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Activated sludge systems: 
Underpinning of the microbial community is 
not fully deciphered (yet…)
Involves many interacting processes …
Observed behaviour is dynamic & complex 
Mechanistic modelling has proven useful 
for better understanding & improving operation…
Data driven models are promising techniques
for process monitoring (FDI)

Introduction
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Performs N & P
removal
Synthetic WW
Vmax 80 L
15 oC
SRT 10 d
HRT 12h

BIOMATH’s pilot SBR
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Fully automated
(LabView)
5 years of data
Objectives

Stable sludge for 
Sedifloc project
Model-based 
Optimization of
N & P removal
Fault detection
and diagnosis

BIOMATH’s pilot SBR
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2nd operation (DO = 0.5 mg/l) (run for 3.5 months)
Time (min) 45 15 32.5 20 32.5 20 32.5 20 32.5 20 30 45 15 
Fill                  
Anaerobic             
Aerobic react             
Anoxic react             
Settle             
Draw             Total cycle 360 min 

Time (min) 45 15 150 60 30 45 15
Fill           
Anaerobic        
Aerobic react        
Anoxic react          
Settle             
Draw             Total cycle 360 min 

First operation (DO = 2 mg/l) (run for 2 years)

BIOMATH’s pilot SBR
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Time (min) 45 15 150 60 30 45 15 
Fill           
Anaerobic        
Aerobic react        
Anoxic react          
Settle             
Draw             Total cycle 360 min 

First operation (DO = 2 mg/l) (run for 2 years)

BIOMATH’s pilot SBR

Time (min) 45 15 32.5 20 32.5 20 32.5 20 32.5 20 30 45 15 
Fill                  
Anaerobic             
Aerobic react             
Anoxic react             
Settle             
Draw             Total cycle 360 min 

3rd operation (DO = 1 mg/l) (run for 1 year)
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Modelling of activated sludge systems
Model structure: internal description of the system
Usually constructed using 
• available prior knowledge
• observed system behavior

Selection of an appropriate model structure is
very important to successfully model the system

Mechanistic modelling

12

Mechanistic modelling
Modelling of activated sludge systems:

Unit processes, each with certain behaviour
and thus mechanistic model

Links between units 
• Water flow (with pollutants, biomass)
• Information flow (sensors – controllers)

Typical model:

~ 200 Differential equations 

~ 1000 Constants/Parameters

~ 1000 Algebraic equations
13

Mechanistic modelling
Mechanistic models for WWTPs:

Mass balance for compound:

with
• M: Mass of compound in system (g)
• C: Concentration of compound (g/m3)
• V: Volume of system (m3)
• Q: flow rate (m3/h)
• r: volumetric conversion rate (g/m3.h)

rVCQCQ
dt
VCd

dt
dM

outoutinin +−==
)(

transport conversion
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Mechanistic models for WWTPs:
Henze, M., Gujer, W., Mino T.,
& van Loosdrecht, M. (2000)
Activated Sludge Models 
• ASM1
• ASM2 & ASM2D
• ASM3

Scientific and
Technical Report No. 9
IWA Publishing, London.

Mechanistic modelling
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Flow of COD
in ASM1

SS

XS

XH

XI

SO

Hydrolysis

Growth

Decay

XA
Decay

Growth
SNH

SNO

SO

XI

16

Mechanistic model structure for WWT:

Mechanistic modelling
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Mechanistic model structure for WWT:

Mechanistic modelling

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24)

j Process ↓  SS  SI SNH4SNH3 SNO2 SNO3SHPO4SH2PO4 SO2 SCO2 SHCO3 SCO3  SH  SOH  SCa  XH  XN1  XN2  XALG XCON  XS  XI  XP  XII

