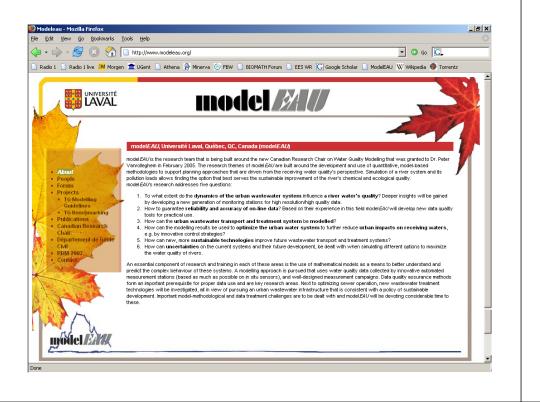
Potential and limitations of white & black-box modelling concepts for process optimization of SBR WW treatment

Peter A. Vanrolleghem, Kris Villez & Gurkan Sin


Ecole Polytechnique Montréal

22 Feb 2006

Overview

- Introduction
- BIOMATH's pilot SBR
- White box modelling
 - Modelling approach
 - Calibration/Validation in an optimization loop
- Black box modelling
 - Background on PCA/PLS multivariate analysis
 - Performance evaluation
- Conclusions

UNIVERSITÉ

Introduction

- Activated sludge systems:
 - Underpinning of the microbial community is not fully deciphered (yet...)
 - Involves many interacting processes ...
 - Observed behaviour is dynamic & complex
 - Mechanistic modelling has proven useful for better understanding & improving operation...
 - Data driven models are promising techniques for process monitoring (FDI)

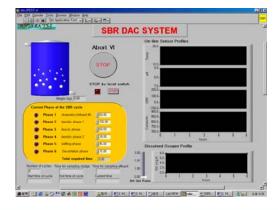
Overview

- Introduction
- BIOMATH's pilot SBR
- White box modelling
 - Modelling approach
 - Calibration/Validation in an optimization loop
- Black box modelling
 - Background on PCA/PLS multivariate analysis
 - Performance evaluation
- Conclusions

BIOMATH's pilot SBR

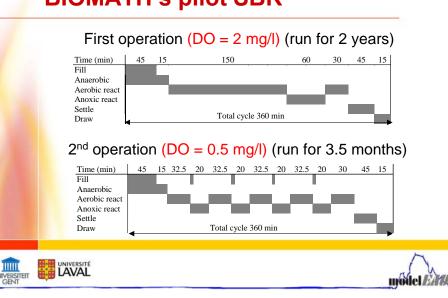
- Performs N & P removal
- Synthetic WW
- V_{max} 80 L
- 15 °C
- SRT 10 d
- HRT 12h

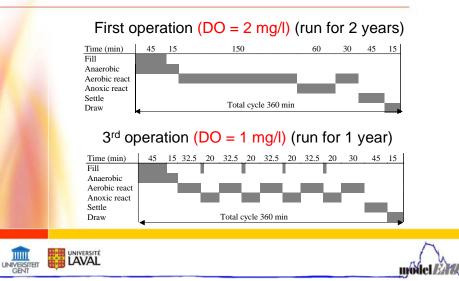
UNIVERSITÉ



model EAM

BIOMATH's pilot SBR


- Fully automated (LabView)
- 5 years of data
- Objectives
 - Stable sludge for Sedifloc project
 - Model-based Optimization of
 - N & P removal Fault detection
 - and diagnosis



