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mocel £4Lis the research team that is being buitt around the new Canacian Research Chair on Water Quality Modelling that was granted to Dr. Peter
Vanrolleghem in February 2005. The research themes of model EAU are built around the cevelopment and use of quantitative, model-based
methodologies to support planning approaches that are driven from the receiving water qualty's perspective, Simulation of a river system and its
pollutian loads allows finding the option thet kiest serves the sustainable improvement of the river's chemicel and ecologicel aualty.

mocel FALs research addresses five gquestions:

1. To what extert dothe dynamics of the urban wastewater system influence a river water's quality? Deeper Insights will be gained
oy developing @ new generation of manitaring stations for high resolulionhigh culity data.

2. How to gueraree reliability and accuracy of on-line data’? Bases on their sxperience inthis field model £4t/ willdevelop nev data qualty
tools for practical use:

3. How canthe urban transport and system be

4. How canthe modeling results be used to optimize the urban water system to further recuce urban impacts on receiving waters,

5

&

0. by innowative cortrol strategies?
Horwr can new, more i improve future transport and treatment systems?
Howr can uncertainties on the currert systems and their futurs developmert, be dealt with when simulating diferert options to maximize

the wiater qualty of rivers

A essertial companert of resesrch and training in each of these areas is the use of mathematical models &s & means to better understand and
predict the complex behaviour of these systems. & modsling approach is pursued that uses water qualty data collectest by innovative automated
measLrEmEnt stations (ased &S MUCh &S possible on N sty Sensors), and wel-designed measursment campsigns. Data qualty assurance methods
form an impartart prerecuisite for proper data use and are key research areas. Next to optimizing sewer operation, news westewater trestment
technologies wil be investigated, all in view of pursuing an urkan wastewater infrastructure thet is consistent with a policy of sustainable
development. Importart model-methodological and data trestment challenges areto be deatt with and madel EALIwill be deveting consicerable time to
these
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Introduction

= Activated sludge systems:

Underpinning of the microbial community is
not fully deciphered (yet...)

Involves many interacting processes ...
Observed behaviour is dynamic & complex

Mechanistic modelling has proven useful
for better understanding & improving operation...

Data driven models are promising techniques
for process monitoring (FDI)
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BIOMATH’s pilot SBR

= Performs N & P
removal

= Synthetic WW
" V5 80 L

= 15°C

= SRT10d

= HRT 12h

BIOMATH’s pilot SBR

= Fully automated
(LabView)

= 5 years of data

= Objectives
Stable sludge for
Sedifloc project
Model-based
Optimization of
N & P removal
Fault detection
and diagnosis
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BIOMATH’s pilot SBR BIOMATH’s pilot SBR

First operation (DO = 2 mg/l) (run for 2 years) First operation (DO = 2 mg/l) (run for 2 years)
Time (min) 45 15 150 60 30 45 15| Time (min) 45 15 150 60 30 45 15|
erlllaergbic erlllaergbic
Anoxi esct e Anoxi esct e
gigt\ls le Total cycle 360 min — SDer;t\I; le Total cycle 360 min —

2nd gperation (DO = 0.5 mg/l) (run for 3.5 months) 3 operation (DO = 1 mg/l) (run for 1 year)
ije (min) 45 15 325 20 325 20 325 20 325 20 30 45 15 \ T_ime (min) 45 15 325 20 325 20 325 20 325 20 30 45 15 \
Z:Iaerpbic ! ! ilrzlaer(_)bic J I
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= White box modelling
Modelling approach
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= Black box modelling
Background on PCA/PLS multivariate analysis
Performance evaluation
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Mechanistic modelling
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= Modelling of activated sludge systems
Model structure: internal description of the system

Usually constructed using
« available prior knowledge
» observed system behavior

Selection of an appropriate model structure is
very important to successfully model the system

Mechanistic modelling

= Modelling of activated sludge systems:
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Mechanistic modelling
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= Mechanistic models for WWTPs:
Mass balance for compound: —>

O

o d(vc)
= Q. C. - C
dt dt an in Qout ou

transport conversion

with
* M: Mass of compound in system (g)
« C: Concentration of compound (g/m3)
*V: Volume of system (m3)
* Q: flow rate (m3/h)
* r: volumetric conversion rate (g/m3.h)




Flow of COD |Sg Sn
Mechanistic modelling in ASM1 Growth

= Mechanistic models for WWTPSs: XA \)

Henze, M., Gujer, W., Mino T., e Decay
& van Loosdrecht, M. (2000) ACTIVATED SLUDGE