(1a) Aerobic Growth of 
Heterotrophs with NH4

 - ?   ?  -  +   ? 1         

(1b) Aerobic Growth of 
Heterotrophs with NO3

 -  - ?  -  +   ? 1         

(2) Aerobic Resp. of Het.   +    +  -  +   - -1       +   
(3a) Anoxic Growth of 

Heterotrophs with NO3
 -  + - ?   +   ? 1         

(3b) Anoxic Growth of 
Heterotrophs with NO2

 -  - ?   +   ? 1         

(4) Anoxic Resp. of Het.   +   -  +   +   - -1       +   
(5) Growth of 1st-stage 

Nitrifiers
  -  +   -  -  -   +  1        

(6) Aerobic Respiration of 1st-
stage Nitrifiers

  +    +  -  +   -  -1      +   

(7) Growth of 2nd-stage 
Nitrifiers

   -  +  -  -  -   -   1       

(8) Aerobic Respiration of 
2nd-stage Nitrifiers

  +    +  -  +   -   -1     +   

(9a) Growth of Algae with NH4  -   -  +  -   -    1      
(9b) Growth of Algae with NO3     -  -  +  -   -    1      
(10) Aerobic Resp. of Algae   +    +  -  +   -    -1    +   
(11) Death of Algae   (+)    (+)  (+)  ?   ?    -1   +  +   
(12a) Growth of Cons. on XALG   (+)    (+) -  ?   ?    - 1 +    
(12b) Growth of Cons. on XS   (+)    (+) -  ?   ?    1 -    
(12c) Growth of Cons. on XH   (+)    (+) -  ?   ? -   1    
(12d) Growth of Cons. on XN1   (+)    (+) -  ?   ?  -  1    
(12e) Growth of Cons. on XN2   (+)    (+) -  ?   ?   - 1    
(13) Aerobic Resp. of Cons.   +    + -  +   -     -1   +   
(14) Death of Consumers   (+)    (+)  (+)  ?   ?     -1  +  +   
(15) Hydrolysis  +  (+)    (+)  (+)  ?   ?      -1    
(16) Eq. CO2 <-> HCO3       -1 1  +          
(17) Eq. HCO3 <-> CO3 -1 1 +
(18) Eq. H2O <-> H + OH 1 1
(19) Eq. NH4 <-> NH3 -1 1 +
(20) Eq. H2PO4 <-> HPO4 1 -1 +
(21) Eq. Ca <-> CO3 + 1
(22) Ads. of Phosphate     -1            1  
(23) Des. of Phosphate     1            -1  

Component       →                  i

The horror 
matrix
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BIOMATH calibration protocol was applied
Start Data Collection  Simulation  

µA, KNHaut KX, KNH, KO KOA YHNO3, bH YPO4, qpha, µPAO, qPP 

Calibration 
Completed   

Long term 
simulation 

Nitrification 
OK? NH4  

O2 profile 

MLVSS 
NO3 profile 

PAO growth 
PO4 profile 

Yes 

No 

No 

No 

No 

Yes 

Yes 

Model-based optimization

20

First iteration (basic operation)
Complete COD-removal
Complete nitrification
Incomplete denitrification (70 % N-removal)
50 % P-removal (limited due to presence of NO3)

Model-based optimization (1)
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Prior knowledge (e.g. ASM2d) 
+ 

System’s observation
(Long-term performance + intensive in-cycle data)

Model structure change needed (ASM2dN)
(ASM2d is extended with ASM1 hydrolysis model)

Model-based optimization (1)
First iteration (basic operation)
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First iteration
fitting results:

NH4, NO3, NO2

DO            PO4
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Model-based optimization (2)
With the calibrated ASM2dN model, 
process operation was optimized:

Low DO; Step-feed; short aerobic & anoxic phases…

2nd operation (DO = 0.5 mg/l) (run for 3.5 months)
Time (min) 45 15 32.5 20 32.5 20 32.5 20 32.5 20 30 45 15 
Fill                  
Anaerobic             
Aerobic react             
Anoxic react             
Settle             
Draw             Total cycle 360 min 
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N-removal improved by 86% 
P-removal improved by 65%

First Second operation
Third 

scenario

Model-based optimization (2)

Even more improvement than 
predicted by the model !
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NH4

NO3NO2

NH4 NO3NO2

Nitrification

N2
Denitrification

Nitrite route:
No limitation in hydrolysis!

