |
| Feed TON/TOC            | 0.04                 | 0.041 |
| Permeate TON/TOC        | 0.039                | 0.037 |
| membrane retention rate | 0.63                 | 0.26  |

• SMP: strong hydrophilic, Low Org-N  $\rightarrow$  Polysaccharide

• Lower SMP rejection in batches (26-63%) than in real MBRs (80-90%)

٩

UGent-Biomath, Coupure Links 653, 9000 Gent, BE tao.jiang@biomath.ugent.be

## **SMP** fouling

|                                                                                    | SMP   |       |
|------------------------------------------------------------------------------------|-------|-------|
|                                                                                    | raw   | BAP   |
| Starting TMP                                                                       | 0.03  | 0.03  |
| End TMP after 7400 s                                                               | 0.56  | 0.092 |
| Milli-Q TMP after 7400 s (bar)                                                     | 0.47  | 0.085 |
| After BW TMP                                                                       | 0.05  | 0.03  |
| Fraction of membrane resistance                                                    | 0.05  | 0.33  |
| Fraction of concentration Polarization                                             | 0.17  | 0.08  |
| Fraction of reversible fouling by BW                                               | 0.96  | 1.00  |
| Fraction of irreversible fouling by BW                                             | 0.04  | 0.00  |
| Irreversible fouling resistance / clean membrane resistance                        | 0.63  | 0.00  |
| Normalized fouling rate ( $\Delta$ TMP (bar)/del. DOC (mg/m <sup>2</sup> ) *0.001) | 0.192 | 0.050 |
| Normalized fouling rate ( $\Delta$ TMP (bar)/ret. DOC (mg/m <sup>2</sup> ) *0.001) | 0.303 | 0.193 |

# **UAP** batch

- Experiment condition
  - Acetate as substrate
  - S/X (substrate/biomass) = 0.05
- Results:
  - Measure the change of COD in the water phase
  - No UAP detected

10

8

#### Conclusion

- The major fraction of BAP is colloids >20 KDa, polysaccharide nature
- The rejection of colloids is higher in MBR than in batch
- Raw SMP (BAP+UAP) has higher fouling potential and more difficult to clean hydraulically than BAP produced in batches

tao.jiang@biomath.ugent.be

### Perspective

- UAP tests to complete the mass balance of SMP (with higher S/X)
- · Modelling the production of degradation of SMP
- Simulate the UAP and BAP concentration in MBR reactor
- $\rightarrow$  presenting in IWA 2006, Beijing

UGent-Biomath, Coupure Links 653, 9000 Gent, BE tao.jiang@biomath.ugent.be

# **Discussion points**

- BAP produced in batch =? BAP in MBR sludge
- · How to produce UAP in batch?
- Physical factors in SMP production (EPS→SMP)
- BAP produced in batch had lower fouling potential than SMP (lower specific cake resistance?)

|                                                              | SMP<br>raw | BAP   |
|--------------------------------------------------------------|------------|-------|
| Normalized fouling rate (increased TMP/delivered DOC *0.001) | 0.192      | 0.050 |
| Normalized fouling rate (increased TMP/Retained DOC*0.001)   | 0.303      | 0.193 |

# Acknowledgement

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

- Norit Process Technology, The Netherlands
- Vitens Fryslân, The Netherlands

12

13