model

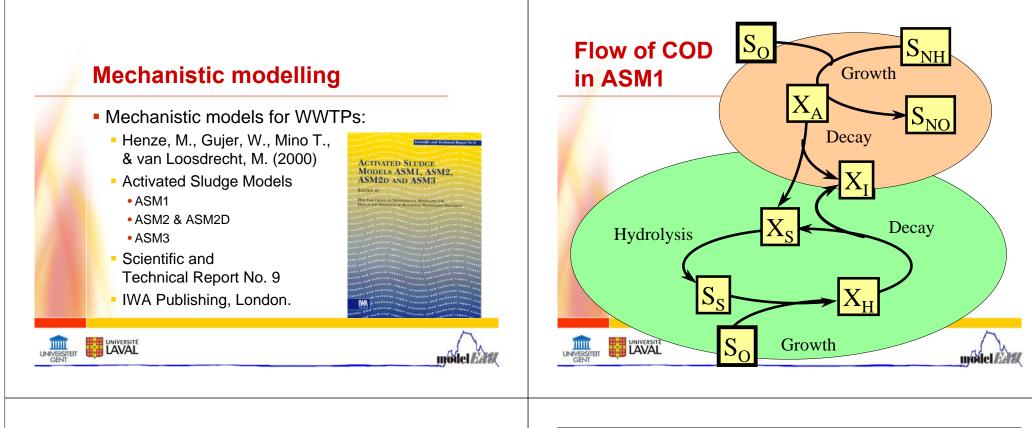
BIOMATH's pilot SBR

BIOMATH's pilot SBR

Overview

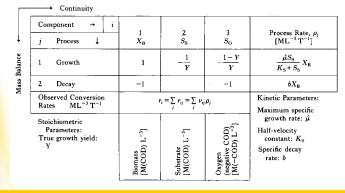
- Introduction
- BIOMATH's pilot SBR
- White box modelling
 - Modelling approach
 - Calibration/Validation in an optimization loop
- Black box modelling
 - Background on PCA/PLS multivariate analysis
 - Performance evaluation
- Conclusions

Mechanistic modelling


- Modelling of activated sludge systems
 - Model structure: internal description of the system
 - Usually constructed using
 - available prior knowledge
 - observed system behavior
 - Selection of an appropriate model structure is very important to successfully model the system

Mechanistic modelling

<complex-block>


<section-header><section-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

model EAM

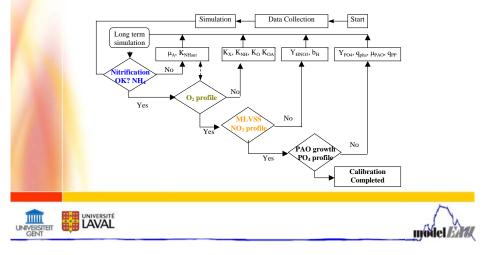
Mechanistic modelling

Mechanistic model structure for WWT:

Comp	ponent \rightarrow <i>i</i>	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(22)	(23)	(24)
j	Process ↓	Ss	SI	SNH	S _{NH3}	S _{NO2}	SNOS	SHPO	S _{H2PO}	S ₀₂	Scoz	SHCOS	S _{CO3}	S _H	SOH	S _{Ca}	X _H	X_{N1}	X _{N2}	X _{ALG}	X _{CON}	Xs	X	Xp	X _{II}
(1a)	Aerobic Growth of	-		?				?		-	+			?			1								
	Heterotrophs with NH4																								
(1b)	Aerobic Growth of	-					-	?		-	+			?			1								
	Heterotrophs with NO3																								
	Aerobic Resp. of Het.			+				+		-	+			•			-1						+		
(3a)	Anoxic Growth of	1				+	-	?			+			?			1								
	Heterotrophs with NO3																								
	Anoxic Growth of	1				-		?			+			?			1								
	Heterotrophs with NO2																								
	Anoxic Resp. of Het.			+			-	+			+			-			-1						+		
	Growth of 1st-stage			-		+		-		-	-			+				1							
	Nitrifiers																								
	Aerobic Respiration of 1st			+				+			+			-				-1					+		
	stage Nitrifiers									ľ		Ð		21		r									
	Growth of 2nd-stage							1(1	U I							1						
	Nitrifiers					-	-	- 1		-	-														
	Aerobic Respiration of			+				+		-	+			-					-1				+		
	2nd-stage Nitrifiers										4														
	Growth of Algae with NH4			-				-P	A	-		r		-						1					
	Growth of Algae with NO3						-							-						1					
	Aerobic Resp. of Algae			+				+			+		_	-						-1			+		
	Death of Algae			(+)				(+)		(+)	?			?						-1		+	+		
	Growth of Cons. on XALG			(+)				(+)		-	?			?						-	1	+			
	Growth of Cons. on XS			(+)				(+)		-	?			?							1	-			
	Growth of Cons. on XH			(+)				(+)		-	?			?			-				1				
	Growth of Cons. on XN1			(+)				(+)		-	?			?				-			1				
	Growth of Cons. on XN2			(+)				(+)		-	?			?					-		1				
	Aerobic Resp. of Cons.			+				+		-	+			-							-1		+		
()	Death of Consumers			(+)				(+)		(+)	?			?							-1	+	+		
	Hydrolysis	+		(+)				(+)		(+)	?			?								-1			
	Eq. CO2 <-> HCO3										-1	1		+											
	Eq. HCO3 <-> CO3											-1	1	+											
	Eq. H2O <-> H + OH													1	1										
	Eq. NH4 <-> NH3			-1	1									+											
	Eq. H2PO4 <-> HPO4							1	-1					+											
	Eq. Ca <-> CO3												+			1								L	
	Ads. of Phosphate							-1																1	
(23)	Des. of Phosphate							1																-1	

