

BIOMATH

Department of Applied Mathematics, **Biometrics and Process Control**

An integrated model for the Bleesbruck catchment, Luxembourg

Anne-Marie Solvi, Lorenzo Benedetti, Péter Borsányi, Veronique Vandenberghe, P.A. Vanrolleghem

International Workshop on Integrated Urban Water Management Dresden, 3-4 July 2006

UGent-Biomath, Coupure Links 653, 9000 Gent, BE @biomath.Ugent.be

Presentation Outline

7 Introduction

→ The case study

→ The

→ The integrated model

→ Scenarios and Results

7 Outlook

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Introduction: Objectives

Water Framework Directive

- → Holistic approach
- 7 « good » chemical and ecological status of natural waters: Immission crititeria (combined to emission)

River water quality evaluates the performance of the urban wastewater system

7 CD4WC

Cost-effective optimisation of the integrated operation of the sewer and the WWTP for better river water quality

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Introduction: Approach

Objectives

Case Study

Toolbox / Data

Analysis

Results

Case Study: Luxembourg

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Case Study: Catchment

catchment

Area: ~ 10 km²

~ 20 semi-rural subcatchments

Domestic discharges: ~ 25000 PE Industrial discharges: ~ 30000 PE

sewer network

Length: ~ 60 km

+ new collector + new basins

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Case Study: WWTP

Sûre

Case Study: Receiving rivers

Sûre

Case Study: Measurement Campaign

Water transport

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Case Study: Measurement Campaign

Water transport

Case Study: Deficit Analysis (1)

Receiving Rivers

Immissions:

during summer low **DO**: < 5 mg/l high ammonium: **NH4-N**: > 3 mg/l high phosphate: **PO4-P**: ~ 0.5 mg/l Localised high **algae** concentration

Pressures:

Alzette carrying wastewater from populated and industrial South of Luxembourg, agriculture,...

How much pressure is this catchment/WWTP exerting?

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Case Study: Deficit Analysis (2)

WWTP

Emissions: (EU Urban Wastewater Directive, 1991)

Total nitrogen **TN**: > 15 mg/l

Total phosphorus: **TP**: > 2 mg/l (peaks)

No denitrification

Pressures:

Hydraulic overloading during wet weather flow conditions, bad nitrification and phosphate control due to on/off actuators, random sludge input from other WWTPs,...

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Case Study: Deficit Analysis (3)

Sewer network

Emissions:

Localised CSO events (simulated and witnessed by operator, no measurements)

Pressures:

No storage volume until now, infiltration, river water intrusion during high flows in winter, not much control potential so far,...

Case Study: Objectives

- ✓ Measurement campaign on the river and the WWTP (CD4WC).
- → Data collection and deficit analysis
- → Model building and calibration

- **1. Develop scenarios** to improve quality of the eutrophied river and test them using simulatons of the integrated system.
- 2. Find control strategies for the 'new' system

Jurgen Meirlaen, PhD Thesis (2002)

Modelling & Simulation: River

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Modelling & Simulation: Modelling Approach (1)

Modelling & Simulation: The Integrated Model

Bleesbruck Model

Catchment & Sewer Network (1)

- 7 20 catchments
- 4 basins / storage pipes
- 7 6 pumps
- → 16 km main collector

DATA USED:

Population and industry

Surface characterisation

Geometric data for sewer

evaporation & infiltration

Bleesbruck Model

Catchment & Sewer Network (2): Infiltration

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Bleesbruck Model

Catchment & Sewer Network (2): Yearly Calibration Results, 2005

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Bleesbruck Model

Catchment & Sewer Network (3): Yearly Calibration Results, 2005

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Bleesbruck Model

WWTP (1)

- 2 activated sludge units in series (removal of COD, nitrification): ASM2d model
- Chemical phosporous removal by precipitation
- Clarification with ideal settlers

DATA USED:

WWTP dimensions
Water quality measurements
Influent characteristics
Operation schemes

Existing model

LIFE98 ENV/L/000582

Bleesbruck Model

WWTP (2): Weekly Calibrations

1st Biology parameter changes

NEW				
μ_{H}	6.0	3.0	d⁴¹	
b _H	0.6	1.2	d ⁻¹	
μ_{AUT}	1.0	1.5	<i>d</i> ¹	
η_{NO3}	0.8	1.0	-	

