
BOOSTING THE EFFICIENCY OF COMPOUND VIRTUAL EXPERIMENTS
THROUGH A PRIORI EXPLORATION OF THE SOLVER SETTING SPACE

Filip H.A. Claeys Peter A. Vanrolleghem Peter Fritzson
Department of Applied Mathematics, modelEAU Programming Environments

Biometrics and Process Control (BIOMATH) Département de ǵenie civil Laboratory (PELAB)
Ghent University Universit́e Laval Link̈oping University

Coupure Links 653 Pavillon Pouliot Campus Valla
B-9000 Gent Qúebec, G1K 7P4 SE-581 83 Linköping

Belgium QC, Canada Sweden
E-mail: fc@biomath.ugent.be E-mail: peter@modelEAU.org E-mail: petfr@ida.liu.se

KEYWORDS

modelling & simulation, software development, numeri-
cal solvers, distributed execution

ABSTRACT

Tornado is a new advanced kernel for modelling and vir-
tual experimentation (i.e., any evaluation of a model) in
the water quality domain. Although primarily intended
for use within this particular domain, the kernel is generic
in nature and has aplethoraof generally applicable fea-
tures. This paper focuses on the ability of Tornado to
perform a priori explorations of the integration solver
setting space (i.e., the powerset of all possible combina-
tions of solver settings such as accuracy, stepsize, . . . )
in order to find improved settings that may boost the ef-
ficiency of complex virtual experiments. The technique
is an extension of the standard scenario analysis virtual
experiment type that normally allows for evaluating the
effects of changes in model parameters and initial con-
ditions. It is shown that througha priori solver setting
space exploration, the total execution time of computa-
tionally complex virtual experiments can be substantially
reduced. Results from an application of the method to
Monte Carlo simulation of a river system in Luxembourg
are included.

INTRODUCTION

In water quality research, the biological and/or chemical
quality of water in rivers, sewers and wastewater treat-
ment plants (WWTP) is studied. Research in this domain
is facilitated by a number of models that have received
a formal orde factostandardization status. Most notable
are River Water Quality Model No.1 (RWQM1) (Reichert
et al., 2001) and the Activated Sludge Model (ASM) se-
ries (Henze et al., 2000).

Water quality models typically consist of large sets of
non-linear Ordinary Differential Equations (ODE) and/or
Differential-Algebraic Equations (DAE). These equa-
tions are mostly well-behaved, although discontinuities
occur regularly. The complexity of water quality mod-
els is therefore not in the nature of the equations, but
in the sheer number. In WWTP, smaller models such
as the well-known Benchmark Simulation Model (BSM)

(Copp, 2002) consist of approximately 150 derived vari-
ables. Larger systems have up to 1,000 derived variables
and over 10,000 (partly coupled) parameters.

Simulation of water quality models is a computationally
intensive process. A continuous need for software tools
that offer improved performance therefore exists. An ex-
ample of a software tool that was recently developed is
Tornado (Claeys et al., 2006b). It manages to substan-
tially improve performance with respect to its predeces-
sors. However, the overwhelming number of configura-
tion options may be difficult to manage for users lacking
the necessary background. More specifically, Tornado of-
fers a wide variety of dynamically loadable solvers. Se-
lecting an appropriate solver and configuring it properly
is a non-trivial task, especially since not every modeller
can be expected to be a numerical expert. Even for ex-
perts in this field, finding the most appropriate solver set-
tings can be a cumbersome task since models tend to be
very large and exhibit multiple features. Therefore, it is
difficult to judge beforehand which feature will have the
most influence on the solver settings. Whilst research into
the automated, intelligent configuration of solvers is on-
going (Claeys et al., 2006c), Tornado already provides
some more crude methods that help in the selection of
appropriate solver settings, and hence to reduce the over-
all computation time.

The method discussed in this article is based on semi-
automated exploration of the effects of a number of pre-
determined combinations of solver settings, through a
modification of the standard scenario analysis experiment
type available in Tornado. Since many Tornado experi-
ments rely on the subsequent execution of a large number
of simulations, investing time in searching for the most
appropriate integration solver settings ultimately has a
positive net effect on the overall computation time.