Overview

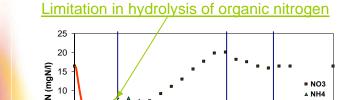
- Introduction
- BIOMATH's pilot SBR
- White box modelling
 - Modelling approach
 - Calibration/Validation in an optimization loop
- Black box modelling
 - Background on PCA/PLS multivariate analysis
 - Performance evaluation
- Conclusions

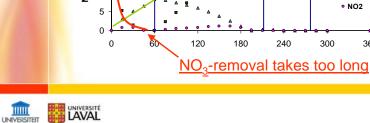


model

Model-based optimization

BIOMATH calibration protocol was applied




Model-based optimization (1)

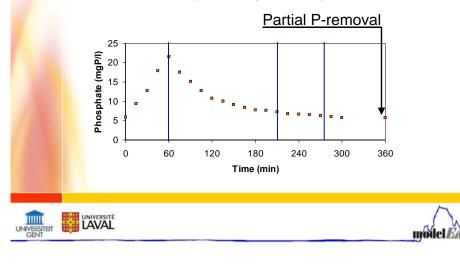
- First iteration (basic operation)
 - Complete COD-removal
 - Complete nitrification
 - Incomplete denitrification (70 % N-removal)
 - 50 % P-removal (limited due to presence of NO₃)

Model-based optimization (1)

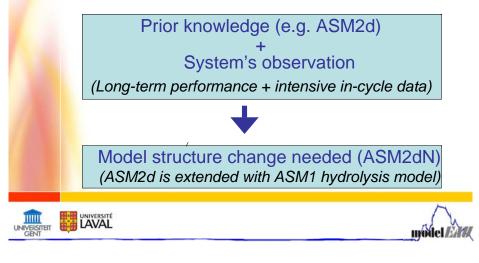
First iteration (basic operation)

10

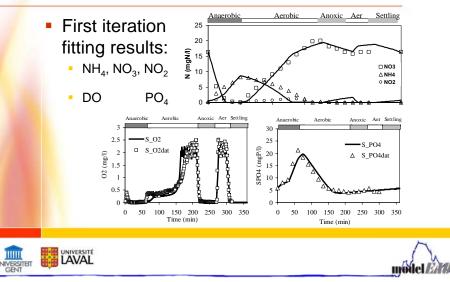
▲ NH4 • NO2


360

300

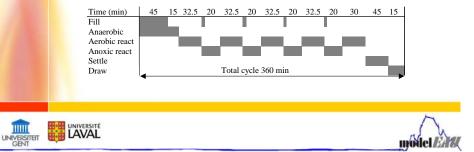

Model-based optimization (1)

First iteration (basic operation)

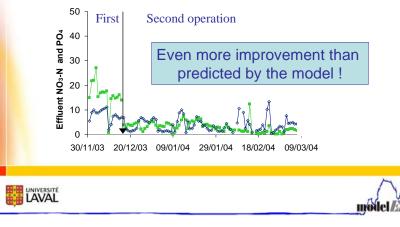


Model-based optimization (1)

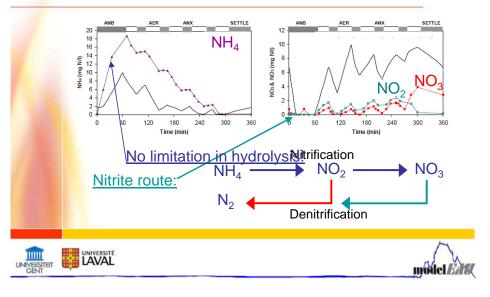
First iteration (basic operation)


Model-based optimization (1)

Model-based optimization (2)


- With the calibrated ASM2dN model, process operation was optimized:
 - Low DO; Step-feed; short aerobic & anoxic phases...