] MobpELs ASMI1, ASM2,
Activated Sludge Models $IMED Ap ATMY X|
* ASM1 Al e e
* ASM2 & ASM2D
- ASM3 e Hydrolysis Xs Decay

Scientific and :
Technical Report No. 9 et o

IWA Publishing, London.
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= White box modelling
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= Black box modelling
Background on PCA/PLS multivariate analysis
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Model-based optimization

= BIOMATH calibration protocol was applied

{ Simulation H Data Collection
Long term
simulationJ f
l ar Kkaut l le‘ Kin, Ko KOAI l Yiinos, by l l Yros, Uphas Hoaos Gep l

No
Yes
A0 growths,  °
PO, profile

Calibration
Completed
| mr—
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Model-based optimization (1)

= First iteration (basic operation)
Complete COD-removal
Complete nitrification
Incomplete denitrification (70 % N-removal)
50 % P-removal (limited due to presence of NO,)

W%m B LAVAL

Model-based optimization (1)

= First iteration (basic operation)

N
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N
o
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o
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= NO3
 NH4
ARy o NO2
L] A

N (mgN/l)
=
o

T * *
0 120 180 240 300 360

NOE-removaI takes too long
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Model-based optimization (1)
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= First iteration (basic operation)

Partial P-removal

25

20 A

15 4

101 »

Phosphate (mgP/l)

0 60 120 180 240 300 360

Time (min)

Model-based optimization (1)

= First iteration (basic operation)

Prior knowledge (e.g. ASM2d)
+
System’s observation

(Long-term performance + intensive in-cycle data)

v

Model structure change needed (ASM2dN)
(ASM2d is extended with ASM1 hydrolysis model)
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Model-based optimization (1)

ﬁﬂﬁﬁiﬂﬁi Agrggig Anoxic _Aer _ Settling

= Firstiteration =
gt 20 + o
fitting results: <. T
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DO PO, . . 848 o asmi
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3
5{——5_02 g
g 2 i g 2 A S_PO4dat
E 15 I €15
N g
S 1 E & 1 g 10
05 4 - iy E oy 2 5
0 S =W - 0
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0 50 100 150 200 250 300 350
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Model-based optimization (2)

= With the calibrated ASM2dN model,
process operation was optimized:
Low DO; Step-feed; short aerobic & anoxic phases...

2nd gperation (DO = 0.5 mg/l) (run for 3.5 months)

Time (min) 45 15 |
Fill
Anaerobic

45 15 325 20 325 20 325 20 325 20 30
Aerobic react
Anoxic react

| |
.

Draw Total cycle 360 min g
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Model-based optimization (2)
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= N-removal improved by 86%
= P-removal improved by 65%

%1 First Second operation
é 40
2. Even more improvement than
z predicted by the model !
O 20 /|
=z |
c
3 104 ]
0 A © .

30/11/03 20/12/03 09/01/04 29/01/04 18/02/04 09/03/04

Model-based optimization (2)

ANE AER ANX

SETTLE ANB AER ANX SETTLE

20 | . 12 |
:E NH4 Bl N
o 14 2 3
212 £
& g / NOJ
f i N0 M4
2 | A R LA AL
0 K 120 180 240 300 360 ] 120 180 240 300 360
Time (min) Time (min)
No limitation 41T hydrolysiitrification
. NFH, —— NO, — NO,
Nitrite route: | |
N, < <4

Denitrification
| s— |
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Model-based optimization (2)

= During 2" operation ASM2dN fails :
No longer a limitation of hydrolysis of organic N
2-step nitrification occurs
Nitrite route takes place
Nitrate removal is better (observed !)
No more inhibition of P-removal (observed !)

Model-based optimization (2)

= Necessary model modifications > ASM2d2N

Modified processes of ASM2d (stoichiometry)

Processes Swn Snos Sno2 Sho X | X | Ko
NH, oxidation -inm Yy 1
1Yy,
NO, oxidation -ihIIﬁIM 1Yo -1/YNP 1
NO, reduction |  -iygy “(I-Yinos) | (1-Yinod) 1
sy liaaa v, o)
NO, reduction | -iygy (Yo | (-Yinod | 1
W72 Yo | 172 Vi)
Lysis of X\, -1
Lysis of X, 1

| — |
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Model-based optimization (2)

= ASM2d2N fitting results
to in-cycle measurements:

ANB AER ANX SETTLE
45 13
= 4
z=13,5 20—
E, 5
%25 g
z 0%
o5 i
z 2
g ' T8
Z 05 i . . . .
0 Calibration is again

0 60 120 130 240
Time (min)

just perfect !
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Model-based optimization (2)

= ASM2d2N fitting results
to in-cycle measurements:

ANB AER ANX SETTLE
35N W WN_ W - ANX SETTLE
| B . T —

PO,

Phosphate (mgP/1}

O Onopofuo oo

0 60 120 180 240 300 360 0 60 120 _ 180 240 300 360
Time (min) Time (min)
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Model-based optimization (2)

= Nutrient removal is very good, but ...
Severe sludge bulking occurs !