The first two sections of this article respectively give a
short introduction to Tornado and its distributed execu-
tion capabilities. A more elaborate discussion can be
found in Claeys et al., 2006b and Claeys et al., 2006a.
The next sections discuss Tornado’s standard scenario
analysis and solver setting scenario analysis experiment
types. Subsequently follows a discussion of an applica-



tion of the suggested method and finally, some conclu-
sions.

THE TORNADO KERNEL

The Tornado kernel for modelling and virtual experi-
mentation attempts to offer a compromise between the
computational efficiency of custom hard-coded (typi-
cally FORTRAN or C) model implementations and the
flexibility of less computationally efficient generic tools
such as MATLAB. In (Copp, 2002) it is argued that
for large ODE systems, generic tools such as MAT-
LAB/SIMULINK will only be sufficiently efficient when
large portions of the model are implemented as procedu-
ral code (e.g., C), which is detrimental to the overall read-
ability and maintainability of the model. In Tornado, hi-
erarchical models are specified in high-level, declarative,
object-oriented modelling languages such as MSL (Van-
hooren et al., 2003) and Modelica (Fritzson, 2004). From
these high-level specifications, efficient executable code
is generated by a model compiler. Using the executable
models generated by the model compiler, Tornado allows
for running a variety of so-calledvirtual experiments.
Virtual experiments are the virtual-world counterpart of
real-world experiments, similar to the way models relate
to real-world systems.

The most common virtual experiment type in Tornado
is dynamic simulation (ExpSimul). Other experiment
types include optimization (ExpOptim), sensitivity anal-
ysis (ExpSens), scenario analysis (ExpScen), Monte
Carlo (i.e., LHS - Latin Hypercube Sampling) analysis
(ExpMC), and steady-state analysis (ExpSS). Virtual ex-
periments are hierarchical in nature, in the sense that
one experiment can be composed of a number of other
experiments. We therefore distinguish betweenatomic
and compoundexperiments. Atomic experiments are
not made up of constituents and therefore cannot be de-
composed (examples are ExpSimul and ExpSS). Com-
pound experiments on the other hand rely on one or
more (atomic or compound) sub-experiments (examples
are ExpOptim, ExpSens, ExpScen and ExpMC).

The Tornado kernel relies on a flexible input provider
and output acceptor mechanism to deal with I/O for vir-
tual experiments. In order to allow for the kernel to be
deployed in a diverse array of applications, it has been
equipped with multiple interfaces. Next to its native C++
interface, Tornado currently also has a C, .NET and MAT-
LAB MEX interface.

Tornado is portable across platforms and was designed
according to the three-tier principle. Most persistent
representations of information types are XML-based.
The grammar of these representations is expressed in
XSD (XML Schema Definition) format and mimics very
closely the internal representation of the respective types
of information.

Several applications (graphical and other) can be built on

top of Tornado. One example includes the next genera-
tion of the WEST® (Vanhooren et al., 2003) modelling
and simulation tool for WWTP’s. However, the most di-
rect way of using the kernel is through the Tornado CUI
(Command-line User Interface) suite, which is a compre-
hensive set of tools that is included with the kernel dis-
tribution. The most commonly used CUI tools are the
following:

• tmsl : Compiles a high-level model to executable
model code

• tbuild : Compiles and links executable model
code to a dynamically loadable binary object

• tcreate : Creates an empty XML description of
a virtual experiment (to be further completed man-
ually)

• texec : Executes virtual experiments described in
XML. Dynamically loads the necessary solvers and
executable models.

The results discussed in this paper were obtained through
the Tornado CUI suite.

DISTRIBUTED EXECUTION USING TY-
PHOON AND LCG-2

Since compound virtual experiments in Tornado are com-
putationally complex, and often consist of a number of
mutually independent sub-experiments, there is in many
cases a possibility for coarse-grained gridification,i.e.,
parallellization at the level of sub-experiments. Fine-
grained gridification would entail splitting up atomic sub-
experiments into constituents, which is a complex task
that is believed to cause severe overhead and is therefore
not considered.