2^{nd} operation (DO = 0.5 mg/l) (run for 3.5 months)



Model-based optimization (2)

- N-removal improved by 86%
- P-removal improved by 65%

Model-based optimization (2)

Model-based optimization (2)

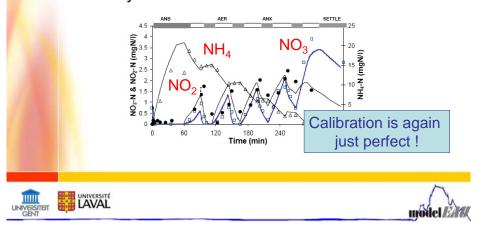
- During 2nd operation ASM2dN fails :
 - No longer a limitation of hydrolysis of organic N
 - 2-step nitrification occurs
 - Nitrite route takes place
 - Nitrate removal is better (observed !)
 - No more inhibition of P-removal (observed !)

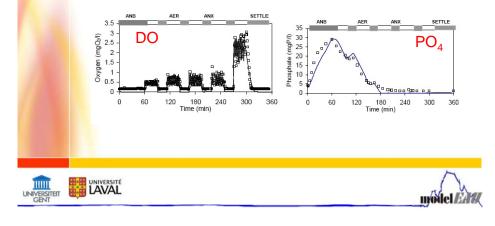
Model-based optimization (2)

■ Necessary model modifications → ASM2d2N

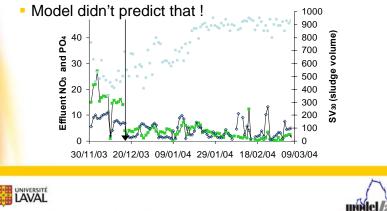
Modified processes of ASM2d (stoichiometry)

Processes	S _{NH}	S _{NO3}	S _{NO2}	S _{N2}	X _H	X _{NH}	X _{NO}
NH ₄ oxidation	-i _{NBM} - 1/Y _{NH}		$1/Y_{\rm NH}$			1	
NO2 oxidation	-i _{NBM}	1/Y _{NO}	-1/Y _{NO}				1
NO ₃ reduction	-i _{NBM}	-(1-Y _{HNO3}) /(1.14 Y _{HNO3})	$(1-Y_{HNO3})$ /(1.14 Y_{HNO3})		1		
NO ₂ reduction	-i _{NBM}		-(1-Y _{HNO2})/ (1.72 Y _{HNO2})	(1-Y _{HNO2})/ (1.72 Y _{HNO2})	1		
Lysis of X _{NH}							-1
Lysis of X _{NO}						-1	

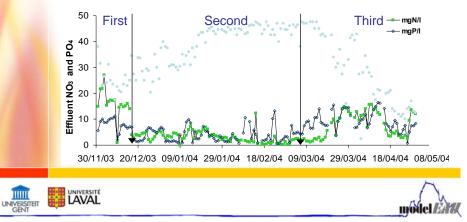

model


Model-based optimization (2)

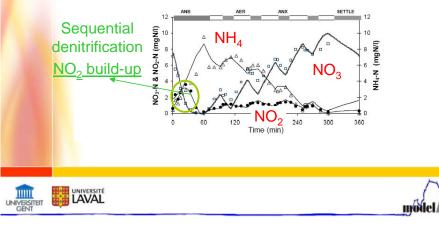
 ASM2d2N fitting results to in-cycle measurements:


Model-based optimization (2)

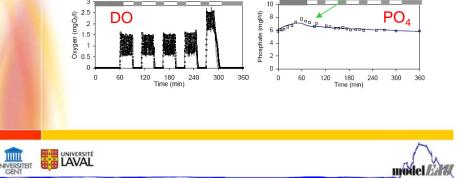
 ASM2d2N fitting results to in-cycle measurements:


Model-based optimization (2)

- Nutrient removal is very good, but ...
 - Severe sludge bulking occurs !


Model-based optimization (3)

- 3rd scenario: DO ↑ (from 0.5 to 1.0 mg/l) & Ca²⁺ ↑
- bulking solved, but N,P-removal worse again



Model-based optimization (3)

- ASM2d2N performs well
- but re-calibration was needed !