Model didn’t predict that ! r 1000
r 900
3 40 - r 800
o —+ 700
2 30 1 + 600
©
S + 500
Z 20 + + 400
8%
w —+ 100
0 +0

30/11/03 20/12/03 09/01/04 29/01/04 18/02/04 09/03/04

SV30 (sludge volume)

Model-based optimization (3)

= 3d scenario; DO T (from 0.5 to 1.0 mg/l) & Ca2+ T
= bulking solved, but N,P-removal worse again

507 First Second Third —=—monn
——mgPIl
5 40
o
2 30
©
S 2
k]
E AWt
E
0 W’J ‘ ‘

30/11/03 20/12/03 09/01/04 29/01/04 18/02/04 09/03/04 29/03/04 18/04/04 08/05/04
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Model-based optimization (3)

= ASM2d2N performs well
= but re-calibration was needed !

ANB AER ANX SETTLE

. 12 | I s s s R
Sequential 5. . NH 10
denitrification £+ N T N E

: 2 b H
NO, build-up £ ° NO; |’ =
< 4 S
S .

=z

’ 1] 60 120 NOZ 240 300 3!5-1'}D
Time (min)
| —
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Model-based optimization (3)

= ASM2d2N performs well

= but re-calibration was needed ! Loss of bio-P

activity

AER ANX SETTLE
| N —

PO,

3 e
25

o Mm oB @ ow O

1.5

Oxygen (mgOu/l)

Phosphate (mgP/)

0 60 120 180 240 300 360 0 60 120 180 240 300 360
Time (min) Time (min)
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Model-based optimization (3)

= Validation of the ASM2d2N showed:
The model structure remained valid, but ...
Parameters of the model had to be changed

W%m B LAVAL

Conclusions

* The 3 models predicted the system dynamics
to some extent :
Parallel to system changes (operation):

Model structure had to be changed twice
« Hydrolysis

* NO, route (nitrification & denitrification)
Parameters had to be changed every time

= Poor predictive power of mechanistic models,
= Not to mention prediction of bulking...
lIﬁJII,'_l}M
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Conclusions

= The underlying reasons remain unclear,
but could be :
Unaccounted input disturbances
Imperfect model structure

Or perhaps the system is too complex to
mechanistically model!

= Biology was proven by DGGE analysis
to change significantly after operation changes

T B AVAE

Conclusions

= Models that validly describe system behaviour
under a wide range of conditions
are not available yet

= But models appear valid
within certain (narrow?) boundaries,
e.g. under certain operation conditions...

= and models help to understand the system
and point to optimization approaches

o B AVAE

Overview

= Black box modelling
Background on PCA/PLS multivariate analysis
Performance evaluation

= Conclusions
|
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Black box modelling: Intro

Data drowning...
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Black box modelling: Intro

= Many data-driven approaches !
= Here we only consider
multivariate statistical analysis:

Principal Component Analysis (PCA)

-> process monitoring (fault detection/diagnosis)
Partial Least Squares (PLS)

-> prediction in view of control

= Applied to the BIOMATH pilot SBR

- universiTE
g LAVAL Y
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Process monitoring (PCA)

= Monitoring the state of the process:
Statistical Process Control (SPC)
= Traditional SPC = Univariate SPC
One variable at a time, not efficient
Problem of correlation between variables

- universiTE
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Process monitoring (PCA)

3 P s 3 36 Upper Control Limit
< L - ) 2] ]\. R
o 1] ! 1] h "
=, .1 ’ 4 qr I I A/\/ H
e
o 2] [} ’ -2] \
] V _od -
N s ~- - -3 Lower Control Limit
TE I s 1 s 4 o A P o
Variable 1 Variable 1

o e The deviation is not detected
— ] unless the variables are combined
? e Most variables are correlated
{ e The key to early fault detection

is the correlation structure,
not the original variables

Z alqeuep

a«
77777777777
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Process monitoring (PCA)