In order to allow for a certain degree of freedom with
respect to the selection of distributed execution environ-
ments, a generic XML-based job description format has
been defined within the scope of Tornado. From this
generic description, jobs for two distinct distributed ex-
ecution environments can currently be generated: Ty-
phoon and LCG-2.

Typhoon (Claeys et al., 2006a) is a light-weight cluster-
oriented distributed execution environment that was de-
veloped at BIOMATH. The Typhoon job dispatcher is ca-
pable of directly interpreting Tornado-generated generic
jobs descriptions. Jobs are then transferred from the dis-
patcher to a number of registered worker nodes for exe-
cution.

LCG-2 (http://public.eu-egee.org) is the software that
was developed in the scope of the Large Hadron Col-
lider Grid project. It is deployed in the European EGEE
project, which represents the largest European grid to



date. In order to convert generic Tornado job descrip-
tions to LCG-2, a conversion tool namedt2jdl is avail-
able in the Tornado CUI suite. This tool converts a XML
description of a batch of N jobs to N individual LCG-2
job description files and a number of convenience shell
scripts.

Tornado is able to generate generic job descriptions for
simulation sub-experiments that are to be run from sce-
nario analysis and Monte Carlo analysis compound ex-
periments. In Claeys et al., 2006b it is demonstrated that
execution of gridified scenario analysis experiments on
the UGent Grid (a 41-node LCG-2 infrastructure) leads
to a speedup factor of approximately 30.

STANDARD SCENARIO ANALYSIS

One of the most commonly used compound virtual ex-
periment types in Tornado is scenario analysis. Scenario
analysis in principle allows for running a number of sim-
ulations using different parameter values and/or initial
conditions. During this process a number of aggregation
functions can be computed from the simulated trajecto-
ries of a selected set of variables. Scenario analysis forms
the basis of the solver setting exploration method that is
discussed later. It is therefore described in this section in
some more detail.

In order to clarify the way a scenario analysis experiment
is structured, an excerpt from the graphical representa-
tion of the ExpScen XSD definition is presented in Fig-
ure 1. Each of the entities in this figure additionally has
a number of simple or structured attributes that are not
represented in the figure.

Figure 1: Grammar of Scenario Analysis XML Descrip-
tion

From the representation follows that the following enti-
ties play an important role in scenario analysis experi-
ments:

• Variables: Model parameters and/or initial condi-

tions that vary from one objective evaluation to the
next. Values can either be supplied manually, sam-
pled from a number of distributions (uniform, trun-
cated normal, triangular), or evenly spaced (lin-
early or logarithmically) between a lowerbound
and upperbound. In order to refer to the object that
needs to be varied, all that is required is a fully-
qualified object name (e.g., .a.b.c, wherea andb
are submodels). Since the types of all entities are
stored by the system, it can be determined auto-
matically on the basis of an object name whether
the value that needs to be varied is actually a pa-
rameter or an initial condition.

• Objective: Description of the evaluation that needs
to be performed during each run. In this case the
objective is defined as a simulation run, for which
trajectories of a selected set of model variables are
stored and later used for the computation of a num-
ber of aggregation functions.

• Quantities: Represent model variables for which
trajectories need to be stored. For each quantity it
can be specified which aggregation functions (such
as Minimum, Maximum, Average, Integral, . . . )
are to be computed.

• Solve: Describes the sequence of evaluation of the
powerset of variable values,i.e., the set of variable
value combinations. Alternatives are evaluation in
plain sequential order, random order or according
to the distance to a reference point in the scenario
analysis variable space. Another possibility is only
to evaluate a fixed subset of variable value combi-
nations. Each of these alternatives is illustrated in
Figure 2, for a simple case of 2 variables with 4
values each.

• Inputs: Represents input that is required for the
computation of certain objective values.

• Outputs: Describes the output that is desired from
the scenario analysis.

• Log: Describes the logging information that is de-
sired.

As can be seen from Figure 1, the description of a sce-
nario analysis objective includes a description of the sim-
ulation experiment to be executed. In fact, this descrip-
tion can either be embedded within the scenario analysis
XML description itself, or reside in an external XML file.
In either case, the structure of the simulation experiment
description is similar to the scenario analysis description,
as can been seen from the graphical XSD excerpt in Fig-
ure 3.