Model-based optimization (3)

Model-based optimization (3)

- Validation of the ASM2d2N showed:
 - The model structure remained valid, but ...
 - Parameters of the model had to be changed

Conclusions

- The 3 models predicted the system dynamics to some extent :
 - Parallel to system changes (operation):
 - Model structure had to be changed twice
 Hydrolysis
 - NO₂ route (nitrification & denitrification)
 - Parameters had to be changed every time
- Poor predictive power of mechanistic models,
- Not to mention prediction of bulking...

model

IIIIII

Loss of bio-P activity

SETTLE

Conclusions

- The underlying reasons remain unclear, but could be :
 - Unaccounted input disturbances
 - Imperfect model structure
 - ...
 - Or perhaps the system is too complex to mechanistically model!
- Biology was proven by DGGE analysis to change significantly after operation changes

Conclusions

- Models that validly describe system behaviour under a wide range of conditions are not available yet
- But models appear valid within certain (narrow?) boundaries, e.g. under certain operation conditions...
- and models help to understand the system and point to optimization approaches

Overview

- Introduction
- BIOMATH's pilot SBR
- White box modelling
 - Modelling approach
 - Calibration/Validation in an optimization loop
- Black box modelling
 - Background on PCA/PLS multivariate analysis
 - Performance evaluation
- Conclusions

Black box modelling: Intro

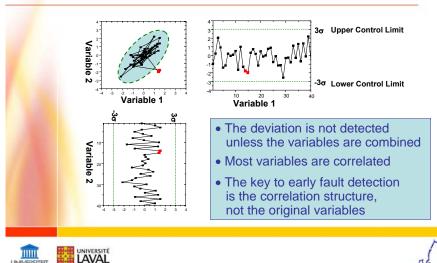
Black box modelling: Intro

- Many data-driven approaches !
- Here we only consider multivariate statistical analysis:
 - Principal Component Analysis (PCA)
 → process monitoring (fault detection/diagnosis)
 - Partial Least Squares (PLS)

UNIVERSITÉ

- \rightarrow prediction in view of control
- Applied to the BIOMATH pilot SBR

Process monitoring (PCA)

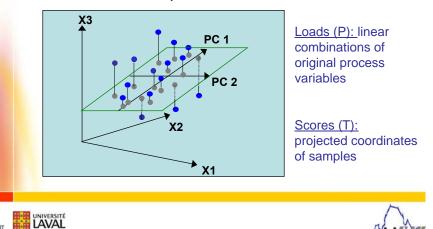

- Monitoring the state of the process: Statistical Process Control (SPC)
- Traditional SPC = Univariate SPC
 - One variable at a time, not efficient
 - Problem of correlation between variables

model

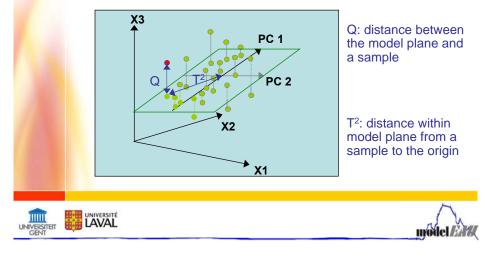
model

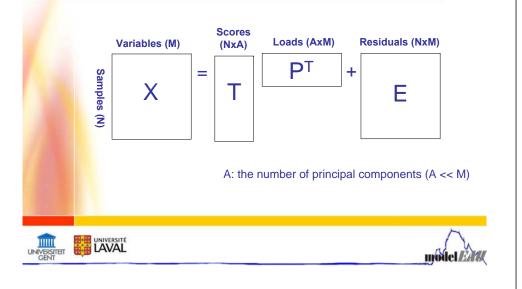
Process monitoring (PCA)

Process monitoring (PCA)


- Monitoring the state of the process: Statistical Process Control (SPC)
- Traditional SPC = Univariate SPC
 - One variable at a time, not efficient
 - Problem of correlation between variables
- Multivariate SPC
 - Account for interactions among variables
 - Detect upsets and find assignable causes

Process monitoring (PCA)

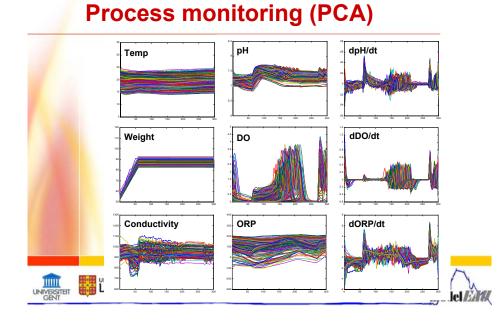

Geometrical interpretation


model

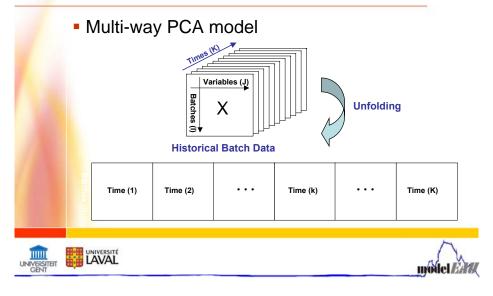
Process monitoring (PCA)