Model-based optimization (2)

28

Third scenario

Model-based optimization (2)
During 2nd operation ASM2dN fails :

No longer a limitation of hydrolysis of organic N
2-step nitrification occurs
Nitrite route takes place
Nitrate removal is better (observed !)
No more inhibition of P-removal (observed !)
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-1Lysis of XNO

-1Lysis of XNH

1(1-YHNO2)/ 
(1.72 YHNO2)

-(1-YHNO2)/ 
(1.72 YHNO2)

-iNBMNO2 reduction

1(1-YHNO3)
/(1.14 YHNO3)

-(1-YHNO3)
/(1.14 YHNO3)

-iNBMNO3 reduction

1-1/YNO1/YNO-iNBMNO2 oxidation

11/YNH-iNBM 
- 1/YNH

NH4 oxidation

XNOXNHXHSN2SNO2SNO3SNHProcesses

Modified processes of ASM2d (stoichiometry)

Model-based optimization (2)
Necessary model modifications ASM2d2N
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NH4

NO2

NO3

Model-based optimization (2)
ASM2d2N fitting results
to in-cycle measurements:

Calibration is again 
just perfect !
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DO PO4

Model-based optimization (2)
ASM2d2N fitting results
to in-cycle measurements:
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Model-based optimization (2) 
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Nutrient removal is very good, but …
Severe sludge bulking occurs !
Model didn’t predict that !
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3rd scenario: DO ↑ (from 0.5 to 1.0 mg/l) & Ca2+ ↑
bulking solved, but N,P-removal worse again 
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Sequential 
denitrification
NO2 build-up

NH4

NO2

NO3

Model-based optimization (3) 
ASM2d2N performs well
but re-calibration was needed !

35

Loss of bio-P
activity

DO PO4

Model-based optimization (3) 
ASM2d2N performs well
but re-calibration was needed !
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Validation of the ASM2d2N showed:
The model structure remained valid, but …
Parameters of the model had to be changed

Model-based optimization (3) 
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The 3 models predicted the system dynamics
to some extent :

Parallel to system changes (operation): 
Model structure had to be changed twice
• Hydrolysis
• NO2 route (nitrification & denitrification)

Parameters had to be changed every time
Poor predictive power of mechanistic models,
Not to mention prediction of bulking…

Conclusions 
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The underlying reasons remain unclear, 
but could be :

Unaccounted input disturbances 
Imperfect model structure 
…
Or perhaps the system is too complex to 
mechanistically model!

Biology was proven by DGGE analysis
to change significantly after operation changes

Conclusions 
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Models that validly describe system behaviour 
under a wide range of conditions 
are not available yet
But models appear valid 
within certain (narrow?) boundaries, 
e.g. under certain operation conditions…
and models help to understand the system
and point to optimization approaches

Conclusions 

40

Overview
Introduction
BIOMATH’s pilot SBR
White box modelling

Modelling approach
Calibration/Validation in an optimization loop

Black box modelling
Background on PCA/PLS multivariate analysis
Performance evaluation

Conclusions

41

Black box modelling: Intro

Data drowning…
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Black box modelling: Intro
Many data-driven approaches !
Here we only consider 
multivariate statistical analysis:

Principal Component Analysis (PCA)
process monitoring (fault detection/diagnosis)

Partial Least Squares (PLS)
prediction in view of control

Applied to the BIOMATH pilot SBR
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Process monitoring (PCA)
Monitoring the state of the process:
Statistical Process Control (SPC)
Traditional SPC = Univariate SPC

One variable at a time, not efficient
Problem of correlation between variables

44
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• The deviation is not detected 
unless the variables are combined

• Most variables are correlated
• The key to early fault detection 

is the correlation structure,
not the original variables

Process monitoring (PCA)
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Monitoring the state of the process:
Statistical Process Control (SPC)
Traditional SPC = Univariate SPC