SOLVER SETTING SCENARIO ANALYSIS

As mentioned before, finding appropriate integrator
solver settings can be a tedious task. It is typically a



Figure 2: Scenario Analysis Evaluation Schemes

Figure 3: Grammar of Simulation XML Description

manual trial-and-error process in which iteratively solver
settings are modified and simulations are run. The pro-
cess continues until settings are found that solve the set
of equations at hand with a sufficient level of accuracy,
and in a timely fashion. Actually, this process is very
similar to the scenario analysis process described above.
It was therefore suggested to extend the standard scenario
analysis functionality in Tornado so that not only model
parameters and initial conditions can be varied, but also
solver settings.

Thanks to the object-oriented and layered design of Tor-
nado (Claeys et al., 2006b), implementation of solver set-
ting scenario analysis was straightforward. In fact, the
scenario analysis experiment only interacts with its em-
bedded simulation experiment through a high-level ab-
stract interface. The most relevant methods in this inter-
face with respect to scenario analysis are the following:

• void
SetValue(const std::wstring& FullName,

double Value);

• double
GetValue(const std::wstring& FullName);

• void Run();

In standard scenario analysis, the FullName argument in
the Set/GetValue methods is a fully-qualified model ob-
ject name. In order to allow for solver setting scenario
analysis, the implementation of these methods was mod-
ified so that in case the FullName argument is struc-
tured differently, it is used to refer to a solver setting
instead of a model object. More specifically, when a
pattern such asSolve.<Type>.<PropName> instead of
[.<ModelName>]*. <ObjName> is discovered as a Full-
Name, the property of name<PropName> in the cur-
rently configured solver of type<Type> is modified. In
the case of integration, the solver type isInteg. Other
types of solvers are possible as well (such as optimizers,
root finders, . . . ), but are not relevant in the scope of the
current discussion.

The different methods that can be used for varying vari-
ables in scenario analysis (manual placement, sampling
from distributions and linear/logarithmic spacing) turn
out to be very practical in case solver settings need to
be varied (e.g., the use of logarithmic spacing for accu-
racies that are represented by negative powers of 10) .
Also, the different methods for sorting value combina-
tions (plain sequential, random, grid, fixed) are equally
useful in solver setting scenario analysis as in standard
scenario analysis. In case one only wishes to evalu-
ate a limited set of predetermined combinations of set-
tings, the fixed method is appropriate. In case one wants
to evaluate an entire grid of combinations, without any
preferences with regard to sequence, the plain sequential
method seems most appropriate. The random method (or
possibly grid method) could be used to walk through the
solver setting space in order to get some initial under-
standing of how it behaves. Processing can be stopped as
soon as this insight has been gained.

Another feature of standard scenario analysis that proves
to be useful in the case of solver setting scenario analysis,
is distributed execution. Indeed, as in standard scenario
analysis, the number of runs to execute can become very
large. Distributed execution therefore allows for faster
evaluation of a large number of alternatives. Evidently,
since in distributed execution there is no sequential exe-
cution of runs, the sorting methods of value combinations
are not relevant here.

One must take into account that in case appropriate solver
settings are sought for a certain simulation experiment
through scenario analysis, these settings may only apply
within a certain neighborhood of the initial values of the
model. Strongly differing values may require a new anal-
ysis to be performed. If solver settings are sought that
are to be applied within the scope of a compound exper-
iment, one must make sure that the initial values of the
simulation experiment that is iteratively run within the
solver setting scenario analysis, are sufficiently represen-
tative for the simulations that are to be run in the standard
compound experiment afterwards.



In solver setting scenario analysis, objective functions
that are typically applied in standard scenario analysis are
not very useful. More interesting in this case is to know
the speed and accuracy of simulation. Speed of simula-
tion could in principle be measured through the total sim-
ulation time. However, load variations of the machine
on which the simulation is run render this metric unreli-
able in practice. A better approach is to relate simulation
speed to the computational complexity of the simulation.
A good measure for this is the number of state evalua-
tions of the model. Indeed, the fewer times the state of
a model needs to be computed during a simulation, the
faster the simulation will run. Since Tornado by default
internally computes the number of state evaluations, it
was straightforward to make this metric available as an
objective for scenario analysis. It should be noted that
next to the model, the solver itself also introduces some
computational complexity. In the case of small models,
this solver-incurred complexity is non-negligible. How-
ever, for the elaborate models that are typically dealt with
in the scope of Tornado, the complexity of the model
largely outweighs the solver complexity.