Lack of Model Fit Statistics

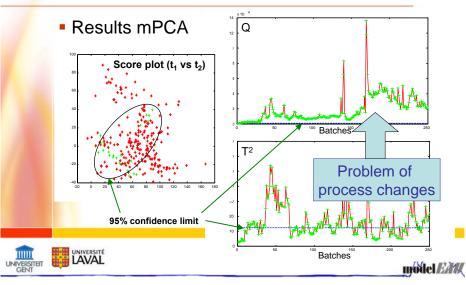
Process monitoring (PCA)



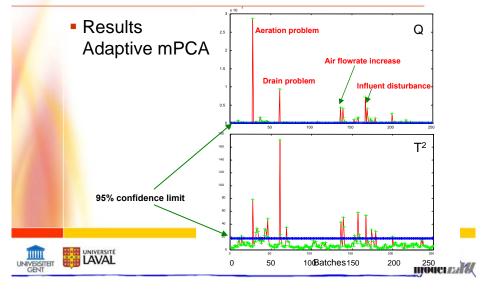
Process monitoring (PCA)


- Applying PCA models to the BIOMATH SBR
- Objective: Develop real-time monitoring
 - Detect the major sources of process disturbances
 - Useful to keep the sludge as stable as possible
- On the basis of simple on-line data, e.g.
 - pH, temperature, weight
 - conductivity

UNIVERSITE


- dissolved oxygen (DO)
- oxidation reduction potential (ORP)

Process monitoring (PCA)



Process monitoring (PCA)

Process monitoring (PCA)

Conclusions

- Adaptive Multi-way PCA provides more information than adaptive PCA
- Critical process disturbances are well captured in Q & T² plots
- Adaptive Multi-way PCA is a powerful tool for monitoring SBR processes

Overview

- Introduction
- BIOMATH's pilot SBR
- White box modelling
 - Modelling approach
 - Calibration/Validation in an optimization loop
- Black box modelling
 - Background on PCA/PLS multivariate analysis
 - Performance evaluation
- Conclusions

PLS modelling

- Why PLS ?
 - We want Y=f(X)
 - When dealing with collinear inputs (X), multivariate linear regression (MLR)

 $y = \mathbf{B} \cdot \mathbf{x} = b_1 \cdot x_1 + b_2 \cdot x_2 + \dots + b_n \cdot x_n$

will lead to the unbiased regression vector but the estimated regression vectors will have a high variance (very accurate, low precision)

PLS modelling

PLS is one way to overcome this problem
 It trades a bias with a decreased variance of the solution by reducing the dimension of the input space while minimizing the prediction error.
 x = t . p^t = t₁.p₁t + t₂.p₂t + ... + t_n p_nt y = u . q^t = u₁.q₁t + u₂.q₂t + ... + u_n q_nt
 where: u_i = b_i . t_i + h_i; b_i: inner relation coefficient h_i: inner model error
 t_i (u_i) present the transformed (lower dimensional) input (output) data

PLS modelling

- Advantages:
 - Dimension reduction of input space
 - More robust estimates of regression vector(s)
- Disadvantages

UNIVERSITÉ

IIIIII

Limited to linear regression conditions

Neural Net PLS modelling

 PLS is a linear method by definition and thus fails when the relationship between inputs (X) and outputs (Y) is non-linear in nature

Neural Net PLS modelling

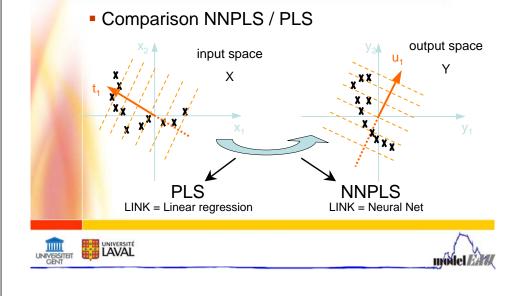
 NNPLS tackles this problem by replacing the (linear) inner relationship coefficient in PLS by a 3-layer network (1 hidden layer).