- Life project (from Simba to WEST)
- CD4WC project (influent from sewer simulations & measurement campaign)

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Bleesbruck Model

WWTP (3): Weekly CD4WC Calibration

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Bleesbruck Model

WWTP (3): Weekly CD4WC Calibration

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Bleesbruck Model

WWTP (4): Yearly Calibration, 2005

Bleesbruck Model

WWTP (5): Yearly Calibration, 2005

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Bleesbruck Model

WWTP (5): Yearly Calibration, 2005

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Bleesbruck Model

Receiving rivers (1)

→ River: Tanks-in-series (transport) Simplified RWQM1

- No pH
 No pH
- → Reaeration
- $\ensuremath{^{ extstyle 7}}$ Autotrophic growth and decay
- $\, {\scriptstyle \! \! / \! \! \! \! \! /} \,$ Heterotrophic growth and decay
- Algae growth
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
 ■
- → Hydrolysis

→ Connectors:

DATA USED:

Flow & Dispersion

Base pollutant concentrations

Bleesbruck Model

Receiving rivers (2): Calibration

River parameter	Calibrated
Groundwater quantity (fraction of flow)	0.03
Groundwater temperature (℃)	12.5
Reaeration coefficient (days ⁻¹)	2
Growth of algae (days ⁻¹)	15
Radiation intensity saturation coefficient (W/m ⁻¹)	500
Saturation coefficient for algae (g/m³)	5
Retention constant (days ⁻¹)	0.015
Incoming biomass concentration (mg/l)	X_H = 6
	X_N1 = X_N2 = 0.3
Incoming algae concentration (mg/l)	dynamic

Scenario Analysis

Scenarios tested

尽 Source control:

Ammonia decoupling
 DWF flattening through basins at housing level
 Impervious surface reduction
 RedImp

尽 System rehabilitation

Sewer infiltration reduction
 Retention basins
 Buffer tank for incoming sludges
 Nitrification volume increase

RedInf
RetBas
Buffer
Nitrification volume increase

Operation strategies

Increase in WWTP loading
 Improved nitrogen control
 Improved phosphorus control
 ImprP

River measures

ShadingReaerationReae

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Scenario Analysis

Evaluation criteria

Immission and Emission

- Exceedance lengths
- Number of exceedances
- Means
- Maxima
- Minima
- Total loads

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Scenario Analysis

Immission: Dissolved Oxygen

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Scenario Analysis

Emissions: WWTP: NH3

Scenario Analysis

Emission Loads from WWTP

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Scenario

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Scenario Analysis

Immission: Exceedances

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Costs

Measure	Investments (€)	Operation (€)
FlatDWF	++++	
ImpRed	+++	
InfRed	?	
RetBas	+++	+
NitVol	++	
Buffer	+	
ImprN	+	
ImprP	0	0
OvLo	0	0
Reae	++	++

Conclusions (1)

- → Shading not an option here
- → Reaeration helps to improve DO concentrations, but is expensive
- Background pollution large compared to impact of catchment, therefore measures within the catchment seem to have little impact

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Conclusions (2)

- Measures are often expensive, ImprN and ImprP cheap to implement bringing about good changes
- InfRed reduces loads significantly
- → ImpRed shows beneficial impact (keep impervious surface to a minimum during planning processes)

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Perspectives

- **➢ Event-based** analysis
- ↑ Scenario with denitrification at WWTP could be interesting
- ☐ Immision evaluation of scenarios in case of low base flow pollution in river

Improvements

- → River model: more data will become available through another project: FluxAlzette
- → Sewer model: further calibration of catchment runoff using on/off pumping data
- → Sewer model: include parallel collector in a new updated model and test scenarios

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Outlook

- Usefulness of integrated modelling
- → Complexity of analysis of scenarios:
 - Immission and emission

 - 7 Combination of measures
- → Test scenarios: before and after the construction of new retention basins; propose operation strategies for the operators of sewer and WWTP.

UGent-Biomath, Coupure Links 653, 9000 Gent, BE

Thank you for your attention.

The presented results have been elaborated in the framework of the European Project CD4WC of the CityNet cluster (FP5).