For measuring the simulation accuracy, Tornado also has
some useful functionality available: it allows for comput-
ing measures of similarity between a simulated trajectory
and a reference trajectory (either by computing the sum of
squared, relative or absolute differences (DiffSum), or by
the computing the maximum difference (DiffMax)). This
functionality has also been made available as an objec-
tive, so that trajectories that are simulated through solver
settings scenario analysis can be compared with a refer-
ence trajectory with the desired accuracy, established be-
forehand.

Figure 4 shows the overall flow of the suggested pro-
cedure. First, a solver setting scenario analysis is per-
formed for a simulation experiment with initial values
that are representative for the compound experiment that
follows. From the results obtained (number of state eval-
uations, and difference with regard to reference trajec-
tories), an appropriate solver configuration is selected,
which is then applied to the simulation experiment. Next
follows the compound experiment (typically a standard
scenario analysis or Monte Carlo analysis) that will iter-
atively run this simulation experiment, and should ben-
efit from the improved solver settings that were found
through the first step of the procedure. During both steps
of the procedure, simulation sub-experiments can either
be run sequentially or concurrently, in case a distributed
execution environment is available. In order to further
clarify both steps of the procedure, a functional compar-
ison of standard and solver setting scenario analysis is
presented in Table 1.

APPLICATION TO THE LUXEMBOURG CASE

Recently, an integrated model was built for the Sûre river
in Luxembourg, and two of its tributaries (Solvi, 2006).

Table 1: Comparison between Standard and Solver Setting
Scenario Analysis

Item Standard Solver Setting

Variables Model parameters Solver settings

Initial conditions

Objective Aggregation functions #StateEvals

DiffSum, DiffMax DiffSum, DiffMax

Solver Plain Sequential Plain Sequential

Random, Grid Random, Grid

Fixed Fixed

Gridification Available Available

Figure 4: Solver Setting Scenario Analysis Procedure

Flow in the receiving river(s) is modelled as a tank cas-
cade, and water quality is represented by a simplified
version of the IWA river water quality model RWQM1
(Reichert et al., 2001). It contains processes for oxygen,
biodegradable organic matter, nitrogen and phosphorus
cycles, pH and algae growth. The model can be reduced
to adapt to local circumstances and was developed to be
compatible with the IWA standard activated sludge mod-
els (ASM1, ASM2, ASM3 (Henze et al., 2000)) for mod-
elling WWTP’s. For urban drainage and sewer transport,
an adapted version of the German KOSIM model was im-
plemented into the Tornado model library (Solvi, 2006).

The overall model consists of some 12,000 (mainly
coupled) parameters, 4,400 algebraic variables and 414
ODE’s. For this model, a Monte Carlo analysis was set up
that takes 1,000 shots from a 32-dimensional parameter
space. Of the 32 parameters involved, 30 vary according
to a uniform distribution; the remaining 2 are triangularly
distributed.

For simulating the model, an integration solver had to be
chosen amongst the wide variety of solvers available in



Tornado (approx. 20 solvers available at this moment).
In a first instance, a conservative approach was followed
which lead to the selection of a variable stepsize Runge-
Kutta 4 solver. The solver was shown to work well for all
1,000 runs of the Monte Carlo analysis. With this solver,
a simulation run takes on average 53 s on a reference ma-
chine (HP DL145 Dual Opteron 242 1.6GHz, 4GB RAM,
40GB HD) and results in an average total of 392,356 state
evaluations per run.