$\mathbf{x} = \mathbf{t} \cdot \mathbf{p}^{t} = t_{1} \cdot \mathbf{p}_{1}^{t} + t_{2} \cdot \mathbf{p}_{2}^{t} + \dots + t_{n}^{t} \mathbf{p}_{n}^{t}$ $\mathbf{y} = \mathbf{u} \cdot \mathbf{q}^{t} = u_{1} \cdot \mathbf{q}_{1}^{t} + t_{2} \cdot \mathbf{q}_{2}^{t} + \dots + u_{n}^{t} \mathbf{q}_{n}^{t}$

where: $u_i = NN_i(t_i) + h_i$;

Neural Net PLS modelling

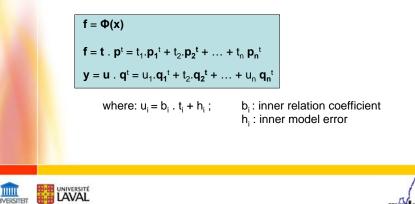
- Advantages:
 - Not restricted to linear regression problems
- Disadvantages


UNIVERSITÉ

- Additional parameters (number of nodes in hidden layer)
- => model is more complex

model

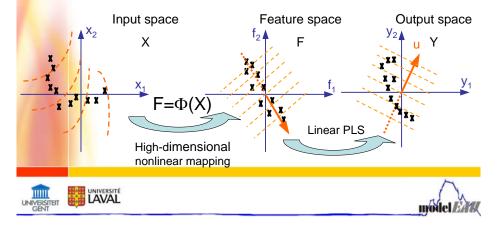
Neural Net PLS modelling



Kernel PLS modelling

- KPLS also tackles the problem of nonlinearity
- not by looking for a nonlinear relation Y=f(t)
- but by transforming the input space (X), prior to PLS modelling

Kernel PLS modelling


 The transformation is chosen such that the input data become "more linear" :

Kernel PLS modelling

 The transformation is chosen such that the input data become "more linear" :

Kernel PLS modelling

In this work the Gaussian kernel function was applied to transform the input data:

 $\mathbf{f}_{i,j} = \mathbf{\Phi}(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{k}(\mathbf{x}_i, \mathbf{x}_j) = \exp(-||\mathbf{x}_i - \mathbf{x}_j||^2 / d)$

where: d = width of the Gaussian kernel function (= extra tuning or meta-parameter)

Kernel PLS modelling

- Advantages:
 - nonlinear collinearity within the X-space is dealt with
 - No non-linear optimisation required
- Disadvantages
 - Larger computational demand (x10 x100)
 - Models are hard to interpret (as the transformed inputs are hard to interpret)

PLS modelling: Results

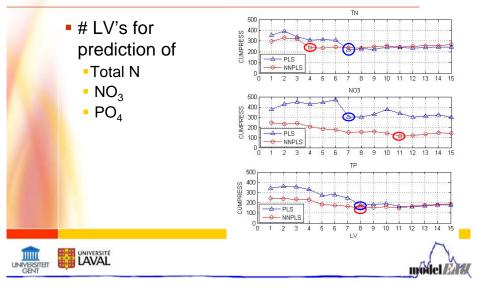
- <u>Objective</u>: predict SBR effluent quality
 - Total nitrogen
 - NO₃

UNIVERSITÉ

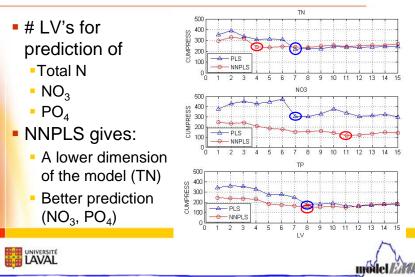
• PO₄

- using on-line data (1600 batches; ∆T=1 min)
 - pH, temperature, weight
 - conductivity
 - dissolved oxygen (DO)
 - oxidation reduction potential (ORP)