= Monitoring the state of the process:
Statistical Process Control (SPC)

= Traditional SPC = Univariate SPC
One variable at a time, not efficient
Problem of correlation between variables

= Multivariate SPC
Account for interactions among variables
Detect upsets and find assignable causes

m UNIVERSITE
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Process monitoring (PCA)

= Geometrical interpretation

X3
a

Loads (P): linear

combinations of
original process
variables

Scores (T):

projected coordinates
of samples
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Process monitoring (PCA)

= Lack of Model Fit Statistics

Q: distance between
the model plane and
a sample

T2: distance within
model plane from a
sample to the origin
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UNIVERSITET

m ﬁ/\
e VA wydlel £

Process monitoring (PCA)

Scores .
Variables (M) (NxA) Loads (AxM) Residuals (NxM)

= PT +
X T E

(N) sejdwesg

A: the number of principal components (A << M)

|— |
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Process monitoring (PCA)

= Applying PCA models to the BIOMATH SBR

= Objective: Develop real-time monitoring
Detect the major sources of process disturbances
Useful to keep the sludge as stable as possible

= On the basis of simple on-line data, e.g.
pH, temperature, weight
conductivity
dissolved oxygen (DO)
oxidation reduction potential (ORP)

|
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Process monitoring (PCA)

.| dpH/dt

| dDOVdt ‘

\\\\\ Conductivity « ORP + dORP/dt

Process monitoring (PCA)

= Multi-way PCA model

Variables (J)
2
g Unfolding
¥
&
Historical Batch Data
Time (1) Time (2) oo Time (k) Time (K)
|— |
M R
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Process monitoring (PCA)

= Results mPCA . Q

+, Score plot (t; vs t,)

* Batches:

Problem of
process changes

1| ! J

95% confidence limit \20

..........
UNIVERSITE nn 50 100 150 200 250
IMII Batches
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Process monitoring (PCA)

= To overcome the problem
of changing process conditions:
= Adaptive multi-way PCA

Moving
window
at batch k

k-w k

| — |
i,imfﬁm B LAVAL

» Batch




Process monitoring (PCA)

= Results .
Adaptive mPCA

Aeration problem Q

Air flowrate increase

Drain problem Influent disturbance

o bui ksu IAT

100 150 200

T2

95% confidence limit

.
o
o
.
[Clm—

Conclusions

= Adaptive Multi-way PCA

provides more information than adaptive PCA
= Critical process disturbances

are well captured in Q & T2 plots
= Adaptive Multi-way PCA is a

powerful tool for monitoring SBR processes
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Overview PLS modelling

= Black box modelling
Background on PCA/PLS multivariate analysis
Performance evaluation

= Conclusions
|
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= Why PLS ?
We want Y=f(X)

When dealing with collinear inputs (X),
multivariate linear regression (MLR)

y=B.x=b;.x, +b,.x,+ ... +b, X

n**n

will lead to the unbiased regression vector
but the estimated regression vectors will have
a high variance (very accurate, low precision)

W%m B LAVAL




PLS modelling

= PLS is one way to overcome this problem

It trades a bias

with a decreased variance of the solution

by reducing the dimension of the input space
while minimizing the prediction error.

x=t.pl=t.pt+t.pt+. ...+t p,t

y=u.q =u. g+t ugt+ . +u,qpt

where: u;=b; . t; + h; ; b;: inner relation coefficient
h; : inner model error

t; (u) present the transformed (lower dimensional) input (output) data

- universiTE
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PLS modelling

= Advantages:
Dimension reduction of input space
More robust estimates of regression vector(s)

= Disadvantages
Limited to linear regression conditions

- universiTE
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Neural Net PLS modelling

= PLS is a linear method by definition and thus
fails when the relationship between inputs (X)
and outputs (Y) is non-linear in nature

m UNIVERSITE
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Neural Net PLS modelling

= NNPLS tackles this problem by replacing the
(linear) inner relationship coefficient in PLS
by a 3-layer network (1 hidden layer).

x=t.pl=t.pt+t.pt+..+t p.t

y=u.q'=u.q+t.gt+ ... +u,qp,t

where: u;= NN;(t) + h; ; NN; : inner neural net
h; - inner model error

m UNIVERSITE
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Neural Net PLS modelling

= Advantages:
Not restricted to linear regression problems

= Disadvantages
Additional parameters (number of nodes in hidden layer)
=> model is more complex

Pl UNIVERSITE
il LAVAL J
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Neural Net PLS modelling