In general, advanced solvers such as CVODE,
which is part of the SUNDIALS suite
(http://www.llnl.gov/CASC/sundials), often yield bet-
ter performance than the more basic Runge-Kutta solver
that was chosen at first. Unfortunately, a number of sim-
ulation runs with manually configured CVODE settings
initially lead to the belief that in this case CVODE would
not be appropriate. However, CVODE has many combi-
nations of solver settings, and it is very unpractical to test
each of these manually. Therefore, the above-mentioned
approach based on solver setting scenario analysis was
applied. The CVODE solver settings and values that
were chosen as variables for the analysis are listed in
Table 2:

Table 2:Solver Settings for the Luxembourg Case

Name Values

AbsoluteTolerance 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8

RelativeTolerance 1e-3, 1e-4, 1e-5, 1e-6, 1e-7, 1e-8

IterationMethod Functional (0), Newton (1)

LinearMultistepMethod Adams (0), BDF (1)

LinearSolver Dense (0), Diag (2), SPGMR (3)

It should be noted that IterationMethod, LinearMultistep-
Method and LinearSolver are not represented by a real
value, but by an enumerated value (a string in Tornado).
Since scenario analysis cannot deal with enumerated val-
ues, they have to be mapped to an integer value (as is
illustrated by the values between parenthesis in Table 2.

The values for Absolute & Relative Tolerance could
in principle be specified through the manual placement
method, but in this case they were specified through log-
arithmic spacing, as illustrated in Table 3. Since for Iter-
ationMethod and LinearMultistepMethod only 2 choices
exist, these were specified through the manual placement
method. This also applies to LinearSolver, for in this case
the values (0, 2 and 3) are unrelated.

As can easily be seen from Table 2, the total number of
solver setting combinations and hence the number of sim-
ulations to be run is 6 x 6 x 2 x 2 x 3 = 432. A number
of simulations as high as this evidently is only advisable
in case the standard compound experiment that follows
also consists of a high number of simulation runs, and
in addition the expected speed-up for one simulation is
substantial. In case these conditions are not fulfilled, the

Table 3:Properties of Absolute & Relative Tolerance Scenario
Analysis Variables

Name Value

DistributionMethod Logarithmic

LowerBound 1e-8

UpperBound 1e-3

Spacing 10

number ofa priori simulations may have to be reduced
in order to avoid overall performance degradation instead
of the improvement that is hoped for.

During the scenario analysis, the average number of state
evaluations as well as the total number of failures of
the CVODE algorithm (due to stepsize underflow) were
determined for each IterationMethod / LinearMultistep-
Method / LinearSolver pattern, as is shown in Table 4.
From this table follows that 1-0-0, 1-0-2, 1-0-3, 1-1-0 and
1-1-2 are unreliable since these settings sometimes result
in CVODE failures. For the remaining settings, the dif-
ference with respect to reference trajectories was studied.
From this, is was concluded that the 0-1-* patterns lead
to appropriate solver settings for the simulation at hand,
for all Absolute and Relative Tolerances considered. The
0-0-* patterns (which have a more or less comparable
number of state evaluations) are less favorable since in
this case the difference with respect to the reference tra-
jectories is higher. On the basis of the number of state
evaluations, one might be lead to believe that also the 1-
1-3 pattern is a good option. However, in this case the
resulting trajectories differ considerably from the desired
reference trajectories. This indicates that this pattern is
actually unstable, although no explicit CVODE failures
have occurred. In view of the preceding analysis, it was
decided for this application to retain the 0-1-0 pattern in
combination with a Relative and Absolute Tolerance set
to 1e-6.

Table 4: Total Number of Failures and Average Number of
State Evaluations per Pattern (average over all selected toler-
ance settings)

Pattern #Failures Avg(#StateEvals)

0-0-0 0 150,128

0-0-2 0 150,128

0-0-3 0 150,128

0-1-0 0 142,943

0-1-2 0 142,943

0-1-3 0 142,943

1-0-0 4 55,879

1-0-2 26 29,835

1-0-3 2 167,988

1-1-0 6 6,052

1-1-2 27 8,782

1-1-3 0 1,594



Using the new solver settings, the average simulation
time per run could be reduced from 53 to 33 s. The num-
ber of state evaluations could be more than halved (from
392,356 to 153,490). This implies that for sequential ex-
ecution, the total simulation time for 1,000 runs could
be reduced by 1,000 x 20 s, or approximately 5.5 hours.
Compared to the approximate 2.5 hours that was spent on
thea priori solver setting exploration, this results in a net
performance gain of 3 hours. This clearly shows that be-
cause of the amplification of performance improvements
(or degradations) that result from compound virtual ex-
periments, it is beneficial to invest time into the explo-
ration of the solver setting spacea priori.