model

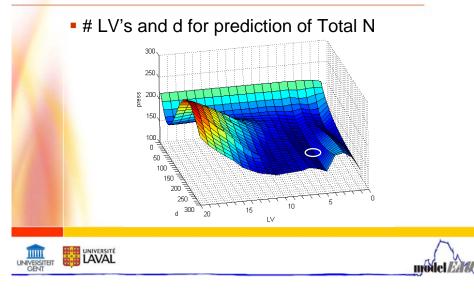


PLS modelling: Results

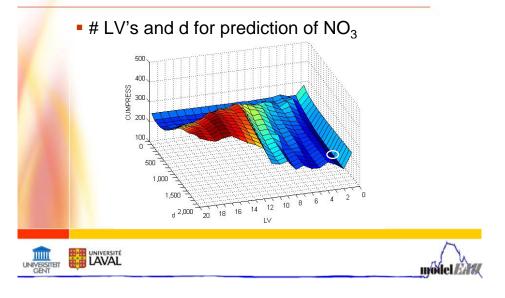

- For PLS and NNPLS:
 - Degree of freedom: # of latent variables
 - Selection based on cross-validation CUMPRESS = Sum of SSE values

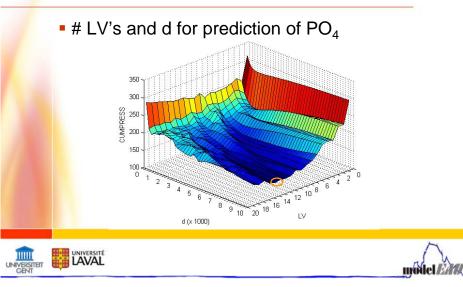
PLS modelling: Results

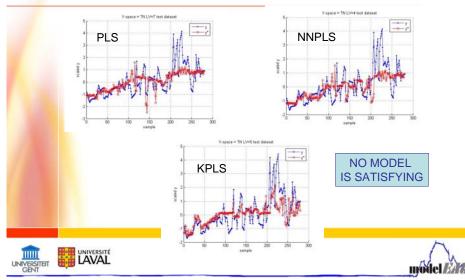
PLS modelling: Results

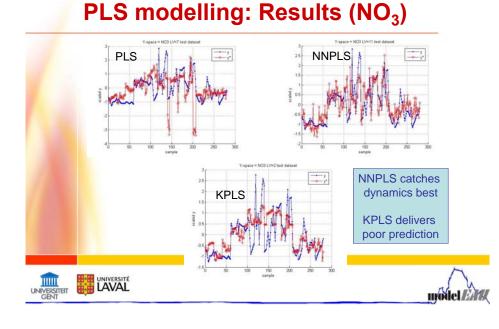

PLS modelling: Results

- For Kernel PLS :
 - Degree of freedom:
 - # of latent variables
 - width of kernel function d
 - Selection based on cross-validation CUMPRESS = Sum of SSE values

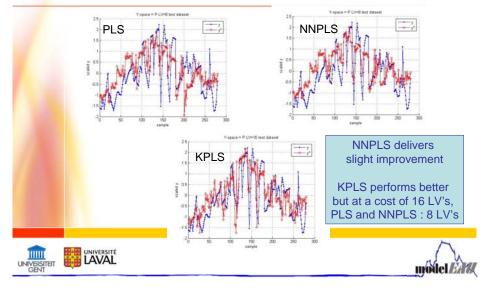



PLS modelling: Results


PLS modelling: Results



PLS modelling: Results



PLS modelling: Results (Total N)

PLS modelling: Results (PO₄)

PLS modelling: Summary

	output	PLS	NNPLS	KPLS	
	TN	-	-	-	
quality	NO3	-	++	-	
	Р	+	+	++	
	TN	220	235	147	
cumpress	NO3	303	116	198	
	Р	179	150	142	
	TN	7	4	5	
LV's	NO3	7	11	2	
	Р	8	8	16	

- TN: unacceptable (dynamics)
- NO₃: NNPLS is only satisfactory model
- PO₄: NNPLS is selected (KPLS model needs too many LV's: 16)

model

Conclusions

- Still, none of the models is really satisfying
- What did we miss?
 - The inputs data do not describe the process
 - The data are treated as independent observations
 - → In fact, they represent a time series Autocorrelation should be accounted for
 - The data stem from a large time window (14 months)
 - → Equipment, operation and biological changes may not permit a unique (overall) model

Peter Vanrolleghem Canada Research Chair in Water Quality Modelling model EAU, Département de Génie Civil Pavillon Pouliot, Université Laval Québec G1k 7P4, QC, Canada Tel: +1 418 656 5085 Fax: +1 418 656 2928 E-mail: peter vanrolleghem@modelEAU.org

> and of course also, please visit us at : www.modelEAU.org