One variable at a time, not efficient
Problem of correlation between variables

Multivariate SPC
Account for interactions among variables
Detect upsets and find assignable causes

Process monitoring (PCA)
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PC 2

PC 1

X1

X2

X3
Loads (P): linear 
combinations of 
original process 
variables

Process monitoring (PCA)
Geometrical interpretation

Scores (T):
projected coordinates 
of samples
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PC 2

PC 1

X1

X2

X3

Q

Q: distance between 
the model plane and 
a sample

Lack of Model Fit Statistics

T2

T2: distance within 
model plane from a 
sample to the origin

Process monitoring (PCA)
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Sam
ples (N

)

Variables (M)

X

Scores 
(NxA) Loads (AxM) Residuals (NxM) 

= +
ET

PT

A: the number of principal components (A << M)

Process monitoring (PCA)
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Applying PCA models to the BIOMATH SBR
Objective: Develop real-time monitoring

Detect the major sources of process disturbances
Useful to keep the sludge as stable as possible

On the basis of simple on-line data, e.g.
pH, temperature, weight
conductivity
dissolved oxygen (DO)
oxidation reduction potential (ORP)

Process monitoring (PCA)
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On-line 
Sensor 
Profiles 
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Process monitoring (PCA)
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B
atches (I)

Variables (J)

X

Times (K)

Historical Batch Data
Variables (J)

B
atches (I)

Time (1) Time (2) Time (K)

KJkJJ 2J

Time (k) • • •• • •

Unfolding

Multi-way PCA model

Process monitoring (PCA)
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Results mPCA
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Process monitoring (PCA)

Problem of 
process changes
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Batch

Moving 
window

at batch k
kk-w

Process monitoring (PCA)
To overcome the problem
of changing process conditions:
Adaptive multi-way PCA
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Conclusions
Adaptive Multi-way PCA 
provides more information than adaptive PCA
Critical process disturbances
are well captured in Q & T2 plots
Adaptive Multi-way PCA is a
powerful tool for monitoring SBR processes
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PLS modelling
Why PLS ?

We want Y=f(X)
When dealing with collinear inputs (X),
multivariate linear regression (MLR) 

will lead to the unbiased regression vector
but the estimated regression vectors will have 
a high variance (very accurate, low precision)

y = B . x = b1. x1 + b2 . x2 + … + bn.xn
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PLS modelling
PLS is one way to overcome this problem

It trades a bias 
with a decreased variance of the solution
by reducing the dimension of the input space
while minimizing the prediction error. 

x = t . pt = t1.p1
t + t2.p2

t + … + tn pn
t

y = u . qt = u1.q1
t + u2.q2

t + … + un qn
t

where: ui = bi . ti + hi ; bi : inner relation coefficient 
hi : inner model error

ti (ui) present the transformed (lower dimensional) input (output) data
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PLS modelling
Advantages:

Dimension reduction of input space
More robust estimates of regression vector(s)

Disadvantages
Limited to linear regression conditions
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Neural Net PLS modelling
PLS is a linear method by definition and thus
fails when the relationship between inputs (X)
and outputs (Y) is non-linear in nature
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Neural Net PLS modelling
NNPLS tackles this problem by replacing the
(linear) inner relationship coefficient in PLS
by a 3-layer network (1 hidden layer). 

x = t . pt = t1.p1
t + t2.p2

t + … + tn pn
t

y = u . qt = u1.q1
t + t2.q2

t + … + un qn
t

where: ui = NNi(ti) + hi ; NNi : inner neural net
hi : inner model error
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Neural Net PLS modelling
Advantages:

Not restricted to linear regression problems

Disadvantages
Additional parameters (number of nodes in hidden layer) 