CONCLUSION

This paper touches on the application of scenario anal-
ysis to the problem of finding appropriate integration
solver settings for a certain simulation. It shows that
in case solver settings are to be applied to a simulation
sub-experiment executed iteratively within the scope of
a compound experiment, investing time into thea priori
exploration of the solver setting space can substantially
reduce the overall simulation time. Evidently, the scale
of thea priori exploration and the potential performance
benefit need to be well-balanced.

Thanks to the object-oriented design of the tool used
for this study, implementation of solver setting scenario
analysis on the basis of standard scenario analysis was
straightforward.

In the study that was reported on in this article, a crude
scenario analysis technique for finding good solver set-
tings was used. It was shown that this technique allows
for the reduction of the overall computation time of large-
scale problems, even though it does not exhibit any form
of intelligence. In future studies, heuristics and additional
knowledge on model features may be introduced, which
should allow for a reduction of the required number ofa
priori simulation runs.

REFERENCES

F. Claeys, M. Chtepen, L. Benedetti, B. Dhoedt, and P.A. Van-
rolleghem. Distributed virtual experiments in water quality
management. Water Science and Technology, 53(1):297–
305, 2006a.

F. Claeys, D. De Pauw, L. Benedetti, I. Nopens, and P.A. Van-
rolleghem. Tornado: A versatile efficient modelling & vir-
tual experimentation kernel for water quality systems. In
Proceedings of the iEMSs 2006 Conference, Burlington, VT,
2006b,Accepted.

P. Claeys, F. Claeys, and P.A. Vanrolleghem. Intelligent con-
figuration of numerical solvers of environmental ODE/DAE
models using machine-learning techniques. InProceedings
of the iEMSs 2006 Conference, Burlington, VT, 2006c,Ac-
cepted.

J.B. Copp, editor.The COST simulation benchmark. European
Commission, 2002.

P. Fritzson.Principles of Object-Oriented Modeling and Simu-
lation with Modelica 2.1. Wiley-IEEE Press, February 2004.
ISBN 0-471-47163-1.

M. Henze, W. Gujer, T. Mino, and M. van Loosdrecht.Activated
Sludge Models ASM1, ASM2, ASM2d, and ASM3. Scientific
and Technical Report No.9. IWA Publishing, London, UK,
2000.

P. Reichert, Borchardt D., Henze M., Rauch W., Shanahan P.,
Somlýody L., and P.A. Vanrolleghem.River Water Quality
Model No.1. Scientific and Technical Report No.12. IWA
Publishing, London, UK, 2001.

A.-M. Solvi. Construction and calibration of an integrated
model for catchment, sewer, treatment plant and river. In
Proceedings of the 7th International Conference on Hydroin-
formatics 2006, Nice, France, 2006.

H. Vanhooren, J. Meirlaen, Y. Amerlinck, F. Claeys,
H. Vangheluwe, and P.A. Vanrolleghem. WEST: modelling
biological wastewater treatment.Journal of Hydroinformat-
ics, 5(1):27–50, 2003.

AUTHOR BIOGRAPHIES

FILIP H.A. CLAEYS was born in Ghent, Belgium. He re-

ceived a MSc in Computer Science from Ghent University

and a Master’s in Artificial Intelligence from K.U.Leuven. He

currently works as a senior software engineer for HEMMIS

N.V. and leads a research group in the field of modelling and

simulation software tools at Ghent University.

PETER A. VANROLLEGHEM , bio-engineer, PhD, heads

the modelEAU research team at Université Laval (Qúebec)

and has ample experience with modelling, monitoring and

control of wastewater treatment systems. He has over 175

peer-reviewed papers and is very active within the Interna-

tional Water Association.

PETER FRITZSON is head of the Programming Environ-

ment Laboratory at Link̈oping University, Sweden. He holds

the positions of research manager at MathCore Engineering

AB, chairman of the Scandinavian Simulation Society and

vice-chairman of the Modelica Association. He has published

10 books and over 100 scientific papers.