= Comparison NNPLS / PLS

input space . output space

X X XX
t, X
XX
Xx e X
X -

PLS NNPLS

LINK = Linear regression LINK = Neural Net

Pl UNIVERSITE
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Kernel PLS modelling

= KPLS also tackles the problem of nonlinearity
= not by looking for a nonlinear relation Y=f(t)

= but by transforming the input space (X),
prior to PLS modelling

INIVERSITE
o B ORAL

Kernel PLS modelling

= The transformation is chosen such that
the input data become “more linear” :

f= ®(x)
f=t.pt=t.pi+tpt+. ...+t p,t

y=u.q' =u. g+t + .+ U gt

where: u;=b; . t;+ h;; b, : inner relation coefficient

h; : inner model error

INIVERSITE
o B ORAL




Kernel PLS modelling

= The transformation is chosen such that
the input data become “more linear” :

Input space Feature space Output space
X
(7 X fZT F sz u'Y

X}// . ’xx xxx
_ X3 XX
X g f, X Xl

4 / 4 . L] | o Ll
T T F=o(X) "E&{ 5,
LS |
@ Linear PLS

High-dimensional
nonlinear mapping

- universiTE
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Kernel PLS modelling

= |n this work the Gaussian kernel function
was applied to transform the input data:

£ = O(x,x) = k(x,X) = exp(-{lxx) 2/ d)

where: d = width of the Gaussian kernel function
( = extra tuning or meta-parameter)

- universiTE
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Kernel PLS modelling

= Advantages:
nonlinear collinearity within the X-space is dealt with
No non-linear optimisation required

= Disadvantages
Larger computational demand (x10 — x100)

Models are hard to interpret
(as the transformed inputs are hard to interpret)
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PLS modelling: Results

= Objective: predict SBR effluent quality
Total nitrogen
NO,
PO,
= using on-line data (1600 batches; AT=1 min)
pH, temperature, weight
conductivity
dissolved oxygen (DO)
oxidation reduction potential (ORP)
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PLS modelling: Results

= For PLS and NNPLS:
Degree of freedom: # of latent variables

Selection based on cross-validation
CUMPRESS = Sum of SSE values
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PLS modelling: Results

500

= # LV’s for g b
prediction of f ol
Total N "
NO, .

— —
PO o AT ek R T e
i
4 W00 p
o P
= 200 el M
=
© 100

01 2 3 4 5 B 7 8 9 10 1112 13 14 15

b 1 2 3 4 &5 B 7 8 9 10 1 12 13 14 15
™
£
o 400
T
£ &
< ot
=
2 1m

a

o 1 2 3 4 65 6 7 8 8 10 11 12 13 14 15
Ly

Pl UNIVERSITE
ted LAVAL /
||ﬁh{t-l\LM

PLS modelling: Results

prediction of [ S e}

Omnﬁ;ﬁ;’LS e : n ; |
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A lower dimension
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PLS modelling: Results

= For Kernel PLS:

Degree of freedom:

« # of latent variables

» width of kernel function d

Selection based on cross-validation
CUMPRESS = Sum of SSE values
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PLS modelling: Results

= # LV's and d for prediction of Total N
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PLS modelling: Results

= # LV’s and d for prediction of NO4
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PLS modelling: Results

= # LV’s and d for prediction of PO,

CUMPRESS

d (x 1000)
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PLS modelling: Results (Total N)
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PLS modelling: Results (NO,)

| PLS
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! I4 = NNPLS catches
I KPLS l » dynamics best
| o 84 I
o R KPLS delivers
of :Ed TR _‘"I# : poor prediction

PLS modelllng Results (PO4)

NNPLS delivers
slight improvement

KPLS performs better
but at a cost of 16 LV's,
PLS and NNPLS : 8 LV's
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PLS modelling: Summary

output PLS NNPLS KPLS TN Unacceptable
(dynamics)
™ NO,: NNPLS is
qualty | NOS b only satisfactory
S M b model
TN 220 235 147
PO,: NNPLS
cumpress NO3 303 116 198 .
is selected
P 179 150 142
(KPLS model
TN 7 4 5
needs too
LV's NO3 7 11 2 many LV's: 16)
P 8 8 16
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Conclusions

= Still, none of the models is really satisfying
= What did we miss?
The inputs data do not describe the process
The data are treated as independent observations

- In fact, they represent a time series
Autocorrelation should be accounted for

The data stem from a large time window (14 months)
- Equipment, operation and biological changes
may not permit a unique (overall) model
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