=> model is more complex
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Neural Net PLS modelling
Comparison NNPLS / PLS

input space

X

output space

Y
t1

u1

PLS
LINK = Linear regression

NNPLS
LINK = Neural Net

x1

x2

y1

y2
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Kernel PLS modelling
KPLS also tackles the problem of nonlinearity
not by looking for a nonlinear relation Y=f(t)
but by transforming the input space (X), 
prior to PLS modelling
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Kernel PLS modelling
The transformation is chosen such that
the input data become “more linear” :

f = t . pt = t1.p1
t + t2.p2

t + … + tn pn
t

y = u . qt = u1.q1
t + t2.q2

t + … + un qn
t

f = Φ(x)

where: ui = bi . ti + hi ; bi : inner relation coefficient
hi : inner model error
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Kernel PLS modelling
The transformation is chosen such that
the input data become “more linear” :

Input space

X
x2

x1

Feature space

F

f1

f2

F=Φ(X)

High-dimensional
nonlinear mapping

u
1

y1

y2

Output space

Y

Linear PLS
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Kernel PLS modelling
In this work the Gaussian kernel function
was applied to transform the input data:

fi,j = Φ(xi,xj) = k(xi,xj) = exp(-||xi-xj||2 / d)

where: d = width of the Gaussian kernel function 
( = extra tuning or meta-parameter)
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Kernel PLS modelling
Advantages:

nonlinear collinearity within the X-space is dealt with
No non-linear optimisation required

Disadvantages
Larger computational demand (x10 – x100) 
Models are hard to interpret 
(as the transformed inputs are hard to interpret)
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PLS modelling: Results
Objective: predict SBR effluent quality

Total nitrogen
NO3

PO4

using on-line data (1600 batches; DT=1 min)
pH, temperature, weight
conductivity
dissolved oxygen (DO)
oxidation reduction potential (ORP)
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PLS modelling: Results
For PLS and NNPLS: 

Degree of freedom: # of latent variables
Selection based on cross-validation
CUMPRESS = Sum of SSE values
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PLS modelling: Results
# LV’s for 
prediction of

Total N
NO3
PO4
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PLS modelling: Results
# LV’s for 
prediction of

Total N
NO3
PO4

NNPLS gives:
A lower dimension 
of the model (TN) 
Better prediction
(NO3, PO4)
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For Kernel PLS :
Degree of freedom: 
• # of latent variables
• width of kernel function d

Selection based on cross-validation
CUMPRESS = Sum of SSE values

PLS modelling: Results
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PLS modelling: Results
# LV’s and d for prediction of Total N

75

PLS modelling: Results
# LV’s and d for prediction of NO3
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PLS modelling: Results
# LV’s and d for prediction of PO4
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PLS modelling: Results (Total N)

NO MODEL 
IS SATISFYING

PLS NNPLS

KPLS
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PLS modelling: Results (NO3)

NNPLS catches 
dynamics best

KPLS delivers 
poor prediction

PLS NNPLS

KPLS
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PLS modelling: Results (PO4)

PLS NNPLS

KPLS
NNPLS delivers 

slight improvement

KPLS performs better 
but at a cost of 16 LV’s, 
PLS and NNPLS : 8 LV’s
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PLS modelling: Summary
TN: unacceptable

(dynamics)
NO3: NNPLS is 
only satisfactory
model 
PO4: NNPLS 
is selected 
(KPLS model
needs too 
many LV’s: 16)

1688P

2117NO3

547TN

LV’s

142150179P

198116303NO3

147235220TN

cumpress

++++P

-++-NO3

---TN

quality

KPLSNNPLSPLSoutput

1688P

2117NO3

547TN

LV’s

142150179P

198116303NO3

147235220TN

cumpress

++++P

-++-NO3

---TN

quality

KPLSNNPLSPLSoutput
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Conclusions
Still, none of the models is really satisfying
What did we miss?

The inputs data do not describe the process
The data are treated as independent observations

In fact, they represent a time series
Autocorrelation should be accounted for

The data stem from a large time window (14 months)
Equipment, operation and biological changes
may not permit a unique (overall) model
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